
Artificial Intelligence Techniques in Power Systems, pp 220-237 K. Warwick, A.O. Ekwue and R.Aggarwal, 1997, IEE

Chapter 10

Scheduling Maintenance of Electrical Power
Transmission Networks Using Genetic Programming

W. B. Langdon and P. C. Treleaven

University College London

Abstract

The National Grid Company Plc. is responsible for the maintenance of the high
voltage electricity transmission network in England and Wales. It must plan
maintenance so as to minimise costs taking into account:

• location and size of demand,

• generator capacities and availability’s,

• electricity carrying capacity of the remainder of the network,
i.e. that part not undergoing maintenance.

Previous work showed the combination of a Genetic Algorithm using an order or
permutation chromosome combined with hand coded ‘Greedy’ Optimisers can
readily produce an optimal schedule for a four node test problem [10]. Following
this the same GA has been used to find low cost schedules for the South Wales
region of the UK high voltage power network.

This paper describes the evolution of the best known schedule for the base South
Wales problem using Genetic Programming starting from the hand coded
heuristics used with the GA.

1 Introduction

In England and Wales electrical power is transmitted by a high voltage electricity
transmission network which is highly interconnected and carries large power
flows. It is owned and operated by The National Grid Company plc. (NGC) who
maintain it and wish to ensure its maintenance is performed at least cost,
consistent with plant safety and security of supply.

There are many components in the cost of planned maintenance. The largest is the
cost of replacement electricity generation, which occurs when maintenance of the
network prevents a cheap generator from running so requiring a more expensive
generator to be run in its place.

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

2

The task of planning maintenance is a complex constrained optimization
scheduling problem. The schedule is constrained to ensure that all plant remains
within its capacity and the cost of replacement generation, throughout the duration
of the plan is minimised. At present maintenance schedules are produced
manually by NGC's Planning Engineers (who use computerised viability checks
on the schedule after it has been produced).

Previous work showed the combination of a Genetic Algorithm (GA) [7], using an
order or permutation chromosome combined with hand coded ‘Greedy’ Optimises
can readily produce an optimal schedule for a four node test problem [10] (see
also Figure 5). Following this the same GA has been used to find low cost year
long maintenance schedules for the South Wales region of the UK high voltage
power network. [5] used a linear chromosome with non-binary alleles [13] to
solve the four node problem but was less successful on the larger South Wales
problem).

This paper describes the evolution of better ‘greedy’ optimizers for the South
Wales problem using genetic programming (GP) starting from the hand coded
heuristic used with the GA. Section 2 describes the South Wales region of the UK
high voltage power transmission network. The fitness function used to cost
maintenance schedules and scheduling heuristics are the same as used in the
earlier GA approaches (Sections 3, 4 and 5 are based on [10]). Section 6 describes
in detail the genetic programming experiment and the results obtained while
Section 7 describes other approaches that might be tried and possible further work.

2 South Wales Region of UK Electricity Network

The South Wales region of the UK electricity network carries power at 275K
Volts and 400K Volts between electricity generators and regional electricity
distribution companies and major industrial consumers. The region covers the
major cites of Swansea, Cardiff, Newport and Bristol, steel works and the
surrounding towns and rural areas (see Figure 1). The mayor sources of electricity
are in feeds (2) from the English Midlands, coal fired generation at Aberthaw,
nuclear generation at Oldbury and oil fired generation at Pembroke. Both demand
for electricity and generation change significantly through the year (See Figures 2
and 3).

