Skip to main content

Advertisement

Log in

Predicting the Compressive Strength of Pervious Cement Concrete based on Fast Genetic Programming Method

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The primary objective of this paper is to develop an appropriate predictive formula for the compressive strength of pervious concrete, which depends on its mixture. This will allow for the improvement of the proportioning procedure that considers both the target porosity and target compressive strength. To achieve this, an effective computational strategy is first constructed and investigated for the creation of simple and easily applicable symbolic regression functions within the Genetic Programming-based Symbolic Regression framework. Recent advancements in fast logical parallelism and model-based algorithms are also applied to perform calculations on a large quantity of examples, with the aim of finding the most suitable analytical solutions at a low computational cost. Next, to assess the effectiveness of this model in predicting the compressive strength of concrete in general, computations are carried out using the well-known Yeh's dataset on conventional concrete compressive strength. This dataset has been extensively studied using both "black-box" and "white-box" machine learning algorithms. The results reveal that more suitable formulas can be generated through this computational process, compared to several scenarios discussed in the literature. Furthermore, the model is extended to pervious concrete, based on the dataset of 164 samples of 28-day compressive strength collected from 14 different sources. The findings for pervious concrete exhibited high accuracy compared to the most effective black-box models and micromechanical/empirical models, with a coefficient of determination of approximately 0.9 for simple predictive equations, thereby supporting the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Constantinides, G.; Ulm, F.-J.: The effect of two types of CSH on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling. Cem. Concr. Res. 34, 67–80 (2004)

    Article  Google Scholar 

  2. Pichler, B.; Hellmich, C.: Upscaling quasi-brittle strength of cement paste and mortar: a multi-scale engineering mechanics model. Cem. Concr. Res. 41, 467–476 (2011). https://doi.org/10.1016/j.cemconres.2011.01.010

    Article  Google Scholar 

  3. Tran, B.-V.; Pham, D.-C.; Loc, M.-D.; Le, M.-C.: An adaptive approach for the chloride diffusivity of cement-based materials. Comput. Concr. 23, 145–153 (2019). https://doi.org/10.12989/cac.2019.23.2.145

    Article  Google Scholar 

  4. Tsivolas, E.; Gergidis, L.N.; Paipetis, A.S.: Multiscale modeling of extrinsic self healing GFRP materials. Modelling Simul. Mater. Sci. Eng. 31, 025002 (2022). https://doi.org/10.1088/1361-651X/acaa49

    Article  Google Scholar 

  5. Nunez, I.; Marani, A.; Flah, M.; Nehdi, M.L.: Estimating compressive strength of modern concrete mixtures using computational intelligence: a systematic review. Constr. Build. Mater. 310, 125279 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125279

    Article  Google Scholar 

  6. Nguyen, H.; Nguyen, N.-M.; Cao, M.-T.; Hoang, N.-D.; Tran, X.-L.: Prediction of long-term deflections of reinforced-concrete members using a novel swarm optimized extreme gradient boosting machine. Eng. Comput. 38, 1255–1267 (2022). https://doi.org/10.1007/s00366-020-01260-z

    Article  Google Scholar 

  7. Behnood, A.; Golafshani, E.M.: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J. Clean. Prod. 202, 54–64 (2018). https://doi.org/10.1016/j.jclepro.2018.08.065

    Article  Google Scholar 

  8. Moghaddas, S.A.; Nekoei, M.; Mohammadi Golafshani, E.; Nehdi, M.; Arashpour, M.: Modeling carbonation depth of recycled aggregate concrete using novel automatic regression technique. J. Clean. Prod. 371, 133522 (2022). https://doi.org/10.1016/j.jclepro.2022.133522

    Article  Google Scholar 

  9. Özdemir, E.: A new predictive model for uniaxial compressive strength of rock using machine learning method: artificial intelligence-based age-layered population structure genetic programming (ALPS-GP). Arab. J. Sci. Eng. 47, 629–639 (2022). https://doi.org/10.1007/s13369-021-05761-x

