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Abstract 
 
The National Grid Company Plc. is responsible for the maintenance of the high 
voltage electricity transmission network in England and Wales.  It must plan 
maintenance so as to minimise costs taking into account: 

• location and size of demand, 

• generator capacities and availability’s, 

• electricity carrying capacity of the remainder of the network,  
i.e. that part not undergoing maintenance. 

 
Previous work showed the combination of a Genetic Algorithm using an order or 
permutation chromosome combined with hand coded ‘Greedy’ Optimisers can 
readily produce an optimal schedule for a four node test problem [10]. Following 
this the same GA has been used to find low cost schedules for the South Wales 
region of the UK high voltage power network.  
 
This paper describes the evolution of the best known schedule for the base South 
Wales problem using Genetic Programming starting from the hand coded 
heuristics used with the GA. 
 
1  Introduction  
 
In England and Wales electrical power is transmitted by a high voltage electricity 
transmission network which is highly interconnected and carries large power 
flows.  It is owned and operated by The National Grid Company plc. (NGC) who 
maintain it and wish to ensure its maintenance is performed at least cost, 
consistent with plant safety and security of supply. 
 
There are many components in the cost of planned maintenance. The largest is the 
cost of replacement electricity generation, which occurs when maintenance of the 
network prevents a cheap generator from running so requiring a more expensive 
generator to be run in its place. 
 



Scheduling Maintenance of Electrical Power Networks Using Genetic 
Programming 

2 

The task of planning maintenance is a complex constrained optimization 
scheduling problem. The schedule is constrained to ensure that all plant remains 
within its capacity and the cost of replacement generation, throughout the duration 
of the plan is minimised.  At present maintenance schedules are produced 
manually by NGC's Planning Engineers (who use computerised viability checks 
on the schedule after it has been produced).   
 
Previous work showed the combination of a Genetic Algorithm (GA) [7], using an 
order or permutation chromosome combined with hand coded ‘Greedy’ Optimises 
can readily produce an optimal schedule for a four node test problem [10] (see 
also Figure 5).  Following this the same GA has been used to find low cost year 
long maintenance schedules for the South Wales region of the UK high voltage 
power network. [5] used a linear chromosome with non-binary alleles [13] to 
solve the four node problem but was less successful on the larger South Wales 
problem). 
 
This paper describes the evolution of better ‘greedy’ optimizers for the South 
Wales problem using genetic programming (GP) starting from the hand coded 
heuristic used with the GA. Section 2 describes the South Wales region of the UK 
high voltage power transmission network. The fitness function used to cost 
maintenance schedules and scheduling heuristics are the same as used in the 
earlier GA approaches (Sections 3, 4 and 5 are based on [10]). Section 6  describes 
in detail the genetic programming experiment  and the results obtained while 
Section 7 describes other approaches that might be tried and possible further work. 
 
2  South Wales Region of UK Electricity Network  
 
The South Wales region of the UK electricity network carries power at 275K 
Volts and 400K Volts between electricity generators and regional electricity 
distribution companies and major industrial consumers.  The region covers the 
major cites of Swansea, Cardiff, Newport and Bristol, steel works and the 
surrounding towns and rural areas (see Figure 1).  The mayor sources of electricity 
are in feeds (2) from the English Midlands, coal fired generation at Aberthaw, 
nuclear generation at Oldbury and oil fired generation at Pembroke. Both demand 
for electricity and generation change significantly through the year (See Figures 2 
and 3). 
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Figure 1  South Wales Region High Voltage Network 
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Figure 2  Predicted Demand in South Wales Region  
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Figure 3  Predicted Generation in South Wales Region  
 
The representation of the electricity network used in these experiments is firmly 
based upon the engineering data available for the physical network however a 
number of simplifications have to be made. Firstly the regional network has been 
treated as an isolated network, its connections to the rest of the network have been 
modelled by two sources of generation connected by a pair of low impedance high 
capacity conductors. Secondly the physical network contains short spurs run to 
localised load points such as steel works. These ‘T’ points have been simplified 
(e.g. by inserting nodes into the simulation) so all conductors connect two nodes. 
The industry standard DC load flow approximation is used to calculate power 
flows through the network. 
 
