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Abstract. Genetic programming (GP) offers a generic method of auto-
matically fusing together classifiers using their receiver operating char-
acteristics (ROC) to yield superior ensembles. We combine decision trees
(C4.5) and artificial neural networks (ANN) on a difficult pharmaceutical
data mining (KDD) drug discovery application. Specifically predicting
inhibition of a P450 enzyme. Training data came from high throughput
screening (HTS) runs. The evolved model may be used to predict be-
haviour of virtual (i.e. yet to be manufactured) chemicals. Measures to
reduce over fitting are also described.

1 Introduction

Computers are very good at collecting and storing huge volumes of data (such
as in data warehouses) but they have been less successful at extracting useful
information from it. Machine Learning techniques have been used to extract or
discover knowledge (KDD). However the exponential explosion of possible pat-
terns defeats simple searches and so there is increasing interest in using heuristic
methods, such as evolutionary computation, in data mining [Freitas, 1999]. Addi-
tionally in many cases Machine Learning techniques based on a single paradigm
have not been sufficient and so people have investigated mechanisms for com-
bining them [Kittler and Roli, 2001; Gunatilaka and Baertlein, 2001]. There are
many possible interpretations of data fusion [Kelly, 1999], however existing classi-
fier fusion techniques, such as committees of experts [Jacobs et al., 1991], bagging
[Breiman, 1996] and boosting [Freund and Schapire, 1996], typically combine ex-
perts of the same type using a fixed way of combining their predictions. E.g. all
the experts might be feed forward neural networks whose outputs are: simply
summed, a weighted sum might be calculated, or a majority vote taken, to give
the collective view of the classifier ensemble. That is, the fusion technique op-
timises the individual experts (e.g. using back propagation) while keeping the
combination rule fixed. An interesting alternative is to pretrain the experts and
optimise the combination rule. With a small number of experts [Sirlantzis et al.,
2001] and a simple voting rule it might be feasible to try all possible combina-
tions of experts. However there are 2n (where n = number of experts) possible
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combinations in such a voting scheme. Binary GAs have been used to find good
committees of experts [Opitz and Shavlik, 1996; Kupinski and Anastasio, 1999;
Kupinski et al., 2000]. However genetic programming gives us the ability not only
of deciding which experts to use in the ensemble but also how their predictions
are to be combined. Because the individual experts are pretrained the GP does
not need to know how they were trained and so has the ability to form superior
ensembles of heterogeneous classifiers [Langdon and Buxton, 2001b].

Here we are particularly interested in data rich cheminformatics applications
where we wish to be able to predict how chemicals, particularly potential drugs,
will behave. Note that although we use training data given by high throughput
screening (HTS) tests of real chemicals, the classifiers we evolve are able to
classify not only existing chemicals but also to generalise to related areas of
chemical space in particular (we hope) to virtual chemicals. I.e. chemicals that
do not yet exist but which could be manufactured if predictions indicate they
might be useful drugs.

Intelligent classification techniques, such as artificial neural networks (ANN),
have had limited success at predicting potential drug activity. However we have
shown genetic programming is able to fuse different neural networks to obtain
better predictions [Langdon et al., 2001]. We shall show our system can also be
used with C4.5 decision trees and indeed can combine C4.5 and ANN on this
pharmaceutical classification task, predicting inhibition of a P450 enzyme. (GP
achieves ensembles with the same performance as the with the ANN but using
poorer initial classifiers.)

The system and problem have already been described in
[Langdon and Buxton, 2001c] and [Langdon et al., 2001] so only summaries
of Receiver Operating Characteristics (ROC) and the application are given in
Sects. 2 and 3. Section 4 describes how the base classifiers were trained, while
Sect. 5 summarises the evolutionary system. The results (Sect. 6) are followed
by a discussion, including over fitting, (Sect. 7) and conclusions (Sect. 8).

2 Receiver Operating Characteristics

Any classifier makes a trade off between catching positive examples and raising
false alarms. Where the costs of these are not known, difficult to determine or
subject to change, it may be useful to be able to tune the classifier to favour
one over the other. The Receiver Operating Characteristics (ROC) of a classifier
provides a helpful way of illustrating this trade off [Swets et al., 2000].