    Article  Google Scholar 

  10. Duffy, J.; Engle-Warnick, J.: Using Symbolic Regression to Infer Strategies from Experimental Data. In: Chen, S.-H. (Ed.) Evolutionary Computation in Economics and Finance, pp. 61–82. Physica-Verlag HD, Heidelberg (2002)

    Chapter  Google Scholar 

  11. La Cava, W.; Orzechowski, P.; Burlacu, B.; de França, F.O.; Virgolin, M.; Jin, Y.; Kommenda, M.; Moore, J.H.: Contemporary Symbolic Regression Methods and their Relative Performance, http://arxiv.org/abs/2107.14351, (2021)

  12. Wang, Y.; Wagner, N.; Rondinelli, J.M.: Symbolic regression in materials science. MRS Commun. 9, 793–805 (2019). https://doi.org/10.1557/mrc.2019.85

    Article  Google Scholar 

  13. Chen, L.: Study of applying macroevolutionary genetic programming to concrete strength estimation. J. Comput. Civ. Eng. 17, 290–294 (2003). https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(290)

    Article  Google Scholar 

  14. Lim, C.-H.; Yoon, Y.-S.; Kim, J.-H.: Genetic algorithm in mix proportioning of high-performance concrete. Cem. Concr. Res. 34, 409–420 (2004). https://doi.org/10.1016/j.cemconres.2003.08.018

    Article  Google Scholar 

  15. Gholampour, A.; Gandomi, A.H.; Ozbakkaloglu, T.: New formulations for mechanical properties of recycled aggregate concrete using gene expression programming. Constr. Build. Mater. 130, 122–145 (2017). https://doi.org/10.1016/j.conbuildmat.2016.10.114

    Article  Google Scholar 

  16. Ferguson, B.: Porous Pavements. CRC Press (2005)

    Book  Google Scholar 

  17. ACI Committee 522: 522R-10: Report on Pervious Concrete. Technical Documents. (2010)

  18. Xie, X.; Zhang, T.; Wang, C.; Yang, Y.; Bogush, A.; Khayrulina, E.; Huang, Z.; Wei, J.; Yu, Q.: Mixture proportion design of pervious concrete based on the relationships between fundamental properties and skeleton structures. Cement Concr. Compos. 113, 103693 (2020). https://doi.org/10.1016/j.cemconcomp.2020.103693

    Article  Google Scholar 

  19. Vu, V.-H.; Tran, B.-V.; Le, B.-A.; Nguyen, H.-Q.: Prediction of the relationship between strength and porosity of pervious concrete: a micromechanical investigation. Mech. Res. Commun. 118, 103791 (2021). https://doi.org/10.1016/j.mechrescom.2021.103791

    Article  Google Scholar 

  20. Yeh, I.-C.: Modeling of strength of high-performance concrete using artificial neural networks. Cem. Concr. Res. 28, 1797–1808 (1998). https://doi.org/10.1016/S0008-8846(98)00165-3

    Article  Google Scholar 

  21. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. Bradford Books, Cambridge, MA, USA (1992)

    Google Scholar 

  22. Poli, R.; Langdon, W.; Mcphee, N.: A Field Guide to Genetic Programming. Published via \texttt{http://lulu.com} and freely available at \texttt{http://www.gp-field-guide.org.uk (2008)

  23. Affenzeller, M.; Wagner, S.; Winkler, S.; Beham, A.: Genetic algorithms and genetic programming: modern concepts and practical applications. CRC Press (2009)

    Book  Google Scholar 

  24. Huang, Z.; Zhong, J.; Feng, L.; Mei, Y.; Cai, W.: A fast parallel genetic programming framework with adaptively weighted primitives for symbolic regression. Soft. Comput. 24, 7523–7539 (2020). https://doi.org/10.1007/s00500-019-04379-4

    Article  Google Scholar 

  25. Burlacu, B.; Kronberger, G.; Kommenda, M.: Operon C++: an efficient genetic programming framework for symbolic regression. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion. pp. 1562–1570. Association for Computing Machinery, New York, NY, USA (2020)

  26. Virgolin, M.; Alderliesten, T.; Witteveen, C.; Bosman, P.A.N.: Improving model-based genetic programming for symbolic regression of small expressions. Evol. Comput. 29, 211–237 (2021). https://doi.org/10.1162/evco_a_00278

