Skip to main content

Genetically Improved CUDA C++ Software

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8599))

Abstract

Genetic Programming (GP) may dramatically increase the performance of software written by domain experts. GP and autotuning are used to optimise and refactor legacy GPGPU C code for modern parallel graphics hardware and software. Speed ups of more than six times on recent nVidia GPU cards are reported compared to the original kernel on the same hardware.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming, http://www.gp-field-guide.org.uk

  2. Harman, M., Langdon, W.B., Weimer, W.: Genetic programming for reverse engineering. In: WCRE 2013, Koblenz, Germany. IEEE (2013) (Invited Keynote)

    Google Scholar 

  3. Harman, M., Langdon, W.B., Jia, Y., White, D.R., Arcuri, A., Clark, J.A.: The GISMOE challenge. In: ASE 2012, Essen, Germany, pp. 1–14. ACM (2012)

    Google Scholar 

  4. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template. In: WCCI 2010, Barcelona, pp. 2376–2383. IEEE (2010)

    Google Scholar 

  5. Archanjo, G.A., Von Zuben, F.J.: Genetic programming for automating the development of data management algorithms in information technology systems. Advances in Software Engineering (2012)

    Google Scholar 

  6. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method for automatic software repair. IEEE Trans. on Soft. Eng. 38(1), 54–72 (2012)

    Article  Google Scholar 

  7. Sitthi-amorn, P., Modly, N., Weimer, W., Lawrence, J.: Genetic programming for shader simplification. ACM Trans. on Graphics 30(6), article:152 (2011)

    Google Scholar 

  8. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Trans. on EC 15(4), 515–538 (2011)

    Google Scholar 

  9. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE Trans. on EC 15(2), 166–182 (2011)

    Google Scholar 

  10. Langdon, W.B., Harman, M.: Optimising existing software with genetic programming. IEEE Trans. on EC (accepted)

    Google Scholar 

  11. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement and code transplants to specialise a C++ program to a problem class. In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli, M., García-Sánchez, P., Merelo, J.J., Santos, V.M.R., Sim, K. (eds.) EuroGP 2014. LNCS, vol. 8599, pp. 137–149. Springer, Heidelberg (2014)

    Google Scholar 

  12. Cotillon, A., Valencia, P., Jurdak, R.: Android genetic programming framework. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 13–24. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Cody-Kenny, B., Barrett, S.: The emergence of useful bias in self-focusing genetic programming for software optimisation. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 306–311. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Tiwari, V., Malik, S., Wolfe, A.: Power analysis of embedded software: A first step towards software power minimization. IEEE Trans. on VLSI 2(4), 437–445 (1994)

    Article  Google Scholar 

  15. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing. Proceedings of the IEEE 96(5), 879–899 (2008) (Invited paper)

    Google Scholar 

  16. Merrill, D., Garland, M., Grimshaw, A.: Policy-based tuning for performance portability and library co-optimization. In: InPar. IEEE (2012)

    Google Scholar 

  17. Langdon, W.B.: Graphics processing units and genetic programming: An overview. Soft Computing 15, 1657–1669 (2011)

    Article  Google Scholar 

  18. Stam, J.: Stereo imaging with CUDA. Technical report, nVidia (2008)

    Google Scholar 

  19. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  20. Syswerda, G.: Uniform crossover in genetic algorithms. In: ICGA 1989, pp. 2–9 (1989)

    Google Scholar 

  21. Koza, J.R.: Genetic Programming. MIT Press (1992)

    Google Scholar 

  22. Langdon, W.B.: A many threaded CUDA interpreter for genetic programming. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 146–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Langdon, W.B., Harman, M. (2014). Genetically Improved CUDA C++ Software. In: Nicolau, M., et al. Genetic Programming. EuroGP 2014. Lecture Notes in Computer Science, vol 8599. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44303-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44303-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44302-6

  • Online ISBN: 978-3-662-44303-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics