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Abstract

Background: Affymetrix High Density Oligonuclotide Arrays (HDONA) simultaneously measure expression of

thousands of genes using millions of probes. We use correlations between measurements for the same gene

across 6685 human tissue samples from NCBI’s GEO database to indicated the quality of individual HG-U133A

probes. Low correlation indicates a poor probe.

Results: Regular expressions can be automatically created from a Backus-Naur form (BNF) context-free

grammar using strongly typed genetic programming.

Conclusions: The automatically produced motif is better at predicting poor DNA sequences than an existing

human generated RE, suggesting runs of Cytosine and Guanine and mixtures should all be avoided.

Background

Typically Affymetrix GeneChips (e.g. HG-U133A) measure gene expression at least eleven points along the

gene. Individual measurements are given by short (25 base) DNA sequences, known as probes. These are

complementary to corresponding locations in genes. Being complementary, the gene product (messenger

RNA) preferentially binds to the probe, cf. Figure 1. Half a million different probes are placed on a slide in

a square grid pattern. A fluorescent dye is used to measure how much mRNA is bound to each probe.
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Figure 1: Schematic of an Affymetrix probe (209649 at PM5, left) bound with complementary target
sequence (right). DNA double helix represented as straight vertical ladder. Note complementary T–A and
C–G base bindings are shown by red rectangles. The 25 bases of the probe are tethered to the slide by
a flexible linker (black lower left). Firmly bound target sequences can be detected by treatment with a
florescent dye, whose location is detected with a laser and an optical microscope. The florescent intensity
is approximately proportional to the amount of bound target and so gives some indication of target gene
activity.

To a first approximation, the amount of mRNA produced by a gene should be the same no matter which

part of the mRNA molecule is bound to a probe. Affymetrix groups probes into probesets. Each probeset

targets a gene. Therefore probe measurements for the same probeset should be correlated. Figure 2 shows

the 110 correlations for a probeset as a “heatmap” (yellow/lighter corresponds to greater consistency

between pairs of probes). Figure 2 suggests that in Affymetrix probeset 200660 at two probes do not

measure the gene as well as the other nine.

There are several biological reasons which might lead to probes on the same gene giving consistently

unrelated readings (alternative splicing, alternative polyadenylation and 3’-5’ degradation, come to

mind [1, 2]). However these do not explain all of the many cases of poor correlation. In [3] we found some

technological reasons. In particular, [3] showed that probes containing a large ratio of Guanine (G) to

Adenosine (A) bases are likely to perform badly. Subsequently we have found that runs of Gs (which will

tend to have a high G/A ratio) also tend to indicate problem probes [4]. This has lead us to ask if there

are other sequences which might indicate badly behaved probes. We set up an artificial evolutionary

system [5,6] to create DNA motifs using a formal computer language grammar [7] to search for DNA
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Figure 2: Correlation coefficients (×10) between 11 probes for gene “S100 calcium binding protein A11”
S100A11. Nine of the probes are correlated but PM1 and PM2 (bottom 2 rows and 2 left) are not.

sequences which indicate poor probes.

Grammars and Genetic Programming

Existing research on using grammars to constrain the artificial evolution of programs can be broadly

divided in two: “Grammatical Evolution” [8] based largely in Ireland and work in the far east by

Whigham [9,10], Wong [11] and McKay [12].

Research in molecular biological computing includes Ross, who induced stochastic regular expressions from

a number of grammars to classify proteins from their amino acid sequence [13]. Typically his grammars

had eight alternatives. In Stockholm regular expressions have been evolved to search for similarities

between proteins, again based on their amino acid sequences [14]. Whilst Brameier in Denmark used amino

acids sequences to predict the location of proteins by applying a multi-classifier [15] linear genetic

programming based approach [16] (although this can be done without a grammar [17]). A similar

technique has also been applied to study microRNAs [18].