In the experiments reported in this paper the maintenance planning problem for 
the South Wales region has been made deliberately more difficult than the true 
requirement. In these experiments: 

• All lines must be maintained during the 53 week plan (1995 had 53 weeks 
rather than 52). Typically about a thrid of the lines are maintained in any one 
year. 

• All maintenance takes four weeks. Typically scheduled outage of a line is 
between a week and 1½ months.  

• All conductor ratings were reduced by 50%. 
 
The requirement that the network should be fault resistant during maintenance is 
not considered in this paper. This is because consideration of potential network 
faults is highly CPU intensive. The permutation GA approach has been taken 
further than the GP approach and acceptable schedules have been evolved which 
do consider network robustness. 
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3  Approximating Replacement Generation Costs  
 
NGC use computer tools for costing maintenance schedules, however because of 
their computational complexity, it was felt that these were unsuitable for 
providing the fitness function.  Instead our fitness function is partially based upon 
estimating the replacement generation costs that would occur if a given 
maintenance plan were to be used.  The estimate is made by calculating the 
electrical power flows assuming the maintenance will not force a change in 
generation.  In practice alternative generators must be run to reduce the power 
flow through over loaded lines in the network.  The cost of the alternative 
generators is modelled by setting  the amount of replacement generation equal to 
the excess power flow and assuming alternative generators will be a fixed amount 
more expensive than the generators they replace. 
 
4  The Fitness Function  
 
The GA's fitness function is composed of two parts; a benefit for performing 
maintenance plus penalties for exceeding line ratings, isolating nodes and splitting 
the network.  
 
4.1  Maintenance Benefits  
 
The maintenance requirements of the different components of the transmission 
network vary both in terms of the number of weeks required to perform them and 
their urgency. It may be advisable to hold over less urgent maintenance until the 
following year.  However maintenance requirements have been both simplified 
and made more onerous by requiring all lines to be maintained exactly once, 
assuming each will take four weeks and giving them all the same benefit. 
 
Should a trial maintenance plan schedule a line for maintenance, its fitness is 
improved by the maintenance benefit.  There is no additional benefit or penalty 
from additional maintenance.  The total benefit is obtained by summing across all 
lines for the whole year. 
 
4.2  Over Loading Costs  
 
In order to calculate the line overloading costs, we must first determine which 
generators are to be used and when. This is done by using the  available generators 
in strict price order (cheapest first) until the predicted demand for each week is 
met (see Figures 2 and 3). This is known as the merit order dispatch.  It is fixed 
and therefore the same for all trial schedules.  
 
For each week of a trial schedule the predicted demand and the merit order 
dispatch are used in a ‘DC load flow’ analysis which calculates the power flow 
through every line in the network.  The over loading cost for each line is 
proportional to the amount the power flow though it exceeds its normal operating 
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limit (it is zero if within the limit).  The total over loading costs are the sum over 
each week of the maintenance plan and over all lines in the network. 
 
4.3  Avoiding Isolating Nodes or Splitting the Network  
 
From an operational point of view, no acceptable maintenance schedule would 
ever isolate a generation or demand node from the rest of the network or split the 
network. However the GA fitness function must be able to cope with every 
schedule that is generated.  The ‘DC load flow’ algorithm cannot cope with either 
as they require it to invert a singular matrix. Therefore the fitness function looks 
for these conditions and defines a fitness for them without calculating power 
flows. 
 
As both represent highly unfit solutions, weeks of a schedule that cause either 
contribute a high penalty to the schedule's whole fitness. The penalty for each 
isolated node is proportional to the load or expected generation at that node.  The 
penalty for a network split is even more severe; it is proportional to the total load 
across the whole network in that week. 
 
4.4  Combined Fitness Measure  
 
The complete fitness measure is expressed in Megawatt weeks (1 Megawatt (MW) 
= 1340 horsepower) and is given by the following formula: 
 

Kt

target

 x maintenance_ schedule)( )1 −�  

 
 

weeks
�

 

If network_split Then S1 x total demand 
Else If isolate_nodes � 1 Then S2 x 

isolate_nodes
� | demand � generation | 

Else 
lines
� If |flow| > rating Then |flow|-rating 

 
 
The first summation being over all target maintenance (N.B. the trial plan's cost is 
increased by Kt if the corresponding maintenance is not scheduled).  The second 
outer summation being over each week of the maintenance plan; the first inner 
one, being over all isolated nodes, and the second, over all lines in the network. 
 