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

3

100 MW Generation

100 MW Demand

Swansea

Cardiff

Pembroke

MELKA1

Oldbury

WALHA1

Aberthaw

Bristol

Newport

Figure 1 South Wales Region High Voltage Network

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

10 20 30 40 50

P
r
e
d
i
c
t
e
d

D
e
m
a
n
d

Engineering Weeks

Week 18 Week 21

South Wales Load Curve

Figure 2 Predicted Demand in South Wales Region

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

4

0

200

400

600

800

1000

10 20 30 40 50

P
r
e
d
i
c
t
e
d

G
e
n
e
r
a
t
i
o
n

Engineering Weeks

WALHA1
MELKA1

1
2
7
8
9

Figure 3 Predicted Generation in South Wales Region

The representation of the electricity network used in these experiments is firmly
based upon the engineering data available for the physical network however a
number of simplifications have to be made. Firstly the regional network has been
treated as an isolated network, its connections to the rest of the network have been
modelled by two sources of generation connected by a pair of low impedance high
capacity conductors. Secondly the physical network contains short spurs run to
localised load points such as steel works. These ‘T’ points have been simplified
(e.g. by inserting nodes into the simulation) so all conductors connect two nodes.
The industry standard DC load flow approximation is used to calculate power
flows through the network.

In the experiments reported in this paper the maintenance planning problem for
the South Wales region has been made deliberately more difficult than the true
requirement. In these experiments:

• All lines must be maintained during the 53 week plan (1995 had 53 weeks
rather than 52). Typically about a thrid of the lines are maintained in any one
year.

• All maintenance takes four weeks. Typically scheduled outage of a line is
between a week and 1½ months.

• All conductor ratings were reduced by 50%.

The requirement that the network should be fault resistant during maintenance is
not considered in this paper. This is because consideration of potential network
faults is highly CPU intensive. The permutation GA approach has been taken
further than the GP approach and acceptable schedules have been evolved which
do consider network robustness.

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

5

3 Approximating Replacement Generation Costs

NGC use computer tools for costing maintenance schedules, however because of
their computational complexity, it was felt that these were unsuitable for
providing the fitness function. Instead our fitness function is partially based upon
estimating the replacement generation costs that would occur if a given
maintenance plan were to be used. The estimate is made by calculating the
electrical power flows assuming the maintenance will not force a change in
generation. In practice alternative generators must be run to reduce the power
flow through over loaded lines in the network. The cost of the alternative
generators is modelled by setting the amount of replacement generation equal to
the excess power flow and assuming alternative generators will be a fixed amount
more expensive than the generators they replace.

4 The Fitness Function

The GA's fitness function is composed of two parts; a benefit for performing
maintenance plus penalties for exceeding line ratings, isolating nodes and splitting
the network.

4.1 Maintenance Benefits

The maintenance requirements of the different components of the transmission
network vary both in terms of the number of weeks required to perform them and
their urgency. It may be advisable to hold over less urgent maintenance until the
following year. However maintenance requirements have been both simplified
and made more onerous by requiring all lines to be maintained exactly once,
assuming each will take four weeks and giving them all the same benefit.

Should a trial maintenance plan schedule a line for maintenance, its fitness is
improved by the maintenance benefit. There is no additional benefit or penalty
from additional maintenance. The total benefit is obtained by summing across all
lines for the whole year.

4.2 Over Loading Costs

In order to calculate the line overloading costs, we must first determine which
generators are to be used and when. This is done by using the available generators
in strict price order (cheapest first) until the predicted demand for each week is
met (see Figures 2 and 3). This is known as the merit order dispatch. It is fixed
and therefore the same for all trial schedules.

For each week of a trial schedule the predicted demand and the merit order
dispatch are used in a ‘DC load flow’ analysis which calculates the power flow
through every line in the network. The over loading cost for each line is
proportional to the amount the power flow though it exceeds its normal operating

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

6

limit (it is zero if within the limit). The total over loading costs are the sum over
each week of the maintenance plan and over all lines in the network.

4.3 Avoiding Isolating Nodes or Splitting the Network

From an operational point of view, no acceptable maintenance schedule would
ever isolate a generation or demand node from the rest of the network or split the
network. However the GA fitness function must be able to cope with every
schedule that is generated. The ‘DC load flow’ algorithm cannot cope with either
as they require it to invert a singular matrix. Therefore the fitness function looks
for these conditions and defines a fitness for them without calculating power
flows.

As both represent highly unfit solutions, weeks of a schedule that cause either
contribute a high penalty to the schedule's whole fitness. The penalty for each
isolated node is proportional to the load or expected generation at that node. The
penalty for a network split is even more severe; it is proportional to the total load
across the whole network in that week.