    Article  Google Scholar 

  27. Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling. In: Ryan, C.; Soule, T.; Keijzer, M.; Tsang, E.; Poli, R.; Costa, E. (Eds.) Genetic Programming, pp. 70–82. Springer, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

  28. Nguyen-Sy, T.; Vu, M.-N.; Tran-Le, A.-D.; Tran, B.-V.; Nguyen, T.-T.-N.; Nguyen, T.-T.: Studying petrophysical properties of micritic limestones using machine learning methods. J. Appl. Geophys. (2020). https://doi.org/10.1016/j.jappgeo.2020.104226

    Article  Google Scholar 

  29. Mousavi, S.M.; Gandomi, A.H.; Alavi, A.H.; Vesalimahmood, M.: Modeling of compressive strength of HPC mixes using a combined algorithm of genetic programming and orthogonal least squares. Struct. Eng. Mech. 36, 225–241 (2010). https://doi.org/10.12989/sem.2010.36.2.225

    Article  Google Scholar 

  30. Mousavi, S.M.; Aminian, P.; Gandomi, A.H.; Alavi, A.H.; Bolandi, H.: A new predictive model for compressive strength of HPC using gene expression programming. Adv. Eng. Softw. 45, 105–114 (2012). https://doi.org/10.1016/j.advengsoft.2011.09.014

    Article  Google Scholar 

  31. Trevor Stevens: gplearn Documention v0.4.1, (2022)

  32. Pala, M.; Özbay, E.; Öztaş, A.; Yuce, M.I.: Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks. Constr. Build. Mater. 21, 384–394 (2007). https://doi.org/10.1016/j.conbuildmat.2005.08.009

    Article  Google Scholar 

  33. Videla, C.; Gaedicke, C.: Modeling portland blast-furnace slag cement high-performance concrete. MJ. 101, 365–375 (2004). https://doi.org/10.14359/13422

    Article  Google Scholar 

  34. Wang, K.; Schaefer, V.; Kevern, J.: Development of Mix Proportion for Functional and Durable Pervious Concrete. In: Proceedings of the NRMCA concrete technology forum: Focus on Pervious Concrete 1–12, May 24–25, Nashville, TN, USA (2006)

  35. Kevern, J.; Schaefer, V.; Wang, K.; Suleiman, M.: Pervious concrete mixture proportions for improved freeze-thaw durability. J. ASTM Int. 5, 1–12 (2008). https://doi.org/10.1520/JAI101320

    Article  Google Scholar 

  36. Lian, C.; Zhuge, Y.; Beecham, S.: The relationship between porosity and strength for porous concrete. Constr. Build. Mater. 25, 4294–4298 (2011). https://doi.org/10.1016/j.conbuildmat.2011.05.005

    Article  Google Scholar 

  37. Shu, X.; Huang, B.; Wu, H.; Dong, Q.; Burdette, E.G.: Performance comparison of laboratory and field produced pervious concrete mixtures. Constr. Build. Mater. 25, 3187–3192 (2011). https://doi.org/10.1016/j.conbuildmat.2011.03.002

    Article  Google Scholar 

  38. Sumanasooriya, M.S.; Neithalath, N.: Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction. Cement Concr. Compos. 33, 778–787 (2011). https://doi.org/10.1016/j.cemconcomp.2011.06.002

    Article  Google Scholar 

  39. Asadi, S.; Hassan, M.M.; Kevern, J.T.; Rupnow, T.D.: Development of photocatalytic pervious concrete pavement for air and storm water improvements. Transp. Res. Rec. 2290, 161–167 (2012). https://doi.org/10.3141/2290-21

    Article  Google Scholar 

  40. Ibrahim, A.; Mahmoud, E.; Yamin, M.; Patibandla, V.C.: Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Constr. Build. Mater. 50, 524–529 (2014). https://doi.org/10.1016/j.conbuildmat.2013.09.022

    Article  Google Scholar 

  41. Zhong, R.; Wille, K.: Compression response of normal and high strength pervious concrete. Constr. Build. Mater. 109, 177–187 (2016). https://doi.org/10.1016/j.conbuildmat.2016.01.051