Results and Discussion

By the end of the first run (cf. Table 1 and Figure 3) genetic programming (GP) had evolved a probe

performance predictor (see Figure 4) equivalent to GGGG|CGCC|G(G|C){4}|CCC. It is obvious that it

includes the previous rule (GGGG, [4]) but includes other possibilities. Therefore it finds more poor probes.
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Table 1: Strongly Typed Grammar GP for GeneChip Correlation Prediction
Primitives: Possible components of the DNA motif are defined by the BNF grammar (cf. Figure 8).
Performance: Score = true positives+true negatives, max 1166. (I.e. proportional to the area under the

ROC curve or Wilcox statistic [19].) Less large penalty if egrep fails or it matches all probes
or none.

Selection: Each generation the best 200 motifs from the current population of 1000 are used to breed
another 1000 motifs.

Initial pop: Ramped half-and-half 3:7
Parameters: 100% subtree crossover. Max tree depth 17 (no tree size limit)
Termination: 50 generations

Inevitably it will also incorrectly predict more high correlation probes as being poor. However its reduced

performance on the good probes is more than offset by better performance on the poor probes. See

Figure 5. On the last generation, it has a score of 856 (410 true neg + 446 true pos). (GGGG has a score

of 776 = 195 + 581.)

The confusion matrix for the evolved regular expression on the whole of the training set (including the

6677 positive middling values which GP never saw) is at the top left of Table 21. Whilst its confusion

matrix on the verification data is in the middle of Table 2. (The corresponding matrices for GGGG are given

in at the bottom of Table 2.) Unlike in many machine learning applications, there is no evidence of over

fitting. Indeed the corresponding results for the test set (second matrix of each pair) are not significantly

different (χ2, 3 dof) from those on the whole training set. The evolved regular expression picks up

significantly more (χ2, 3 dof) (448 v. 209) poorly performing probes on the test set than the human

produced regular expression. Figure 6 shows the number of DNA probes matching the evolved motif

against their average correlation with the rest of their probeset.

As is common in optimisation [20], almost all the run time is taken by the time to find out the performance

score of the motifs. In our case, elapse time is dominated by the command script which runs egrep -c.

Typically this takes 8.5mS per DNA motif. The time taken by gawk to process the BNF grammar, create

new grammars, generate the regular expressions, etc., is negligible.

Discussion

Theoretical and empirical studies of GeneChips confirm that the behaviour of DNA probes tethered to a

surface can be quite different from DNA behaviour in bulk solution. This is a new and difficult area and
1 As will be described in the methods section, ambiguous middling probes are not used during training, cf. also Figure 7.

Nevertheless, to avoid giving an inflated overly optimistic estimate of performance, we present results across the whole range
of probe correlations.
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Figure 3: Evolution of breeding population (best 200 of 1000) of regular expressions to find poor GeneChip
probes. Each generation the positive training cases are replaced leading to fluctuations in the measured
best score (solid line). The error bars show the mean and standard deviation of ten GP runs with identical
parameters. Note the chosen run is typical and consistently lies within one standard deviation of the
mean (+). Diversity remains high and there are usually few motifs with the same highest score (2). In this
run the number of distinct motifs (×) (i.e. egrep search strings) is almost identical to the number of distinct
grammars. Size is limited (∗), apparently by the tree depth limit (17). However, even so, the system slows
down by (≈ 1

2 ) as evolution proceeds.
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Figure 4: Right most fragment of grammar of best program in generation 50. To save space left part is
not shown. It would be attached at “etc” (5 arrows from <start>.) Active choice nodes in the BNF (cf.
Figure 8) are emphasised by placing them in ovals. The resulting motif is simply the 58 leaf nodes read in
left to right order: GC{3}|G{4}|C{4}|CG{1}C{2}|GG{4}C+|G(G|C){4}|G(G|C){4}|C{3}. The fragment just
shows the right most end: |G(G|C){4}|C{3}. The motif is equivalent to GGGG|CGCC|G(G|C){4}|CCC.
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generalisation. Again the new motif finds many more poor probes. (Note log scale.)
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Table 2: Confusion matrices for the evolved motif (top) and original motif (bottom). The performance
on the training data is given on the left. “Out of sample” data (i.e. not used for training) gives a better
indication of true performance (middle). The number of poor probes correctly predicted is 448 of 622 whist
for good probes it is 10 045 of 14 481. The new motif is much better at finding poor probes, 448 v. 209. (Poor
probes are those whose average correlation with their own probeset is below 0.3.) But this is at the cost
of incorrectly flagging more probes as potentially flawed. Performance does not fall significantly, indicating
there is no over fitting. Values for the second (unused) test set are given on the right.