4.4 Combined Fitness Measure

The complete fitness measure is expressed in Megawatt weeks (1 Megawatt (MW)
= 1340 horsepower) and is given by the following formula:

Kt

target

 x maintenance_ schedule)()1 −�

weeks
�

If network_split Then S1 x total demand
Else If isolate_nodes � 1 Then S2 x

isolate_nodes
� | demand � generation |

Else
lines
� If |flow| > rating Then |flow|-rating

The first summation being over all target maintenance (N.B. the trial plan's cost is
increased by Kt if the corresponding maintenance is not scheduled). The second
outer summation being over each week of the maintenance plan; the first inner
one, being over all isolated nodes, and the second, over all lines in the network.

For the South Wales problem the same values of Kt, S1 and S2 as the four node
system where used. i.e. Kt, is 4,000 MW and S1 = S2 = 5. [5] verified the values
used for the four node problem are applicable to the South Wales region.

5 Greedy Optimizers

The most successful approach taken so far to solving the power transmission
network maintenance scheduling problem has been to split the problem in two; a

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

7

GA and a ‘greedy optimizer’. The greedy optimizer is presented with a list of
work to be done (i.e. lines to be maintained) by the GA It schedules those lines
one at a time, in the order presented by the GA, using some problem dependent
heuristic. Figure 4 schematic shows this schematically, whilst the dotted line on
Figure 5 dotted shows an order in which lines are considered.

Genetic Algorithm

Ordered list of
things to be
Scheduled

Greedy Scheduler

Schedule

Cost of Schedule

Fitness
Permutation

Figure 4 Hybrid GA and ‘greedy optimizer’

Electricity users Electricity users

1 2

3 4

Generation Generation

Figure 5 Example order (dotted) in which lines are considered by a ‘greedy

optimizer’ for the four node problem

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

8

This approach of hybridising a GA with a problem specific heuristic has been
widely studied. Davis [2] for example firmly advocates using hybrid Gas when
attempting to solve difficult real world problems. Hybrid GAs, of various sorts,
have been used on a number of scheduling, problems (e.g. flight crew scheduling
[12], task scheduling [14] and job-shop and open-shop scheduling [3,4,16].

A variety of heuristics of increasing sophistication and computational complexity
have been tried on the four-node problem which yielded progressively better
results. The two that are also used in the GP approach are described next.

5.1 Heuristic 2 - Minimum Power Flow

A greedy optimizer was devised which scheduled the maintenance of each line in
the week in which the power flow through it is a minimum. In the event of a tie
the earlier week is chosen. As each line is scheduled, the power flows through the
rest of the network are recalculated.

In the case of the four node network, using this heuristic the GA was able to
devise low cost schedules which ensured all the required maintenance was done
which did not split the network or shed load. This was achieved by performing
maintenance when the demand was least, however it could not produce the
optimal schedule.

5.2 Heuristic 4 - Minimum Increase in Line Cost

The other greedy optimizers had been based on the assumption that placing a line
in maintenance was bound to increase the power flows on the remaining lines and
so must increase line costs (or leave them unchanged). Whilst it is theoretically
possible for the change in power flows to decrease line costs it was assumed that
this would not occur in practice. The motivation for this greedy scheduler was the
realisation that it is possible to schedule some lines so that they reduce line costs.
(This is the case of the four node problem and is apparently also true of some real
power networks).

The least increase in line cost optimizer schedules maintenance in the week in
which maintaining it would lead to the least increase in line costs (or in which
there is most decrease). If there is a tie the earliest week is used. N.B. this
optimizer looks one week ahead whereas the others make their decisions using
only the lines that have already been scheduled.

Using this heuristic the GA easily manages to find the optimal solution to the four
node problem. A version modified to take into account maintenance takes four
weeks rather than one in the South Wales problem produced an acceptable
schedule for South Wales with a cost of 616MW weeks.

6 Genetic Programming Solution

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

9

A number of different GP approaches have been tried on these problems. While a
‘pure’ GP approach can find the optimal solution to the four node problem
without the need for hand coded heuristics on the South Wales problem, possibly
due to insufficient resources, it has not been able to do as well as the best solution
produced by the GA and ‘greedy optimizer’ combination. The remainder of this
section describes the evolution of lower cost schedules using a GP population
which is ‘seeded’ with the two heuristics described in Sections 5.1 and 5.2.