    Article  Google Scholar 

  42. Elango, K.S.; Revathi, V.: Fal-G binder pervious concrete. Constr. Build. Mater. 140, 91–99 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.086

    Article  Google Scholar 

  43. Rezaei Lori, A.; Bayat, A.; Azimi, A.: Influence of the replacement of fine copper slag aggregate on physical properties and abrasion resistance of pervious concrete. Road Mater. Pavement Des. (2019). https://doi.org/10.1080/14680629.2019.1648311

    Article  Google Scholar 

  44. Saboo, N.: Effect of fly ash and metakaolin on pervious concrete properties. Construction and Building Materials. 7 (2019)

  45. Wang, H.; Li, H.; Liang, X.; Zhou, H.; Xie, N.; Dai, Z.: Investigation on the mechanical properties and environmental impacts of pervious concrete containing fly ash based on the cement-aggregate ratio. Constr. Build. Mater. 202, 387–395 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.044

    Article  Google Scholar 

  46. Yeih, W.; Chang, J.J.: The influences of cement type and curing condition on properties of pervious concrete made with electric arc furnace slag as aggregates. Constr. Build. Mater. 197, 813–820 (2019). https://doi.org/10.1016/j.conbuildmat.2018.08.178

    Article  Google Scholar 

  47. Zhou, H.; Li, H.; Abdelhady, A.; Liang, X.; Wang, H.; Yang, B.: Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning. Constr. Build. Mater. 212, 130–139 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.310

    Article  Google Scholar 

  48. Gu, Y.; Zhang, D.; Bao, Z.: A new data-driven predictor, PSO-XGBoost, used for permeability of tight sandstone reservoirs: a case study of member of chang 4+5, western Jiyuan Oilfield, Ordos Basin. J. Petrol. Sci. Eng. 199, 108350 (2021). https://doi.org/10.1016/j.petrol.2021.108350

    Article  Google Scholar 

  49. Géron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Beijing ; Boston (2017)

Download references

Acknowledgements

This research is funded by Ministry of Education and Training under Grand Number B2023-XDA-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Viet Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix

Appendix

The data for pervious concrete is available and attached to the paper.

No.

Sand mass

Minimum coarse aggregate size

Water-to-cement ratio

aggregate-to cement ratio

Effective porosity

compressive strength

Reference

Unit

kg/m3

mm

%

MPa

 

Notation

MS

AS

WC

AC

EP

CS

 

1

340

4.75

0.3

3.35

20.44

14.1

[43]

2

340

4.75

0.3

3.63

21.42

15

3

340

4.75

0.3

3.92

21.98

15

4

340

4.75

0.3

4.06

22.23

16.3

5

340

4.75

0.3

4.2

22.42

18.4

6

340

4.75

0.3

4.48

22.51

18

7

340

4.75

0.3

4.76

22.77

17.2

8

0

4.75

0.33

4.99

34

3.9

[44]

9

0

4.75

0.33

4.99

31.5

4.5

10

0

4.75

0.31

5.56

25.7

10.9

[45]

11

0

2.36

0.31

5.56

25.6

15.2

12

0

2.36

0.31

5.56

24.7

16.5

13

0

2.36

0.31

5.56

25.1

13.5

14

0

4.75

0.31

5

25.1

13.9

15

0

2.36

0.31

5

23.7

16.3

16

0

2.36

0.31

5

23.1

17.9

17

0

2.36

0.31

5

24.2

19.7

18

0

4.75

0.31

4.55

23.9

19.1

19

0

2.36

0.31

4.55

22.4

20.1

20

0

2.36

0.31

4.55

23.1

21.6

21

0

2.36

0.31

4.55

24.3

22.2

22

0

4.75

0.31

4.17

22.5

18.1

23

0

2.36

0.31

4.17

21.2

19.3

24

0

2.36

0.31

4.17

20.5

21.5

25

0

2.36

0.31

4.17

21.3

20.4

26

0

4.75

0.31

3.85

20.3

14.7

27

0

2.36

0.31

3.85

20.2

16.6

28

0

2.36

0.31

3.85

19.9

19.5

29

0

2.36

0.31

3.85

18.7

18.2

30

0

2.36

0.31

4.55

23.3

22.2

31

0

2.36

0.31

3.7

17.9

25.2

[47]