GGGG|CGCC|G(G|C){4}|CCC

Whole training set
Median Correlation < 0.3 ≥ 0.3

410 4448
-v 173 10061

Test set
< 0.3 ≥ 0.3

448 4436
-v 174 10045

2nd Test set
< 0.3 ≥ 0.3

425 4553
-v 178 9947

GGGG

Whole training set
Median Correlation < 0.3 ≥ 0.3

195 479
-v 388 14030

Test set
< 0.3 ≥ 0.3

209 434
-v 413 14047

2nd Test set
< 0.3 ≥ 0.3

208 462
-v 395 14038

there are not deep pure Physics experimental results. Therefore experimental studies have concentrated on

data gathered during normal operation of the chips.

Our automatically generated motif, suggests that in addition to Gs, Cs are important. Indeed the fact that

only three consecutive Cs is predictive (whereas four Gs are needed) suggests that Cs are more important

than Gs. It is known in GeneChips DNA C–G RNA binds more strongly than DNA G–C RNA [21]. We

are tempted to suggest that a CCC sequence on a DNA probe can act as a nucleation site encouraging the

probe to bind to GGG on RNA. Indeed the evolved motif suggests that four Gs and mixtures of five Cs

and Gs might also form nucleation sites.

The sequence CCC is too short to be specific to a particular gene. GeneChips are designed on the

assumption that only RNA sequences which are complementary to the full length of the probe will be

stable. However studies have shown that nonspecific targets can be bound to GeneChip probes for several

hours even if held only by the nucleation site. This may be why probes with quite short runs of either Cs

or Gs can be poorly correlated with others designed to measure the same gene.

Conclusions

Access to the raw results of thousands of GeneChips (each of which costs several hundreds of pounds)

makes new forms of bioinformatic data mining possible.
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Millions of correlations between probes in the same probeset, which should be measuring the same gene,

show wide variation [22]. Automatically generated regular expressions confirm previous work [3, 4] that the

DNA sequences from which the probes themselves are formed can indicate poor probe performance. Indeed

several new motifs (e.g. CCC) which predict probe quality have been automatically found.

Linux code is available via ftp://cs.ucl.ac.uk/genetic/gp-code/RE gp.tar

Methods
Preparation of Training Data

Previously we had down loaded thousands of experiments from NCBI’s GEO [23], normalised them,

excluded spatial defects and calculated the correlation between millions of pairs of probes [3, 24]. To

exclude genes which are never expressed, we selected probesets where ten or more non-overlapping probe

pairs had correlations of 0.8 or more. For each probe we use the median value of all 10 of its correlations

with other members of its probeset (excluding those it overlaps). This gave 4118 probesets, which were

evenly split into three to provide independent training, test and validation data.

Previously we found the “mismatch” probes were often poorly correlated with other measurements for the

same gene [3]. Since this is known, we excluded them from this study.

As Figure 7 shows, correlation coefficients cover a wide range. Since we are using correlation only as an

indication of how well a probe is working we decided to exclude the middle values from training and

instead use probe pairs that were highly correlated (≥ 0.8) or were very poorly correlated (≤ 0.3). Of the

15 092 available training examples, there are 7 832 probes highly correlated with the rest of their probeset

but only 583 poorly correlated. To avoid unbalanced training sets, every generation all 583 negative

training examples are used and 583 positive examples are randomly chosen from the 7 832 positive

examples. Training examples are available via

http://bioinformatics.essex.ac.uk/users/wlangdon/RE gp training.tar.gz

Evolving Regular Expression Motifs
BNF grammar of Regular Expression

The BNF grammar used (cf. Figure 8) is an extension of that given by Cameron

http://www.cs.sfu.ca/people/Faculty/cameron/Teaching/384/99-3/regexp-plg.html. In particular,

matching the beginning of strings (^) and the {n,m} form of Kleen closure, are also supported. The BNF

has been customised for DNA strings. (I.e. <char> need only be A C G and T). Since various combinations
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Figure 7: Training data. Probes with intermediate values (0.3 . . . 0.8) are not used.

of the start of string symbol, null strings and Kleen closure cause egrep to loop, care has been taken to

ensure that the new BNF does not permit null strings after ^.