6.1 Architecture

Each individual in the GP population consists of a single tree. This program is
called once for each line that is to be maintained, its return value is converted
from floating point to an integer which is treated as the first week in which to
schedule maintenance of that line. If this is outside the legal range 1...50 then that
line is not maintained.

The lines are processed in fixed but arbitrary order given by NGC when the
network was constructed. Thus the GP approach concentrates upon evolving the
scheduling heuristic whereas in the GA approach this is given and the GA
searches for the best order in which to ask the heuristic to process the lines.

6.2 Choice of Primitives

Table 2 shows the functions, terminals and parameters used are given in Table 2
(parameters not given are as [9]). The function and terminal sets include indexed
memory, loops and network data.

Indexed memory was deliberately generously sized to avoid restricting the GP's
use of it. It consists of 4,001 memory cells each containing a single precision
floating point value. They had addresses in the range -2000 ... + 2000. Memory
primitives (read, set, swap) had defined behaviour which allows the GP to
continue on addressing errors. All stored data within the program is initialised to
zero before the trial program is executed for the first line. It is not initialised
between runs of the same trial program.

The ‘for’ primitive takes three arguments, an initial value for the loop control
variable, the end value and a subtree to be repeatedly executed. It returns the last
value of the loop control variable. A run time check prevents loops being nested
more than four deep and terminates execution of any loop when more than 10,000
iteration in total have been executed in any one program call. I.e. execution of
different loops contribute to the same shared limit. The current value of the
innermost for loop control variable is given by the terminal i0, that of the next
outer loop by i1, the control variable of the next outer loop by terminal i2 and so
on. When not in a loop nested to depth n , in is zero.

The network primitives return information about the network as it was just before
the test program was called. Each time a change to the maintenance schedule is
made, power flows and other affected data are recalculated before the GP tree is

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

10

executed again to schedule maintenance of the next line. The network primitives
are those available to the C programmer who programmed the GA heuristics and
the fitness function (see Table 1). Where these primitives take arguments, they are
checked to see if they are within the legal range. If not the primitive normally
evaluates to 0.0.

Table 1 Network Primitives

Primitive Meaning
max 10.0
ARG1 Index number of current line, 1.0 ... 42.0
nn Number of nodes in network, 28.0
nl Number of lines in network, 42.0
nw Number of weeks in plan, 53.0
nm_weeks Length of maintenance outage, 4.0
P(n) Power injected at node n in 100MW. Negative values indicate demand.
NNLK(l) Node connected to first end of line l
NNLJ(l) Node connected to end of line l
XL(l) Impedance of line l Ω
LINERATING Power carrying capacity of line l in MW
MAINT(w, l) 1.0 if line l is scheduled for maintenance in week w , otherwise 0.0
splnod(w, n) 1.0 if node n is isolated in week w of the maintenance plan, 0.0 otherwise.
FLOW(w, n) Power flow in line l from first end to second in week w, negative if flow is reversed MW.
shed(w, l)) Demand or generation at isolated nodes in week w if line l is maintained in that week in

addition to current scheduled maintenance MW.
loadflow(w, l, a) Performs a load flow calculation for week w assuming line l is maintained during the week

in addition to the currently scheduled maintenance. Returns cost of schedule for week w.
If a is valid also sets memory locations a ... a+nl-1 to the power flows through the network
MW

fit(w) Returns the current cost of week w of the schedule

Table 2 South Wales Problem

Primitive Meaning
Object Find a program that yields a good maintenance schedule when presented with

maintenance tasks in network order
Architecture One result producing branch
Primitives ADD, SUB, MUL, DIV, ABS, mod, int, PROG2, IFLTE, Ifeq, Iflt, 0, 1, 2, max, ARG1,

read, set, swap, for, i0, i1, i2, i3, i4, nn, nl, nw, nm P, NNLK, NNLJ, XL, LINERATING,
MAINT, splnod, FLOW, shed, loadflow fit

Max Prog. Szie 200
Fitness Case All 42 lines to be maintained
Selection Pareto Tournament group size of 4 (with niche sample size 81) used for both parent

selection and selecting programs to be removed from the population. Pareto
components: Schedule cost, CPU penalty above 100,000 per line, schedule novelty.
Steady state panmitic population. Elitism used on schedule cost

Wrapper Convert to integer. If � 1 and � 50, treat as week to schedule start of maintenance of
current line, otherwise the current line is not maintained.

