
A CUDA SIMT Interpreter for Genetic Programming

W. B. Langdon CREST centre, King’s College, London, WC2R 2LS, UK

ABSTRACT
A Single Instruction Multiple Thread CUDA interpreter pro-
vides SIMD like parallel evaluation of the whole GP popu-
lation of 1

4
million RPN expressions on graphics cards and

nVidia Tesla T10P. Using sub-machine code GP a sustain
peak performance of 212 billion GP operations per second
(3300 speed up) and an average of 4.5 peta GP ops per day is
reported for a single card on a Boolean induction benchmark
never attempted before, let alone solved.

1. INTRODUCTION
There are two main approaches to running genetic pro-

gramming on highly parallel hardware such as GPUs: 1) com-
piling evolved programs and running multiple fitness cases in
parallel, 2) interpreting multiple programs in parallel. The
compiled approach suffers from the overhead of running the
compiler. However recent work [1] demonstrates parallel
compilation of the GP population on multiple workstations.
Interpreters can run programs immediately but interpreted
code is slower than optimised compiler generated machine
code. GPU interpreters typically gain their speed by evalu-
ating the whole population in parallel but are also free to run
fitness cases in parallel or mixtures of the two approaches.

SIMD GPU interpreters evaluate each GP tree by treating
it as a reverse polish (RPN) expression which is evaluated
via a stack in single pass. I.e. without the recursive back
tracking normally associated with trees. The stack required
careful implementation in RapidMind but is straight for-
ward with nVidia CUDA. For every instruction, SIMD in-
terpreters use cond or if branches to skip through the whole
instruction set and only evaluate the current instruction.
(This causes threads to diverge, so we also tried a data flow
approach in which the ifs were replaced by evaluating all
possibilities and using array indexes to chose from them.
However it was not faster.) The new approach uses the full
power of CUDA to gain the best performance from G80 par-
allel hardware. E.g. by using shared and constant memory,
where possible, in preference to local and global memory.

The approach is suitable for use with many types of GP
however we demonstrate it on two Boolean benchmark prob-
lems (20-multiplexor and 37-multiplexor) where CUDA al-
lows access to another level of parallelism. Sub-machine
code GP uses parallel bit or byte level operations, to execute
up to 32 (or 64) fitness cases simultaneously. Using pseudo
random sampling of test cases with a population of a quarter
of a million programs a single T10P Tesla is able to solve
the 20-multiplexor problem in less than an hour, whereas [2]
estimated it would take more than 4 years. Peak sustained
performance of just over 212 billion GP operations/second
was achieved when testing all 237 = 137 billion fitness cases
for solutions to the 37-multiplexor. Probably compiled code
would be still faster. When including all activity on the
CPU as well as the GPU across the whole run the single

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500

B
ill

io
ns

 o
f G

P
 O

pe
ra

tio
ns

 p
er

 S
ec

on
d

Mean Tree Size

Mean 46.6

Mean 57.6

20-Multiplexor
37-Multiplexor (max len=511)

Tesla averaged more than 52 billion GPop/s. This is more
than [1] measured for a compiled approach using a cluster
of 14+ workstations each equipped with a low end GPU.

2. ALGORITHM
This is the first genetic programming implementation to

exploit sub-machine code level parallelism inherent in every
GPU. However it can obviously be used in any Boolean
problem. Indeed many non-evolutionary algorithms with
a large logic based component could benefit from this ap-
proach to exploiting bit-level parallelism. The sub-machine
code approach has also been used in the continuous domain
(by using 8-bit precision) and in graphics (e.g. 5× 5 OCR).
It is straight forward to implement in CUDA compared to
other high-level GPGPU languages like RapidMind 2.

The genetic programming individuals are created and ma-
nipulated by crossover and mutation as RPN expressions in
exactly the same format as is used by the GPU. I.e. the
data is not converted between the host CPU and the GPU.

The host CPU accounts for only 9% of the total run time.
Therefore no great effort has been spent on optimising the
host side C++ code. Doubtless small efficiencies could be
made to reduce the host side overhead.

Inspection of the nvcc compiler output suggests there are
100 PTX instructions in the main loop. On average about
30 will be executed per GP primitive. It takes the T10P
652 seconds to run a solution containing 1005 primitives 237

times (when the interpreter achieves its peak performance).
Taking into account that 32 test cases are run simultaneously
and the T10P has 192 1.08GHz cores, this means about one
PTX instruction is executed per clock tic per core. Suggest-
ing the T10P is fully loaded.

Although every effort has been made to get the best from
the T10P Tesla’s 192 cores, the CUDA code should run on
any modern G80 GPU. The current implementation re-
quires that the whole stack be stored in shared memory.
This limits the number of CUDA threads per block. With

http://www.dcs.kcl.ac.uk/staff/W.Langdon/
http://crest.dcs.kcl.ac.uk/
http://www.nvidia.com/cuda
http://gpgpu.org/
http://www.rapidmind.com/

smaller shared memory it would not be possible to have the
192 threads needed to fully use the GPU.