Briefly any binary classifier can be characterised by two scalars. Its “true
positive” rate (TP) and its “false positive” rate (FP). I.e. the fraction of positive
examples it correctly classifies and the fraction of negative examples it gets wrong
(false alarms). When plotted against each other TP v. FP lie inside a unit square.
An ideal classifier has TP = 1 and FP = 0. I.e. the upper left corner of the square
(see Fig. 3). Many classifiers have an adjustable threshold parameter. This allows
the user to trade off TP (sensitivity) against FP (1 - specificity). By varying the
threshold the FP,TP point traces a curve. A good classifier will have a curve
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which lies as close to (0,1) as possible. A very poor classifier’s ROC will lie near
the diagonal (0,0) – (1,1). It is common to use the area under the ROC as a
measure of the classifier’s performance.

[Scott et al., 1998] suggests the “Maximum Realisable Receiver Operating
Characteristics” for a combination of classifiers is the convex hull of their individ-
ual ROCs, cf. also [Provost and Fawcett, 2001]. (“Lotteries” in game theory [Bin-
more, 1990] are somewhat similar.) However we have already shown GP can in
some cases do better, including on Scott’s own benchmarks
[Langdon and Buxton, 2001a] and this pharmaceutical classification task (fusing
ANN) [Langdon et al., 2001].

3 The Pharmaceutical Data

Details of the preparation of pharmaceutical data are given in
[Langdon et al., 2001]. Briefly many thousands of chemicals have been tested
to see if they inhibit one of the P450 enzymes involved in metabolism. This is
an important screen in early drug discovery since P450 inhibition could be ex-
pected to lead to an adverse drug reaction were any of those molecules to make
it to the clinical drug development stage (when a compound is first evaluated in
humans).

The chemicals are a very diverse set, covering the most common types of
drug or drug-like compounds, such as would be found in the big pharmaceuti-
cal company compound banks. Hence they probably have a range of inhibition
mechanisms. Some ‘primary’ enzyme inhibition mechanisms are likely to be much
more frequent within the tested set of compounds than others. This is precisely
the kind of situation which can defeat individual classifiers.

Chemicals which gave inconsistent screening results were discarded. The re-
mainder were separated into “active” (inhibitory) and “inactive”. These were
separately clustered (based on primary chemical structure) into 445 active clus-
ters and 1811 inactive clusters. The chemical at the centre of each of these
2256 clusters was chosen to represent its cluster. Using a collection of in-house
and publicly available software, a total of 699 numeric chemical features were
computed for each centroid molecule. 1500 compounds (300 inhibitory, 1200 in-
actives) were selected for use as the training set, whilst the remaining 756 were
retained as a separate “holdout” set. The 699 features were divided into 15
groups of about 50 each.

4 Training the Neural Networks and Decision Trees

Details how Clementine was used to train 4 feed forward neural networks on each
of the 15 groups of features were given in [Langdon et al., 2001]. The training of
the C4.5 decision trees was deliberately kept similar.

An imbalance between positive and negatives is common in many data mining
tasks. However many machine learning techniques work best when trained on
“balanced data sets”, i.e. data sets containing an equal mix of inhibitory and
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Fig. 1. Area under ROC (AUROC) curve of P450 decision trees (C4.5). Points
below the diagonal indicate possible over training. 30 decision trees � which do
not generalise were not used by GP. The convex hulls of the remaining 30 and
the 60 neural networks are plotted as 2. The AUROC of evolved classifiers is
plotted with +.

inactive examples. The 1500 compounds were used to create four data sets.
Each contained the same 300 inhibitory chemicals and 300 different inactive
chemicals. That is, each data set was balanced. As with the ANN, each decision
tree was trained on one of the 15 groups of attributes selected from one of the
four balanced data sets. Making a total of 60 classifiers.

The C4.5 decision trees were generated by Clementine (5.01) using “Build
rule”. Following problems with over fitting we used the following expert options:
windowing (5% increment 1%), persistence 10, stop when reach accuracy of 70%
and pruning (min unpruned 40%, tightness of fit 10%). Unfortunately many of
the models still had poor generalisation (Clementine 6.0 is improved in this re-
spect). The performance of each decision tree was measured on both the training
and holdout sets, see Fig. 1. Those which performed significantly worse on the
hold out data were not used by the GP (one sided test [Hanley and McNeil,
1983] p=0.1 and r=0). This left 30 decision trees. These were made available to
genetic programming as functions.
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5 Genetic Programming Configuration

The genetic programming data fusion system is deliberately identical (except
for the choice of random constants) to that described in [Langdon and Buxton,
2001c], cf. Table 1.