Parameters Pop = 1000, G = 50, no aborts. pc = 0.9, psubtree mutation = 0.05, pnode mutation = 0.05.
Node mutation rate = 10/1024.

Success Predicate Schedule cost � 616.

6.3 Mutation

Approximately 90% of new individual are created by crossover between two
parents using GP crossover (as [8] except only one individuals is created at a
time). The remainder are created by mutating a copy of a single parent. Two forms
of mutation are used with equal likelihood. In subtree mutation [8] a single node
within the program is chosen at random. This is the root of a sub tree which is

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

11

removed and replaced with a randomly generated new sub tree. The other form or
mutation selects nodes at random (with a frequency of 10/1024) and replaces them
with a randomly selected function (or terminal) which takes the same number of
arguments. Thus the tree shape is unchanged but a Poissonly distributed number
of node are changed within it. Notice the expected number of changes rises
linearly with the size of the tree.

6.4 Constructing the Initial Population

The initial population was created from two ‘seed’ individuals. These are the GA
heuristics described in Sections 5.1 and 5.2 but written as GP individuals using the
primitives described in Section 6.2 (see Figures 6 and 7). Half the remaining
population is created from each one by making a copy of it and then mutation it.
The same mutation operators are used to create the initial population as to create
mutants during the main part of the GP run. I.e. there is equal chance to mutate a
sub tree as to create mutants by random change to nodes with the tree. (Procedures
to detect and discard individuals which encounter array bound errors whilst
executing were not used).

week = (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw))
 (PROG2 (for 1 nw (set ((ADD i0 (read (SUB 0 1)))) (ABS (FLOW i0 ARG1))))
 (PROG2 (set (SUB 0 (ADD 1 1)) (SUB (read (SUB 0 1)) nw))
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1))
 (PROG2 (set 0 0)
 (PROG2
(for i0 (ADD i0 (SUB nm weeks 1))
 (set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1)
))))))
 (set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0)))))
 (PROG2 (set 0 (MUL max (MUL max (MUL max max))))
 (PROG2 (set 1 0)
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1))
(Iflt (read ((ADD i0 (read (SUB 0 (ADD 1 1)))))) (read 0)
(PROG2 (set 1 i0)
 (set 0 (read ((ADD i0 (read (SUB 0 (ADD 1 1))))))))
0))
(read 1))))))))

Figure 6 Minimum Power flow Heuristic. Length 133, Cost of schedule 9830.19

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

12

week = (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw)) %[-1]=working area
 (PROG2 (for 1 nw (set ((ADD i0 (read (SUB 0 1)))) %store answer
%(ABS (FLOW i0 ARG1)) min load flow heuristic
(loadflow i0 ARG1 (ADD 2 2)) %discard flow info
))
 (PROG2 (set (SUB 0 (ADD 1 1)) (SUB (read (SUB 0 1)) nw)) %[-2]=workarea
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1)) %work2 = sum ov 4 weeks
 (PROG2 (set 0 0) %[0]=temp
 (PROG2
(for i0 (ADD i0 (SUB nm weeks 1))
 (set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1)
))))))
 (set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0)))))
 (PROG2 (set 0 (MUL max (MUL max (MUL max max))))
 (PROG2 (set 1 0)
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1)) %find min increase in cost
(Iflt (SUB %calculate increase in cost
(read ((ADD i0 (read (SUB 0 (ADD 1 1))))))
(PROG2 (PROG2 (set 2 0)
(for i0 (ADD i0 (SUB nm weeks 1))
(set 2 (ADD (read 2) (fit i0)))))
(read 2)))
(read 0)
(PROG2 (set 1 i0)
 (set 0 (SUB
(read ((ADD i0 (read (SUB 0 (ADD 1 1))))))
(read 2))))
0))
(read 1))))))))

Figure 7 Seed 2: Minimum Increase in Cost Heuristic.