32

0

2.36

0.31

4

18.7

24.7

33

0

2.36

0.31

4.35

21.1

19.4

34

0

4.75

0.31

4.35

21.7

27.6

35

0

4.75

0.31

4.76

24

24.1

36

0

4.75

0.31

5.27

27.3

20.3

37

0

4.8

0.35

3.7

18.64

19.73

[46]

38

0

4.8

0.35

2.88

9.2

24.72

39

0

4.8

0.35

3.74

16.41

19.38

40

0

4.8

0.35

2.91

8.45

26.73

41

0

4.8

0.22

2.32

21.31

10.02

42

0

6.3

0.35

3.31

14.8

17.3

[42]

43

0

8

0.35

3.3

15.6

15.3

44

0

10

0.35

3.3

17.8

13.5

45

0

12.5

0.35

3.3

19.5

11

46

0

1.19

0.45

2.5

16.28

23.4

[41]

47

0

1.19

0.45

3

24.16

14.4

48

0

1.19

0.45

3.5

28.37

10.6

49

0

2.38

0.45

2.5

17.05

22.9

50

0

2.38

0.45

3

24.56

12.9

51

0

2.38

0.45

3.5

29.41

8.6

52

0

4.75

0.45

2.5

20.4

18.1

53

0

4.75

0.45

3

25.82

11.3

54

0

4.75

0.45

3.5

29.57

9.1

55

0

1.19

0.55

2.5

13.63

23.2

56

0

1.19

0.55

3

23.88

12.4

57

0

1.19

0.55

3.5

29.11

8.4

58

0

2.38

0.55

2.5

18.75

17.6

59

0

2.38

0.55

3

24.9

11.5

60

0

2.38

0.55

3.5

29.59

7.5

61

0

4.75

0.55

2.5

20.49

16

62

0

4.75

0.55

3

25.89

10.5

63

0

4.75

0.55

3.5

28.27

8.8

64

0

4.5

0.35

8

35

2.21

[40]

65

0

9.5

0.35

8

38

2.45

66

0

12.5

0.35

8

38

3.22

67

0

4.5

0.35

8

42

2.42

68

0

4.5

0.35

8

35

3.53

69

0

9.5

0.35

8

38

2.8

70

0

9.5

0.35

8

39

1.79

71

0

9.5

0.35

8

35

3.92

72

0

12.5

0.35

8

39

2.43

73

0

12.5

0.35

8

36

3.67

74

0

9.5

0.35

8

39

1.91

75

0

9.5

0.35

8

35

3.59

76

0

9.5

0.35

12

40

1.16

77

0

12.5

0.35

12

40

1.06

78

0

9.5

0.35

12

38

1.83

79

0

9.5

0.35

7.2

35

4.76

80

0

12.5

0.35

7.2

37

3.07

81

0

9.5

0.35

7.2

36

3.45

82

0

9.5

0.35

10

38

1.71

83

0

12.5

0.35

10

38

1.67

84

0

9.5

0.35

10

38

1.71

85

0

9.5

0.35

6

30

6.95

86

0

12.5

0.35

6

32

5.14

87

0

9.5

0.35

6

31

6.45

88

180

2.36

0.23

4.37

23

13.7

[39]

89

170

2.36

0.24

4.38

27

13.1

90

160

2.36

0.23

4.39

31

8.8

91

0

2.36

0.32

2.28

18.3

19.89

[38]

92

0

2.36

0.33

2.58

21.1

14.65

93

0

2.36

0.33

3.13

25.5

9.66

94

0

4.75

0.32

2.24

16.9

20.6

95

0

4.75

0.33

2.61

22.3

15.89

96

0

4.75

0.33

3.09

25.6

9.3

97

0

9.5

0.32

2.39

19.5

19.13

98

0

9.5

0.33

2.67

23.8

15.66

99

0

9.5

0.33

3.28

24.6

7.55

100

0

2.36

0.32

4.98

20.2

12.51

101

0

4.75

0.32

4.67

19.5

17.61

102

0

4.75

0.32

5.5

24.2

13.2

103

0

4.75

0.33

7.65

28.9

7.7

104

0

9.5

0.32

4.85

17.8

17.01

105

0

9.5

0.32

5.74

24.2

12.24

106

0

9.5

0.33

8.17

26.4

6.9

107

107

1.18

0.26

3.74

26

22

[37]