5.1 Function and Terminal Sets

In order to use the decision trees (and neural networks) within GP they were
exported from Clementine as C code and packaged up and presented to GP as
30 (60) problem specific functions. The GP is run separately from Clementine
using 30, 60 or 90 files (depending if fusing C4.5 trees, ANN or both). There is
one file for each decision tree or ANN. Each contains the classification given by
the corresponding decision tree (or ANN) for the current chemical. Clementine
decision trees not only return a predicted class but also their confidence. Prior
to running the GP, the class and confidence were combined into a single floating
point value between zero and one. For both classes, if the decision tree has zero
confidence a value of 0.5 is used. If the chemical is predicted to have an inhibitory
effect; as the confidence increases to 1.0 the value increases linearly to 1.0 (and
decreases to 0 if inactive). This becomes the value returned by the function inside
the GP system (with a neutral adjustable threshold bias).

Normally the output of a neural network is converted into a binary classifi-
cation (i.e. the chemical is inhibitory or is inactive) by testing to see if the value
is greater or less than 0.5. This gives a single point in the ROC square. I.e. one
trade off between catching all positives but raising too many false alarms. How-
ever, for neural networks, decision trees or other classifiers, we can change this
trade off. So that instead of getting a single point, we get a complete curve in
the ROC square. This is achieved by replacing the fixed value of 0.5 by a tunable
threshold. By continuously varying the threshold from 0 to 1, the output of any
of the classifiers is biased from saying every chemical is inactive, through the
usable range, to catching all positive examples but being 100% wrong on the
negative examples (by saying all chemicals are inhibitory). In fact we leave the
choice of suitable operating point to the GP, by making it the argument of the
function. These arguments are treated like any other by the GP and so can be
any valid arithmetic operation, including the base classifiers themselves.

The terminals or leaves of the trees being evolved by the GP are either
constants or the adjustable threshold “T” (see Table 1).

5.2 Representation and Genetic Operators

Following earlier work [Jacobs et al., 1991; Soule, 1999; Langdon, 1998] each
GP individual is composed of five trees. Each of which is capable of acting as a
classifier. The use of signed real numbers makes it natural to combine classifiers
by adding them. I.e. the classification of the “ensemble” is the sum of the answers
given by the five trees. Should a single classifier be very confident about its
answer this allows it to “out vote” all the others. Note that although this is like
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Table 1. GP P450 Data Fusion Parameters

Objective: Evolve a combination of decision trees and/or neural networks with max-
imum ROC convex hull area on P450 inhibition prediction

Function set: INT FRAC Max Min MaxA MinA MUL ADD DIV SUB IFLTE
30 C4.5 (60 ANN) trained on P450 data

Terminal set: T 0 0.5 1 plus 100 unique random constants -1..1
Fitness: Area under convex hull of 11 ROC points (plus 0,0 and 1,1)
Selection: generational (non elitist), tournament size 7
Wrapper: ≥ 0 ⇒ inhibitory, inactive otherwise
Pop Size: 500
No size or depth limits
Initial pop: Each individual comprises five trees each created by ramped half-and-half

(5:8) (half terminals are constants, each initial tree limited to 300)
Parameters: 50% size fair crossover [Langdon, 2000], crossover fragments ≤ 30

50% mutation (point 22.5%, constants 22.5%, shrink 2.5% subtree 2.5%)
Termination: generation 50

some neural network “ensembles”, the GP can combine the supplied classifiers
in an almost totally arbitrary, non-linear way. It is not constrained to a weighted
linear sum of all or even a subset of them.

Following [Angeline, 1998] and others, we use a high mutation rate and a
mixture of different mutation operators. To avoid bloat, we also use size fair
crossover [Langdon, 2000], see Table 1.

5.3 GP Training Data and Fitness Function

The 1500 examples used to train the decision trees were randomly split into
1000 to be used to train the GP and 500 (containing 100 inhibitory chemicals)
kept back as a verification set. NB performance was finally evaluated on the 756
compounds which had not been used either by the GP or by Clementine.

Fitness of each individual is calculated on the training set. The adjustable
threshold “T” is set to values 0.1 apart, starting at 0 and increasing to 1. For
each setting, the evolved program is used to predict the activity of each chemical
in the training set. These predictions are compared with measured activity. The
proportions of inhibitory chemicals correctly predicted (TP) and the proportion
of inactive ones incorrectly predicted (FP) are calculated. Each TP,FP pair gives
a point on an ROC curve. The fitness of the classifier is the area under the convex
hull of these (plus the fixed points 0,0 and 1,1).