Length 160, Cost of schedule 1120.13

6.5 Fitness Function

The fitness of each individual is comprised of three independent components; the
cost of the schedule it produces, a CPU penalty and a novelty reward for
scheduling a line in a week which is unusual. These components are not
combined instead selection for reproduction and replacement uses Pareto
tournaments and fitness niches [11]. The cost and CPU penalty are determined
when the individual is created but the novelty reward is dynamic and may change
whilst the individual is within the population.

The CPU penalty is the mean number of primitives evaluated per line. However if
this below the threshold of 100,000 then the penalty is zero. Both seeds are
comfortably below the threshold. (The minimum power flow seed executes
206,374 primitives (206,374/42 ≈ 4214)) and the minimum increase in cost seed
executes 301,975 primitives (301,975/42 ≈ 7190)).

The novelty reward is 1.0 if the program constructs a schedule where the start of
any line's scheduled maintenance is in a week when less than 100 other schedules
schedule the start of the same line in the same week. Otherwise it is 0.0.

6.6 Results

In one GP run the cost of the best schedule in the population is 1120.05 initially.
This is the cost of schedule produced by seed 2. Notice this is worse than the best
schedule found by the GA using this seed because the heuristic is being run with

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

13

an arbitrary ordering of the tasks and not the best order found by the GA. By
generation 4 a better schedule of cost 676.217 was found. By generation 19 a
schedule better than that found by the GA was found. At the end of the run
(generation 50) the best schedule found had a cost of 388.349 (see Figure 8). The
program that produced it is shown in Figure 9.

The best program differs from the best seed in eight sub trees and has expanded
almost to the maximum allowed size. At first sight some of the changes appear
trivial and unlikely to affect the result but in fact only two changes can be reversed
with out worsening the schedule. However all but one of the other changes can be
reversed (one at a time) and yield a legal schedule with a cost far better than the
population average, in some cases better than the initial seeds.

1000

10000

100000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
o
s
t

o
f

s
c
h
e
d
u
l
e

Number of Individuals Created

Best
Mean
Worst

616

Figure 8 Evolution of GP Produced Schedule Costs

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

14

week = (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw)) %[-1]=working area
 (PROG2 (for i0 nw (set ((ADD i0 (read (SUB 0 1)))) %store answer
%(ABS (FLOW i0 ARG1)) min load flow heuristic
(loadflow i0 ARG1 (ADD 2 i2)) %discard flow information
))
 (PROG2 (set (SUB 0 (ADD 1 ARG1)) (set (SUB (read (ADD i0 (read (SUB 0
(ADD 1 1))))) (read 2)) (SUB (read (SUB (read (MUL 0 (ADD 1 1))) 1)) i0)))
 (PROG2 (for 1 (SUB nw (SUB nm_weeks (swap i0 (NNLK 1)))) %work2 = sum ov 4 weeks
 .(PROG2 (set 0 (XL 1)) %[0]=temp
 (PROG2
(for i0 (ADD i0 (SUB nm weeks 1))
 (set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1)
))))))
 (set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0)))))

(PROG2 (set 0 (MUL max (SUB nw (SUB 1 (swap (XL 1) (read 0))))))
(PROG2 (set (PROG2 (fit nw) (set nw (ADD (read 2) (ADD i0 (read (SUB 0 1)))))) 0)
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1)) %find min increase in cost

(Iflt (SUB %calculate increase in cost
(read ((ADD i0 (read (SUB 0 (ADD 1 1))))))
(PROG2 (PROG2 (set 2 0)
(for i0 (ADD i0 (SUB nm weeks 1))
(set 2 (ADD (read 2) (fit i0)))))
(read 2)))
(read 0)
(PROG2 (set 1 i0)
(set 0 (SUB
(read ((ADD i0 (read (SUB 0 (ADD 1 1))))))
(read 2))))
0))
(read 1))))))))

Figure 9 Evolved Heuristic. Length 199, Cost of schedule 388.349, CPU
306,438

7 Other GP Approaches

Genetic Programming has been used in other scheduling problems, notably Job
Shop Scheduling [1] and scheduling maintenance of railway track [6].