Brameier and Wiuf suggests that the traditional * and + form of Kleen closure are not suitable for

bioinformatic applications [18]. Instead they recommend the {n,m} form which explicitly defines both

lower (n) and upper (m) limits on the number of times the preceeding symbol must occur. However both

{n,m} and traditional Kleen closures are used by evolved solutions. To avoid mutation.awk seeing

“Hamming cliffs”, the integer quantifiers used in the {n,m} are Gray coded [25]. Similarly the syntax

groups together the chemically more similar Pyrimidines (T and C) and Purines (A and G).

Our system supports full positive integer values for the BNF grammar rule minmaxquantifier, however

even modest values can lead egrep to hang the computer. Therefore n and m are limited to 1-9. Finally

egrep rejects {n,m} if m<n. This is handled by a semantic rule which removes ,m from the motif when m is

less than n.

Using the BNF with Genetic Programming

For simplicity, the BNF is written so that grammar rules are either simple substitution rules

(e.g. <minmaxquantifier>), rules with exactly two options (e.g. <RE>) or terminals (e.g. "*" and T). In

10



<start> ::= <RE>
<RE> ::= <union> | <simple-RE>
<union> ::= <RE> "|" <simple-RE>
<simple-RE> ::= <concatenation> | <basic-RE>
<concatenation> ::= <simple-RE> <basic-RE>
<basic-RE> ::= <RE-kleen> | <elementary-RE>
<RE-kleen>::= <minmaxquantifier> | <kleen>
<kleen>::= <star> | <plus>
<star> ::= <elementary-RE2> "*"
<plus> ::= <elementary-RE2> "+"
<minmaxquantifier> ::= <elementary-RE4> "{" <int> <optREint> "}"
<elementary-RE> ::= <group> | <elementary-RE1>
<elementary-RE1> ::= <xos> | <elementary-RE2>
<elementary-RE2> ::= <any> | <elementary-RE3>
<elementary-RE3>::= <set> | <char>
<elementary-RE4> ::= <group> | <elementary-RE2>
<group> ::= "(" <RE> ")"
<xos> ::= <sos> | "$"
<sos> ::= "^" <elementary-RE4>
<set> ::= <positive-set> | <negative-set>
<positive-set> ::= "[" <set-items> "]"
<negative-set> ::= "[^" <set-items> "]"
<set-items> ::= <set-item> | <set-items2>
<set-items2> ::= <set-item> <set-items>
<set-item> ::= <char>
<char> ::= <c00> | <c01>
<any> ::= "."
<c00> ::= T | C
<c01> ::= A | G

<optREint> ::= <2ndint> | $
<2ndint> ::= "," <int>
<int> ::= <d0>
#4 Bit Gray Code Encoder
<REdigit> ::= <d111> | <d0>
<d0> ::= <d00> | <d01>
<d00> ::= <d000> | <d001>
<d01> ::= <d010> | <d011>
<d000> ::= 1
<d001> ::= 3 | 2
<d010> ::= 7 | 6
<d011> ::= 4 | 5
<d111> ::= 8 | 9

Figure 8: Grammar used to specify legal regular expressions for use as egrep search strings for testing DNA
sequences.
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BNF terms, a terminal is a symbol which cannot be substituted in the grammar. Therefore, unlike the

BNF rules, it becomes part of the egrep regular expression. The simple substitution rules do not have any

element of choice. They, like terminals, cannot be chosen as crossover points or targets for mutation. Their

principle use is to enable the rules with options to be kept simple.