6 Results

Figure 2 plots (for populations using 30 C4.5 decision trees, 60 ANN and both)
the evolution of fitness of the best individual (on the training set) in the popula-
tion. For the best in the population, the area under ROC on the verification set
was also measured (lines with crosses in Fig. 2). The gap in performance on the
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training and verification sets is large and grows. This indicates GP is responsible
for some over training. Analysis of these and other runs suggests the degree of
over fitting is not well correlated to program size but instead length of training
seems to be a better indicator. Accordingly, when we chose individual programs
to represent the whole run, we took the best of each population from near the
beginning of the run where the performance on the verification set was high.
(These are shown with vertical lines in Fig. 2 at generations 3, 6 and 9.) Only
then was their performance assessed on the holdout set. In the runs where the
population contained ANN there was a marked drop in performance predicted
by the verification set, indicating the ANN were themselves responsible for some
over fitting. The drop in the C4.5 only population was smaller.

The performance of these three programs are not significantly different (plot-
ted in Fig. 1 with +). However they are significantly better than, not only each
classifier in their function set, but also the convex hull of these base classifiers
(two 2 in Fig. 1). An evolved program was simplified by hand to yield a simple
addition rule of similar performance (also plotted in Fig. 1 with +). Even if we
had been prepared to restrict the ensemble to this particular type of combination
rule, the search problem is still far from trivial (230, 260 and 290).

Figure 3 shows the ROC of the evolved classifiers, measured on the holdout
set. Figure 3 also shows, for comparison, the ROC of the classifier produced by
taking the convex hull of the 30 C4.5 decision trees and 60 ANNs (generated
on the training data). Of course it is convex on the training data, but need not
be on the hold out data. Note the convex hull of the ANN contains that of the
C4.5, so it is also the convex hull of the ANN and C4.5 together.

7 Over Fitting

Over fitting is to some extent endemic in Machine Learning and it is no surprise
to see it in GP. In fact it goes further than that. There is a case that natural
evolution itself tends to over fit. When Darwin says finches have adapted to a
particular type of food, an alternative view is they have become over fitted to
their current environmental niche (i.e. their training data). Taken out of the
niche and exposed to a new environment they may fare less well. Alternatively
if the niche itself changes they may have to re-adapt or become extinct.

GP’s environment is the fitness cases. Where these are small and static we
must fear GP will over fit. If large volumes of data are available for training
then it should all be used. Sampling [Gathercole and Ross, 1997; Gathercole,
1998; Teller and Andre, 1997] and/or caching [Handley, 1994; Langdon, 1998]
techniques can be used to reduce run time.

The use of size fair crossover [Langdon, 2000] and mutation means we do
not see explosive increase in program size (bloat [Langdon et al., 1999]) and
preliminary experiments suggest over fitting is more closely related to number
of generations over which the population has been exposed to the same environ-
ment than to the size of the programs. This supports [Schmiedle et al., 2001]’s
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suggestion for pragmatic limits on run time, as an alternative to parsimony
pressures (i.e. fitness rewards for smaller programs).

In traditional neural networks etc., over fitting may tackled by “regulariza-
tion” parameters, which bias the learning system to produce simple or smooth
functions. [Davidson et al., 2000] shows regularization can be incorporated into
GP, provided we are prepared to restrict the nature of models we will allow to
evolve or if we have some reason for preferring smooth or simple functions.

While [Sollich and Krogh, 1996] suggests it might be good to allow individual
base classifiers to over fit we have seen little to support this. In preliminary
experiments, over fit base classifiers dragged the population in the same direction
as themselves, leading to the evolution of similarly over fit ensembles. This may
be due to using the same data to train both the base classifiers and the GP,
but initial experiments using different training data for the base and evolved
classifiers were not encouraging (possibly due to insufficient training data).

8 Conclusions

In [Langdon and Buxton, 2001a] we showed, using [Scott et al., 1998]’s own bench
marks, that genetic programming can do better than the receiver operating
characteristics (ROC) convex hull both in theory and practice. Nevertheless we
cannot guarantee GP will always do better and so it is important to demonstrate
it on interesting applications. Here we have shown (cf. Figs. 1 and 3) that GP
can be used in a large classification application (related to drug discovery) to
automatically create ensembles of decision trees, neural networks and indeed
both. Even though GP starts with poorer classifiers (all the C4.5 ROCs lie within
the convex hull of the previously used neural network classifiers), ensembles of
similar performance have been automatically evolved. While GP allows arbitrary
combination rules, it can also be used to aid finding simple rules.
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