An approach based on [1] which used a chromosome with a separate tree per task
(i.e. line) to be maintained was tried. However unlike [1] there was no central co-
ordinating heuristic to ensure ‘the system's coherence’ and each tree was free to
schedule its line independent of the others. The fitness function guiding the co-
evolution of these trees. This was able to solve the four node problem, where
there are eight tasks, but good solutions where not found (within the available
machine resources) when this architecture was used on the South Wales problem,
where it required 42 trees within the chromosome.

Another architecture extended the problem asking the GP to simultaneously
evolve a program to determine the order in which the ‘greedy’ scheduler should
process the tasks and evolve the greedy scheduler itself. Each program is
represented by a separate tree in the same chromosome. Access to Automatically
Defined Functions (ADFs) was also provided.

The most recent approach is to retain the fixed network ordering of processing the
tasks but allow the scheduler to change its mind and reschedule lines. This is
allowed by repeatedly calling the evolved program, so having processed all 42

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

15

tasks it called again for the first, and then the second, and the third and so on.
Processing continues until a fixed CPU limit is exceeded (cf. PADO [15]).

8 Discussion

The permutation GA approach has a significant advantage over the GP approach
in that the system is constrained by the supplied heuristic to produce only legal
schedules. This greatly limits the size of the search space but if the portion of the
search space selected by the heuristic does not contain the optimal solution, then
all schedules produced will be sub optimal. In the GP approach described the
schedules are not constrained and most schedules produced are poor (see Figure 8)
but the potential for producing better schedules is also there.

During development of the GA approach several ‘greedy’ schedulers were coded
by hand, i.e. they evolved manually. The GP approach described further evolves
the best of these. It would be possible to start the GP run not only with the best
hand coded ‘greedy’ scheduler but also the best task ordering found by the GA.
This would ensure the GP started from the best schedule found by previous
approaches.

The run time of the GA is dominated by the time taken to perform loadflow
calculations and the best approaches perform many of these. A possible future
approach is to hybridise the GA and GP, using the GP to evolve the ‘greedy
scheduler’ looking not only for the optimal schedule (which is a task shared with
the GA) but also a good compromise between this and program run time. Here GP
can evaluate many candidate programs and so have an advantage over manual
production of schedulers. This would require a more realistic calculation of CPU
time with loadflow and shed functions being realistically weighted in the
calculation rather than (as now) being treated as equal to the other primitives.

When comparing these two approaches the larger machine resources consumed by
the GP approach must be taken into consideration (population of 1000 and 50
generation v. population of 20 and 100 generations).

9 Conclusions

This paper has described the complex real world problem of scheduling preventive
maintenance of a very large electricity transmission network. It has been
demonstrated that both the combination of a GA and hand coded heuristic and a
GP using the same heuristics as seeds in the initial population can produce low
cost schedules for a region within the whole network when network robustness is
not considered. Lower cost schedules have been found by the GP but at the cost of
many more fitness evaluations.

The combination of a GA and hand coded heuristic has been demonstrated (not
included in this paper) to produce acceptable schedules for a real regional power
network when including consideration of network robustness to single and double
failures. However consideration of such contingencies considerably increases run

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

16

time and so the production of schedules with similar costs using GP has not yet
been demonstrated.

The time taken to perform GA fitness evaluations and with it program run time,
grows rapidly with problem size and number of potential failures that must be
considered. It is anticipated running on parallel machines will be required to solve
the national problem using a GA or GP approach. However there are a number of
techniques which could be used to contain run time.

Acknowledgements

W. B. Langdon is funded by the EPSRC and the National Grid Company plc. I
would like to thank Dr. John Macqueen and Dr. Arthur Ekwue of the National
Grid for their support and encouragement. I would also like to thank Mauro
Manela for criticisms and ideas, Mike Calviou and Maurice Dunnett for the
fitness function and the four node problem, Ursula Bryan for fast DC loadflow
code, Laura Dekker for assistance with setting up QGAME and Andy Singleton
for the original version of GP-QUICK on which my code was based.