The binary choice rules are the active parts of the syntax. As they are always binary, each egrep regular

expression created using the BNF has an equivalent binary string. Each bit in the string corresponds to a

BNF rule with two options. The bit indicates which option should be invoked (cf. Figure 9). The BNF

grammar is also used to give types to the choices. By using strong typing when creating new motifs from

old ones we ensure not only that the new motif is syntatically correct but, since crossover respects the

types, they also guide the evolutionary search [26].

Creating Random Motifs Using the BNF Grammar

The initial random population is created using ramped half-and-half [27]. It may help to think of this as

applying the usual genetic programming ramped half-and-half algorithm to a binary tree (of choice nodes).

We start from <start> (at the top of Figure 8) and recursively follow the BNF. However when we reach a

rule with options we need to choose one. As in ramped half-and-half we keep track of how deep we are

nested. If we have not reached the depth needed to terminate the recursion, we randomly choose one of the

options. (As with other strongly typed GPs, if a chosen route through the syntax has no further choices to

be made, we may be forced to terminate a recursive branch early.)

To terminate a recursion we choose the “simpler” option. Our BNF has been written so that the simpler

option is always on the right. (This is flagged by RE in the rule name.) If there is no “simpler” choice, the

choice is made randomly. This mechanism is also used for mutating existing regular expressions.

Although this may seem complex, gawk (Unix’ free interpreted pattern scanning and processing language)

can handle populations of a million motifs.

Creating New Motifs by Mixing BNF Grammars

Creating a new motif from two high scoring motifs is essentially subtree crossover [5] applied to the binary

choice tree with the addition of strong type constraints [28]. This is implemented by scanning the grammar

used to create the first parent for all the rules with two options. One of these is randomly chosen. For

example, suppose the first parent starts <start> <RE> <union> and suppose <union> is chosen as the

crossover point. For a grammatically correct child to be produced all that is necessary is that the crossover

12
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Figure 9: Fragment of a binary choice tree (ovals) superimposed on grammar (identical to Figure 4). Unfilled
ovals mean left hand production “0” is to be taken. Shaded ovals indicate right hand production “1” is
expanded. Using the BNF grammar shown in Figure 8, the first choice rule following <start> (top) is
<RE>. <RE> has two options: <union> and <simple-RE>. This evolved grammar (Figure 4) uses first option
(<union>). Hence the first <RE> oval is not filled and the first bit of the equivalent bit string is “0”. Thus this
tree fragment represents the binary choices: 00 . . . 0111111110000111111111111111011101100111010101.
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point chosen in the second parent should also be <union>. (There are complications to do with depth and

size limits, which we shall ignore for the time being.) Therefore the second parent is scanned to find all

occurrences of <union>. One of them is randomly chosen to be the second crossover point. (If there are

none, this crossover is aborted and another initial crossover point is chosen. If we keep failing, eventually

another pair of parents is chosen.)

Crossover is based on normal genetic programming (GP) subtree crossover, cf. [5, Figure 2.5]. The new

child is created by copying the start of the first parent, excluding the subtree at the first parent’s crossover

point. Then genetic material from the subtree at the second parent’s crossover point is added. Finally the

remainder of the first parent is appended to the child. This is implemented by crossing over the binary

choice trees to create a binary choice tree for the new child. Apart from issues of tree size and depth, we

are guaranteed that the new binary choice tree will represent a valid DNA motif.

The final step is to recursively trace through the BNF grammar. Each time we come to a rule with two

options, we look at the next binary choice. If it is clear, we chose the first option. If it is set, we follow the

second option. Each time an BNF terminal is encountered it is appended to the new regular expression. (If

the BNF terminal is the null symbol, it is simply ignored.)

Evaluating the Performance Score of the DNA Motifs

Each generation, a command file is generated which contains a egrep -c -v ’RE’ command for each

motif in the population. (RE is the motif i.e. the regular expression.) The command is run on a file

holding the DNA sequences of the 583 probes poorly correlated with the rest of their probeset. The same

command is also run on a file holding the 583 positive probes selected for use in this generation. The score

of the regular expression is based on the difference between the number of lines in the two files which

match RE. Expressions which either match all probes or fail to match any are penalised by subtracting

583 from their score. See also Table 1. Implementation details can be found in [29].
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Budapest, Hungary: Springer 2006:280–289,
http://link.springer.de/link/service/series/0558/papers/3905/39050280.pdf.