For the South Wales problem the same values of Kt, S1 and S2 as the four node 
system where used. i.e. Kt, is 4,000 MW and S1 = S2 = 5. [5] verified the values 
used for the four node problem are applicable to the South Wales region. 
 
 
5  Greedy Optimizers 
 
The most successful approach taken so far to solving the power transmission 
network maintenance scheduling problem has been to split the problem in two; a 
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GA and a ‘greedy optimizer’. The greedy optimizer is presented with a list of 
work to be done (i.e. lines to be maintained) by the GA  It schedules those lines 
one at a time, in the order presented by the GA, using some problem dependent 
heuristic. Figure 4  schematic  shows this schematically, whilst the dotted line on 
Figure 5 dotted  shows an order in which lines are considered. 
 

Genetic Algorithm

Ordered list of 
things to be
Scheduled

Greedy Scheduler

Schedule 

Cost of Schedule

Fitness
Permutation

 
 
Figure 4  Hybrid GA and ‘greedy optimizer’  
 

Electricity users Electricity users

1 2

3 4

Generation Generation

 
Figure 5  Example order (dotted) in which lines are considered  by a ‘greedy 

optimizer’ for the four node problem  
 



Scheduling Maintenance of Electrical Power Networks Using Genetic 
Programming 

8 

This approach of hybridising a GA with a problem specific heuristic has been 
widely studied. Davis [2] for example firmly advocates using hybrid Gas when 
attempting to solve difficult real world problems. Hybrid GAs, of various sorts, 
have been used on a number of scheduling, problems (e.g. flight crew scheduling   
[12], task scheduling [14] and job-shop and open-shop scheduling [3,4,16]. 
 
A variety of heuristics  of increasing sophistication and computational complexity 
have been tried on the four-node problem which yielded progressively better 
results.  The two that are also used in the GP approach are described next. 
 
5.1  Heuristic 2 - Minimum Power Flow  
 
A greedy optimizer was devised which scheduled the  maintenance of each line in 
the week in which the power flow through it is a minimum. In the event of a tie 
the earlier week is chosen. As each line is scheduled, the power flows through the 
rest of the network are recalculated.  
 
In the case of the four node network, using this heuristic the GA was able to 
devise low cost schedules which ensured all the required maintenance was done 
which did not split the network or shed load. This was achieved by performing 
maintenance when the demand was least, however it could not produce the 
optimal schedule. 
 
5.2  Heuristic 4 - Minimum Increase in Line Cost  
 
The other greedy optimizers had been based on the assumption that placing a line 
in maintenance was bound to increase the power flows on the remaining lines and 
so must increase line costs (or leave them unchanged). Whilst it is theoretically 
possible for the change in power flows to decrease line costs it was assumed that 
this would not occur in practice.  The motivation for this greedy scheduler was the 
realisation that it is possible to schedule some lines so that they reduce line costs. 
(This is the case of the four node problem and is apparently also true of some real 
power networks). 
 
The least increase in line cost optimizer schedules maintenance in the week in 
which maintaining it would lead to the least increase in line costs (or in which 
there is most decrease). If there is a tie the earliest week is used. N.B. this 
optimizer looks one week ahead whereas the others make their decisions using 
only the lines that have already been scheduled. 
 
Using this heuristic the GA easily manages to find the optimal solution to the four 
node problem. A version modified to take into account maintenance takes four 
weeks rather than one in the South Wales problem produced an acceptable 
schedule for South Wales with a cost of 616MW weeks. 
 
6  Genetic Programming Solution  
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A number of different GP approaches have been tried on these problems. While a 
‘pure’ GP approach can find the optimal solution to the four node problem 
without the need for hand coded heuristics on the South Wales problem, possibly 
due to insufficient resources, it has not been able to do as well as the best solution 
produced by the GA and ‘greedy optimizer’ combination. The remainder of this 
section describes the evolution of lower cost schedules using a GP population 
which is ‘seeded’ with the two heuristics described in Sections 5.1 and 5.2. 
 