The four-node problem definition and QGAME are available via anonymous ftp,
site cs.ucl.ac.uk directory genetic/four-node.

References

1 ATLAN, L., BONNET, J., and NAILLON, M.: ‘Learning distributed

reactive strategies by genetic programming for the general job shop
problem’, In Proceedings of the 7th annual Florida Artificial Intelligence
Research Symposium, Pensacola, Florida, USA . IEEE Press, 1994.

2 DAVIS, L.: (editor). ‘Handbook of Genetic Algorithms’, (Van Nostrand

Reinhold, New York, 1991)

3 FANG, H., ROSS, P., and CORNE, D.: ‘A promising genetic algorithm

approach to job-shop scheduling, rescheduling and open-shop scheduling
problems’, In Stephanie Forrest, editor, Proceedings of the 5th International
Conference on Genetic Algorithms, ICGA-93. Morgan Kaufmann, 1993.

4 FANG H., ROSS, P. and CORNE, D.: ‘A promising hybrid GA /heuristic

approach for open-shop scheduling problems’, In A.Cohn, editor, ECAI 94
Proceedings of the 11th European Conference on Artificial Intelligence ,
pages 590-594. John Wiley Sons, Ltd., 1994.

5 GORDON, T.G.W.: ‘Schedule optimisation using genetic algorithms’,.

Master's thesis, University College, London, 1995.

6 GRIMES, C.A.: ‘Application of genetic techniques to the planning of

railway track maintenance work’, In A.M.S. Zalzala, editor, First
International Conference on Genetic Algorithms in Engineering Systems:

Scheduling Maintenance of Electrical Power Networks Using Genetic
Programming

17

Innovations and Applications, GALESIA, volume 414, pages 467-472,
Sheffield, UK, September 1995. IEE.

7 HOLLAND, J.H.: ‘Adaptation in Natural and Artificial Systems: An

Introductory Analysis with Applications to Biology, Control and Artificial
Intelligence’, MIT Press, 1992. First Published by University of Michigan
Press 1975.

8 KOSA., J.R.: ‘Genetic Programming: On the Programming of Computers

by Natural Selection’, MIT Press, Cambridge, MA, USA, 1992.

9 KOSA., J.R.: ‘Genetic Programming II: Automatic Discovery of Reusable

Programs’, MIT Press, Cambridge Massachusetts, May 1994.

10 LANGDON, W.B.: ‘Scheduling planned maintenance of the National Grid’,

In Terence C. Fogarty, editor, Evolutionary Computing , number 993 in
Lecture Notes in Computer Science, pages 132-153. Springer-Verlag, 1995.

11 LANGDON W.B.: ‘Data structures and genetic programming’, In Peter J.

Angeline and K.E. Kinnear, Jr., editors, Advances in Genetic Programming
2, chapter 20. MIT Press, Cambridge, USA, 1996.

12 LEVINE D.: ‘A Parallel Genetic Algorithm for the Set Partitioning

Problem’, PhD thesis, Illinois Institute of Technology, Mathematics and
Computer Science Division, Argonne National Laboratory, USA, May 1994.

13 ROSS P.: ‘About PGA 2.8, 1994’, Available via ftp ftp.dai.ed.ac.uk

directory pub/pga-2.8.

14 SYSWERDA G.: ‘Schedule optimization using genetic algorithms’, In

Lawrence Davis, editor, Handbook of Genetic Algorithms, pages 332-349.
(Van Nostrand Reinhold, New York, 1991)

15 TELLER A., and VELOSO, M.: ‘Program evolution for data mining’, The

International Journal of Expert Systems , 8(3), 1995.

16 YAMADA T., and NAKANO, R.: ‘A genetic algorithm applicable to large-

scale job-shop problems’, In R. Manner and B. Manderick, editors, Parallel
Problem Solving from Nature 2, pages 281-290, Brussels, Belgium, 1992.
Elsevier Science.