13. Ross BJ: The Evaluation of a Stochastic Regular Motif Language for Protein Sequences. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001). Edited by Spector L,
Goodman ED, Wu A, Langdon WB, Voigt HM, Gen M, Sen S, Dorigo M, Pezeshk S, Garzon MH, Burke E,
San Francisco, California, USA: 2001:120–128, http://www.cosc.brocku.ca/∼bross/research/gp002.pdf.

14. Handstad T, Hestnes AJH, Saetrom P: Motif kernel generated by genetic programming improves
remote homology and fold detection. BMC Bioinformatics 2007, 8(23),
http://www.biomedcentral.com/content/pdf/1471-2105-8-23.pdf.

15. Langdon WB, Buxton BF: Evolving Receiver Operating Characteristics for Data Fusion. In Genetic
Programming, Proceedings of EuroGP’2001, Volume 2038 of LNCS. Edited by Miller JF, Tomassini M, Lanzi
PL, Ryan C, Tettamanzi AGB, Langdon WB, Lake Como, Italy: Springer-Verlag 2001:87–96,
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl egp2001.ps.gz.

16. Brameier M, Krings A, MacCallum RM: NucPred Predicting nuclear localization of proteins.
Bioinformatics 2007, 23(9):1159–1160.

15

http://www.biomedcentral.com/1471-2105/8/13
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_camda2007.ps
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2008_CIGPU2.pdf
http://dx.doi.org/doi:10.1186/1471-2164-9-613
http://www.gp-field-guide.org.uk
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_ppsn_2008.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/whigham_1996_sblbGP.html
http://www.cs.bham.ac.uk/~wbl/aigp3/ch05.pdf
http://link.springer.de/link/service/series/0558/papers/3905/39050280.pdf
http://www.cosc.brocku.ca/~bross/research/gp002.pdf
http://www.biomedcentral.com/content/pdf/1471-2105-8-23.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_egp2001.ps.gz


17. Langdon WB, Banzhaf W: Repeated Sequences in Linear Genetic Programming Genomes. Complex
Systems 2005, 15(4):285–306, http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl repeat linear.pdf.

18. Brameier M, Wiuf C: Ab initio identification of human microRNAs based on structure motifs. BMC
Bioinformatics 2007, 8:478, http://www.biomedcentral.com/content/pdf/1471-2105-8-478.pdf.

19. Langdon WB, Barrett SJ: Genetic Programming in Data Mining for Drug Discovery. In Evolutionary
Computing in Data Mining, Volume 163 of Studies in Fuzziness and Soft Computing. Edited by Ghosh A, Jain
LC, Springer 2004:211–235, http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl bioavail.pdf.

20. Beyer HG: The Theory of Evolution Strategies. Springer 2001.

21. Naef F, Wijnen H, Magnasco M: Reply to “Comment on ‘Solving the riddle of the bright
mismatches: Labeling and effective binding in oligonucleotide arrays’ ”. Physical Review E 2006,
73(6):063902–+, http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=
PLEEE8000073000006063902000001&idtype=cvips&gifs=yes.

22. Langdon WB: A Map of Human Gene Expression. Tech. Rep. CES-486, Departments of Mathematical,
Biological Sciences and Computing and Electronic Systems, University of Essex, Colchester, CO4 3SQ, UK
2008, http://www.essex.ac.uk/dces/research/publications/technicalreports/2008/CES-486.pdf.

23. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M,
Edgar R: NCBI GEO: mining tens of millions of expression profiles–database and tools update.
Nucleic Acids Research 2007, 35(Database issue):D760–D765, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?
cmd=Retrieve\&db=pubmed\&dopt=Abstract\&list uids=17099226.

24. Langdon WB, Upton GJG, da Silva Camargo R, Harrison AP: A Survey of Spatial Defects in Homo
Sapiens Affymetrix GeneChips. IEEE/ACM Transactions on Computational Biology and Bioinformatics
2009. In press. http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon tcbb.pdf.
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