6.1  Architecture  
 
Each individual in the GP population consists of a single tree. This program is 
called once for each line that is to be maintained, its return value is converted 
from floating point to an integer which is treated as the first week in which to 
schedule maintenance of that line. If this is outside the legal range 1...50  then that 
line is not maintained. 
 
The lines are processed in fixed but arbitrary order given by NGC when the 
network was constructed. Thus the GP approach concentrates upon evolving the 
scheduling heuristic whereas in the GA approach this is given and the GA 
searches for the best order in which to ask the heuristic to process the lines.  
 
6.2  Choice of Primitives  
 
Table 2  shows the functions, terminals and parameters used are given in Table  2  
(parameters not given are as [9]).  The function and terminal sets include indexed 
memory, loops and network data.  
 
Indexed memory was deliberately generously sized to avoid restricting the GP's 
use of it.  It consists of 4,001 memory cells each containing a single precision 
floating point value. They had addresses in the range  -2000 ... + 2000.  Memory 
primitives (read, set, swap) had defined behaviour which allows the GP to 
continue on addressing errors.  All stored data within the program is initialised to 
zero before the trial program is executed for the first line. It is not initialised 
between runs of the same trial program. 
 
The ‘for’ primitive takes three arguments, an initial value for the loop control 
variable, the end value and a subtree to be repeatedly executed. It returns the last 
value of the loop control variable. A run time check prevents loops being nested 
more than four deep and terminates execution of any loop when more than 10,000 
iteration in total have been executed in any one program call. I.e. execution of 
different loops contribute to the same shared limit. The current value of the 
innermost for loop control variable is given by the terminal i0, that of the next 
outer loop by i1, the control variable of the next outer loop by terminal i2 and so 
on. When not in a loop nested to depth n , in is zero. 
 
The network primitives return information about the network as it was just before 
the test program was called. Each time a change to the maintenance schedule is 
made, power flows and other affected data are recalculated before the GP tree is 
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executed again to schedule maintenance of the next line.  The network primitives 
are those available to the C programmer who programmed the GA heuristics and 
the fitness function (see Table 1). Where these primitives take arguments, they are 
checked to see if they are within the legal range. If not the primitive normally 
evaluates to 0.0. 
 
Table 1 Network Primitives 
 
Primitive Meaning 
max 10.0 
ARG1 Index number of current line, 1.0 ... 42.0 
nn Number of nodes in network, 28.0 
nl Number of lines in network, 42.0 
nw Number of weeks in plan, 53.0 
nm_weeks Length of maintenance outage, 4.0 
P(n) Power injected at node n in 100MW. Negative values indicate demand. 
NNLK(l) Node connected to first end of line l 
NNLJ(l) Node connected to end of line  l 
XL(l) Impedance of line l Ω 
LINERATING Power carrying capacity of line l in MW 
MAINT(w, l) 1.0 if line l is scheduled for maintenance in week w , otherwise 0.0 
splnod(w, n) 1.0 if node n  is isolated in week w of the maintenance plan, 0.0 otherwise. 
FLOW(w, n) Power flow in line l from first end to second in week w, negative if flow is reversed MW. 
shed(w, l)) Demand or generation at isolated nodes in week w  if line l is maintained in that week in 

addition to current scheduled maintenance MW. 
loadflow(w, l, a) Performs a load flow calculation for week w assuming line l  is maintained during the week 

in addition to the currently scheduled maintenance. Returns cost of schedule for week w.  
If a is valid also sets memory locations a ... a+nl-1 to the power flows through the network 
MW 

fit(w) Returns the current cost of week w  of the schedule 

 
Table 2  South Wales Problem 
 
Primitive Meaning 
Object Find a program that yields a good maintenance schedule when presented with 

maintenance tasks in network order 
Architecture One result producing branch 
Primitives ADD, SUB, MUL, DIV, ABS, mod, int, PROG2, IFLTE, Ifeq, Iflt, 0, 1, 2, max, ARG1, 

read, set, swap, for, i0, i1, i2, i3, i4, nn, nl, nw, nm  P, NNLK, NNLJ, XL, LINERATING, 
MAINT, splnod, FLOW, shed, loadflow fit 

Max Prog. Szie 200 
Fitness Case All 42 lines to be maintained 
Selection Pareto Tournament group size of 4 (with niche sample size 81) used for both parent 

selection and selecting programs to be removed from the population. Pareto 
components: Schedule cost, CPU penalty above 100,000 per line, schedule novelty. 
Steady state panmitic population. Elitism used on schedule cost 

Wrapper Convert to integer. If � 1 and � 50, treat as week to schedule start of maintenance of 
current line, otherwise the current line is not maintained. 