The interpreter architecture fits the GPU philosophy and
has enabled us to solve a GP benchmark never even at-
tempted before let alone solved.

3. SPEED
The best speed (212 109 GPop/s) is achieved by loading

a single program into constant memory. We did experiment
with loading the GP population into shared memory, at the
expense of reducing the memory available for the stack etc.
and hence reducing the number of threads per block. We
had anticipated that reading the programs to be interpreted
from on-chip shared memory would be enormously faster
than reading it from off-chip global memory. However the
advantage of shared v. global memory is not large. This ap-
pears to due to hardware speed up techniques like coalesced
reads (and possibly caching, although the manual suggests a
cache is not used) and the large number (262 144) of threads
in use. Hence for the normal GP population the interpreter
places each GP individual in global memory. (The large
global memory makes it feasible to allow far bigger programs
than are needed to solve the multiplexor problems.)

Other approaches might entail loading a small number
programs (rather than the whole population) into shared
memory (hence allowing more space for the stack etc.) and
allocating multiple fitness evaluation threads to each. The
elegant one program one thread approach means threads for
short programs may finish before those for longer ones, so
decreasing average performance. However when a size limit
is imposed on GP trees it is common for them to grow to-
wards this size, first increasing size variation but ultimately
leading to populations of similarly sized programs (see Fig-
ure on first page).

The interpreter gives on average 52 billion GPop/s com-
pared to about 800 million GPop/s we previously reported.
Most of the 60 fold speed comes from the use of sub-machine
code GP. Compared to 3GHz CPU running 32-bit sub ma-
chine code GP we get a 34 fold speed up (800 fold, 3300
peak, if it does not use sub machine code GP).

Using CUDA makes it easy to use sub-machine code GP,
to expand the stack and to direct the placement of data
structures to on-chip memory.

While Koza initially used a tree depth of 17 a stack depth
of 16 is sufficient for most GP experiments. The interpreter
has been used with multiple arity experiments. For GP
primitives which take more than two inputs (e.g. if) the
maximum stack depth can be more than the maximum tree
depth. We can enforce a stack limit which is different from
the tree depth limit. Alternatively the existing tree depth
limit can be retained and the kernel configured to allow a
bigger stack. However because the stack resides in shared
memory, this means each block can have fewer threads.

In GPU/Tesla with larger shared memory, the number of
threads can be increased above 240. This may increase per-
formance by allowing more threads to further conceal global
memory latency. In GP large populations are common so
the one GP individual per GPU thread model can easily
take advantage of more GPU cores. Conversely in smaller
GPUs, having fewer cores will only reduce performance ap-
proximately linearly. With very small GP populations the
interpreter would easily allow multiple fitness cases to be
spread across multiple threads.

 50

 60

 70

 80

 90

 100

 1 10 100 1000
 0

 128

 256

 384

 512

 640

 768

 896

 1024

F
itn

es
s

(p
er

ce
nt

)

Le
ng

th

Generations

37-mux length

20-mux length

20-mux fit
37-mux fit

20-mux length quartiles
37-mux length quartiles

Figure 2: Evolution of fitness and size in 20-
multiplexor and 37-multiplexor. 3 lengths are quar-
tiles and median, showing bloat and small range of
sizes. Fitness quartiles are given to 1%, hence their
stepped apparence. The log-linear rise in fitness is
reminiscent of the coupon collector suggesting ma-
jor building blocks are equally difficult.

Table 1: CUDA GP for 20 and 37 multiplexor

Terminals: 20 or 37 Boolean inputs D0–D36
Functions: AND, OR, NAND, NOR
Fitness: Pseudo random sample of 2048 of 1 048 576 or

8192 of 137 438 953 472 fitness cases.
Tournament: 4 members run on same random sample.
Population: 262 144
Initial pop: Ramped half-and-half 4:5 (20-mux) or 5:7
Parameters: 50% subtree crossover, 5% subtree 45% point

mutation. Max depth 16, max size 511 or 1023.
Termination: 20 000 generations

4. IMPACT
The CUDA code will be made available via FTP.
The 37-mux has 137 billion fitness cases. It have never

been attempted before, let alone solved.
We have used random numbers generated on the GPU to

sample the test cases. Yet the CUDA SIMT interpreter gave
us the power to show all the evolved solutions do generalise.

Currently Tesla are available with up to 960 cores, sug-
gesting a further increase in performance of at least 5 fold
might be possible.

Acknowledgment
The Tesla T10P early engineering sample was supplied by
nVidia.

I am greatful for the assistance of Timothy Lanfear and
Gernot Ziegler of nVidia and Simon Harding of Memorial.

5. REFERENCES
[1] Harding, S. Personal communication, May 2009.

[2] Yanagiya, M. Efficient genetic programming based on
binary decision diagrams. In IEEE CEC 1995 234–239.

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/gp32cuda.tar.gz
http://www.nvidia.com
http://dx.doi.org/doi:10.1109/ICEC.1995.489151

	Introduction
	Algorithm
	Speed
	Impact
	References