108

109

1.18

0.36

3.69

23

25

109

109

1.18

0.26

3.69

18.5

30

110

100

2.36

0.25

4.14

28

17

111

0

6.7

0.36

4.55

21.442

12

[36]

112

0

6.7

0.36

4.55

26.1396

12

113

0

6.7

0.36

4.55

24.7444

11.5

114

0

4.75

0.36

4.55

19.0868

17.5

115

0

4.75

0.36

4.55

22.9524

14.5

116

0

4.75

0.36

4.55

21.0196

14.5

117

0

6.7

0.36

4.55

17.154

15.5

118

0

6.7

0.36

4.55

11.5476

19.5

119

0

6.7

0.36

4.55

18.9332

11.5

120

0

4.75

0.36

4.55

18.3188

15.5

121

0

4.75

0.36

4.55

20.1876

13

122

0

4.75

0.36

4.55

21.122

13.5

123

0

4.75

0.36

4.55

17.922

17

124

0

4.75

0.36

4.55

17.922

16.5

125

0

4.75

0.36

4.55

19.8164

13

126

0

6.7

0.36

4.55

21.57

15

127

0

6.7

0.36

4.55

20.0468

17

128

0

6.7

0.36

4.55

20.7636

15.5

129

0

4.75

0.36

4.55

18.8692

17

130

0

4.75

0.36

4.55

16.0276

22.5

131

0

4.75

0.36

4.55

18.8692

17.5

132

242.41

4.75

0.38

4

11.2788

30.5

133

240.07

4.75

0.38

4

12.226

31.5

134

237.74

4.75

0.38

4

13.1732

28

135

247.87

4.75

0.36

4

9.3716

34.5

136

247.87

4.75

0.36

4

9.3716

32

137

250.21

4.75

0.36

4

8.4244

33

138

262.75

4.75

0.34

4

3.6756

49

139

262.75

4.75

0.34

4

3.6756

46.5

140

262.75

4.75

0.34

4

3.6756

43

141

254.20

4.75

0.32

4

7.4644

39.5

142

258.90

4.75

0.32

4

5.57

42

143

251.84

4.75

0.32

4

8.4116

40

144

257.39

4.75

0.3

4

6.5172

41

145

257.39

4.75

0.3

4

6.5172

41

146

252.67

4.75

0.3

4

8.4116

39

147

252.67

4.75

0.3

4

8.4116

42

148

252.67

4.75

0.3

4

8.4116

44

149

259.75

4.75

0.3

4

5.57

43

150

232.18

4.75

0.28

4

16.9492

23

151

232.18

4.75

0.28

4

16.9492

26.5

152

227.44

4.75

0.28

4

18.8436

23.5

153

0

4.75

0.27

4.67

25.3

17.3

[35]

154

104

4.75

0.27

4.37

18.3

25.2

155

0

4.75

0.27

4.5

25.3

17.3

[34]

156

0

9

0.27

4.5

33.6

11.9

157

100

9

0.22

4.81

20.2

20.2

158

100

4.75

0.27

4.38

18.3

25.2

159

100

4.75

0.22

4.81

19

23.1

160

100

4.75

0.21

4.61

26

9

161

100

4.75

0.24

5.15

14.1

18.9

162

0

4.75

0.27

4.5

18.9

21.4

163

0

4.75

0.27

4.5

22.1

21.4

164

100

4.75

0.27

4.38

19

26.5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, BA., Tran, BV., Vu, TS. et al. Predicting the Compressive Strength of Pervious Cement Concrete based on Fast Genetic Programming Method. Arab J Sci Eng 49, 5487–5504 (2024). https://doi.org/10.1007/s13369-023-08396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08396-2

Keywords

Navigation