Parameters Pop = 1000, G = 50, no aborts. pc = 0.9, psubtree mutation = 0.05, pnode mutation = 0.05. 
Node mutation rate = 10/1024. 

Success Predicate Schedule cost � 616. 

 
6.3  Mutation  
 
Approximately 90% of new individual are created by crossover between two 
parents using GP crossover (as [8] except only one individuals is created at a 
time). The remainder are created by mutating a copy of a single parent. Two forms 
of mutation are used with equal likelihood. In subtree mutation [8] a single node 
within the program is chosen at random. This is the root of a sub tree which is 
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removed and replaced with a randomly generated new sub tree.  The other form or 
mutation selects nodes at random (with a frequency of 10/1024) and replaces them 
with a randomly selected function (or terminal) which takes the same number of 
arguments. Thus the tree shape is unchanged but a Poissonly distributed number 
of node are changed within it. Notice the expected number of changes rises 
linearly with the size of the tree. 
 
6.4  Constructing the Initial Population  
 
The initial population was created from two ‘seed’ individuals. These are the GA 
heuristics described in Sections 5.1 and 5.2 but written as GP individuals using the 
primitives described in Section 6.2 (see Figures 6 and 7).  Half the remaining 
population is created from each one by making a copy of it and then mutation it. 
The same mutation operators are used to create the initial population as to create 
mutants during the main part of the GP run. I.e. there is equal chance to mutate a 
sub tree as to create mutants by random change to nodes with the tree. (Procedures 
to detect and discard individuals which encounter array bound errors whilst 
executing were not used). 
 
week =  (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw)) 
 (PROG2 (for 1 nw (set ((ADD i0 (read (SUB 0 1)))) (ABS (FLOW i0 ARG1)))) 
 (PROG2 (set (SUB 0 (ADD 1 1)) (SUB (read (SUB 0 1)) nw)) 
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1))  
 (PROG2 (set 0 0) 
 (PROG2  
(for i0 (ADD i0 (SUB nm weeks 1) ) 
  (set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1) 
)))))) 
 (set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0))))) 
 (PROG2 (set 0 (MUL max (MUL max (MUL max max))))  
 (PROG2 (set 1 0) 
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1))  
(Iflt (read ((ADD i0 (read (SUB 0 (ADD 1 1)))))) (read 0) 
(PROG2 (set 1 i0)  
 (set 0 (read ((ADD i0 (read (SUB 0 (ADD 1 1)))))))) 
0)) 
(read 1)))))))) 
 

Figure 6  Minimum Power flow Heuristic. Length 133, Cost of schedule 9830.19  
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week =  (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw)) %[-1]=working area 
 (PROG2 (for 1 nw (set ((ADD i0 (read (SUB 0 1))))  %store answer 
%(ABS (FLOW i0 ARG1)) min load flow heuristic 
(loadflow i0 ARG1 (ADD 2 2))    %discard flow info 
)) 
 (PROG2 (set (SUB 0 (ADD 1 1)) (SUB (read (SUB 0 1)) nw)) %[-2]=workarea 
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1))  %work2 = sum ov 4 weeks 
 (PROG2 (set 0 0)     %[0]=temp 
 (PROG2  
(for i0 (ADD i0 (SUB nm weeks 1) ) 
 (set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1) 
)))))) 
 (set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0))))) 
 (PROG2 (set 0 (MUL max (MUL max (MUL max max))))  
 (PROG2 (set 1 0) 
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1))   %find min increase in cost 
(Iflt (SUB        %calculate increase in cost 
(read ((ADD i0 (read (SUB 0 (ADD 1 1)))))) 
(PROG2 (PROG2 (set 2 0) 
(for i0 (ADD i0 (SUB nm weeks 1))  
(set 2 (ADD (read 2) (fit i0))))) 
(read 2))) 
(read 0) 
(PROG2  (set 1 i0)  
 (set 0 (SUB  
(read ((ADD i0 (read (SUB 0 (ADD 1 1)))))) 
(read 2)))) 
0)) 
(read 1)))))))) 

 
Figure 7  Seed 2: Minimum Increase in Cost Heuristic.  

Length 160, Cost of  schedule 1120.13  
 
6.5  Fitness Function  
 
The fitness of each individual is comprised of three independent components; the 
cost of the schedule it produces, a CPU penalty and a novelty reward for 
scheduling a line in a week which is unusual.  These components are not 
combined instead selection for reproduction and replacement uses Pareto 
tournaments and fitness niches [11].  The cost and CPU penalty are determined 
when the individual is created but the novelty reward is dynamic and may change 
whilst the individual is within the population. 
 
The CPU penalty is the mean number of primitives evaluated per line. However if 
this below the threshold of 100,000 then the penalty is zero.   Both seeds are 
comfortably below the threshold. (The minimum power flow seed executes  
206,374 primitives  (206,374/42 ≈ 4214)) and the minimum increase in cost seed 
executes  301,975 primitives (301,975/42 ≈ 7190)). 
 
The novelty reward is 1.0 if the program constructs a schedule where the start of 
any line's scheduled maintenance is in a week when less than 100 other schedules 
schedule the start of the same line in the same week. Otherwise it is 0.0. 
 
6.6  Results  
 
In one GP run the cost of the best schedule in the population is 1120.05 initially. 
This is the cost of schedule produced by seed 2. Notice this is worse than the best 
schedule found by the GA using this seed because the heuristic is being run with 
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an arbitrary ordering of the tasks and not the best order found by the GA. By 
generation 4 a better schedule of cost 676.217 was  found. By generation 19 a 
schedule better than that found by the GA was found. At the end of the run 
(generation 50) the best schedule found had a cost of  388.349 (see Figure 8). The 
program that produced it is shown in Figure 9. 
 
The best program differs from the best seed in eight sub trees and has expanded 
almost to the maximum allowed size. At first sight some of the changes appear 
trivial and unlikely to affect the result but in fact only two changes can be reversed 
with out worsening the schedule.  However all but one of the other changes can be 
reversed (one at a time) and yield a legal schedule with a cost far better than the 
population average, in some cases better than the initial seeds. 
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Figure 8  Evolution of GP Produced Schedule Costs  
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week = (PROG2 (set (SUB 0 1) (SUB (SUB 0 max) nw))   %[-1]=working area 
 (PROG2 (for i0 nw (set ((ADD   i0   (read (SUB 0 1))))  %store answer 
%(ABS (FLOW i0 ARG1)) min load flow heuristic 
(loadflow i0 ARG1 (ADD 2   i2  ))     %discard flow information 
)) 
 (PROG2 (set (SUB 0 (ADD 1 ARG1)) (set (SUB (read (ADD i0 (read (SUB 0  
(ADD 1 1))))) (read 2)) (SUB (read (SUB (read (MUL 0 (ADD 1 1))) 1)) i0))) 
 (PROG2 (for 1 (SUB nw (SUB nm_weeks (swap i0 (NNLK 1))  )) %work2 = sum ov 4 weeks 
   .(PROG2 (set 0 (XL 1))         %[0]=temp 
    (PROG2  
(for i0 (ADD i0 (SUB nm weeks 1) ) 
 (set 0 (ADD (read 0) (read (ADD i0 (read (SUB 0 1) 
)))))) 
 (set ((ADD i0 (read (SUB 0 (ADD 1 1))))) (read 0))))) 
   
(PROG2 (set 0 (MUL max (SUB nw (SUB 1 (swap (XL 1) (read 0))))  )) 
(PROG2 (set (PROG2 (fit nw) (set nw (ADD (read 2) (ADD i0 (read (SUB 0 1))))))   0) 
 (PROG2 (for 1 (SUB nw (SUB nm weeks 1))    %find min increase in cost 
   
(Iflt (SUB        %calculate increase in cost 
(read ((ADD i0 (read (SUB 0 (ADD 1 1)))))) 
(PROG2 (PROG2 (set 2 0) 
(for i0 (ADD i0 (SUB nm weeks 1))  
(set 2 (ADD (read 2) (fit i0))))) 
(read 2))) 
(read 0) 
(PROG2 (set 1 i0)  
(set 0 (SUB  
(read ((ADD i0 (read (SUB 0 (ADD 1 1)))))) 
(read 2)))) 
0)) 
(read 1)))))))) 

 
Figure 9  Evolved Heuristic. Length 199, Cost of schedule 388.349, CPU 
306,438  
 
7  Other GP Approaches  
 
Genetic Programming has been used in other scheduling problems, notably Job 
Shop Scheduling [1] and  scheduling maintenance of railway track [6].  
 
An approach based on [1] which used a chromosome with a separate tree per task 
(i.e. line) to be maintained was tried. However unlike [1] there was no central co-
ordinating heuristic to ensure ‘the system's coherence’ and each tree was free to 
schedule its line independent of the others. The fitness function guiding the co-
evolution of these trees.  This was able to solve the four node problem, where 
there are eight tasks, but good solutions where not found (within the available 
machine resources) when this architecture was used on the South Wales problem, 
where it required 42 trees within the chromosome. 
 
Another architecture extended the problem asking the GP to simultaneously 
evolve a program to determine the order in which  the ‘greedy’ scheduler should 
process the tasks and evolve the greedy scheduler itself. Each program is 
represented by a separate tree in the same chromosome. Access to Automatically 
Defined Functions (ADFs) was also provided. 
 
The most recent approach is to retain the fixed network ordering of processing the 
tasks but allow the scheduler to change its mind and reschedule lines. This is 
allowed by repeatedly calling the evolved program, so having processed all 42 
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tasks it called again for the first, and then the second, and the third and so on. 
Processing continues until a fixed CPU limit is exceeded (cf. PADO [15]). 
 
8  Discussion  
 
The permutation GA approach has a significant advantage over the GP approach 
in that the system is constrained by the supplied heuristic to produce only legal 
schedules. This greatly limits the size of the search space but if the portion of the 
search space selected by the heuristic does not contain the optimal solution, then 
all schedules produced will be sub optimal. In the GP approach described the 
schedules are not constrained and most schedules produced are poor (see Figure 8) 
but the potential for producing better schedules is also there.  
 
During development of the GA approach several ‘greedy’ schedulers were coded 
by hand, i.e. they evolved manually. The GP approach described further evolves 
the best of these. It would be possible to start the GP run not only with the best 
hand coded ‘greedy’ scheduler but also the best task ordering found by the GA. 
This would ensure the GP started from the best schedule found by previous 
approaches. 
 
The run time of the GA is dominated by the time taken to perform loadflow 
calculations and the best approaches perform many of these.  A possible future 
approach is to hybridise the GA and GP, using the GP to evolve the ‘greedy 
scheduler’ looking not only for the optimal schedule (which is a task shared with 
the GA) but also a good compromise between this and program run time. Here GP 
can evaluate many candidate programs and so have an advantage over manual 
production of schedulers. This would require a more realistic calculation of CPU 
time with loadflow and shed functions being realistically weighted in the 
calculation rather than (as now) being treated as equal to the other primitives. 
 
When comparing these two approaches the larger machine resources consumed by 
the GP approach must be taken into consideration (population of 1000 and 50 
generation v. population of 20 and 100 generations).  
 
9  Conclusions  
 
This paper has described the complex real world problem of scheduling preventive 
maintenance of a very large electricity transmission network. It has been 
demonstrated that both the combination of a GA and hand coded heuristic and a 
GP using the same heuristics as seeds in the initial population can produce low 
cost schedules for a region within the whole network when network robustness is 
not considered. Lower cost schedules have been found by the GP but at the cost of 
many more fitness evaluations. 
 
The combination of a GA and hand coded heuristic has been demonstrated (not 
included in this paper) to produce acceptable schedules for a real regional power 
network when including consideration of network robustness to single and double 
failures.   However consideration of such contingencies considerably increases run 
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time and so the production of schedules with similar costs using GP has not yet 
been demonstrated. 
 
The time taken to perform GA fitness evaluations and with it program run time, 
grows rapidly with problem size and number of potential failures that must be 
considered. It is anticipated running on parallel machines will be required to solve 
the national problem using a GA or GP approach.  However there are a number of 
techniques which could be used to contain run time. 
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