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Abstract

This study details a series of investigations examining a recently introduced

form of automatic programming called Social Programming. The Grammatical

Swarm algorithm is a form of Social Programming as it uses Particle Swarm

Optimisation, a social swarm algorithm, for the automatic construction of com-

puter programs for the optimisation of continuous, non-linear problems.

An investigation into the performance effects of two different quality Pseudo-

Random Number Generators (PRNG) on the Grammatical Swarm algorithm was

examined. The results demonstrate that the choice of PRNG does, in fact, have

a small effect of the performance of the Grammatical Swarm, with the more so-

phisticated PRNG producing better results on two of the four problems analysed.

An investigations was conducted into the effects of increasing the size of the

particle representations of the Grammatical Swarm algorithm, such that the

hard-length vector constraint of all particles in the swarm was doubled from

100 to 200. The results demonstrated that this leads to a significant gain in

performance.

This thesis also introduces a new variable-length form of the Grammatical Swarm

algorithm. Thus, this can be considered a proof of concept study. It examines

the possibility of constructing programs using a particles representations which

are variable in length and it is referred to as the Variable-Length Grammatical
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Swarm. This newly developed algorithm extends earlier work on the fixed-length

incarnation of Grammatical Swarm, where each individual represents choices of

program construction rules, where these rules are specified using a Backus-Naur

Form grammar. The results demonstrate that is possible to successfully gener-

ate programs programs using a variable-length Particle Swarm Algorithm. This

investigation also examines the performance effects of increasing the initiali-

sation size of the variable-length particles. The results demonstrate that the

performance of the Variable-Length Grammatical Swarm can be increased by

doubling the potential size of the particle representations.

Furthermore, the evolution of size in the particle representations is examined.

This investigation was conduced in an effort to determine if the the variable-

length particles suffered from bloat, which is a common problem in other Evolu-

tionary Algorithms that use variable-length vector representations. No evidence

of bloat was found.

Based on an overall comparative review of the both the fixed-length and variable-

length forms of Grammatical Swarm it is recommended that the simpler fixed-

length Grammatical Swarm with particle representation sizes of 200 codons in

length be adopted.

Supervisor: Dr. Michael O’Neill
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‘Would you tell me, please, which way I ought to go from here?’

‘That depends a good deal on where you want to get to,’ said the Cat.

‘I don’t much care where —’ said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat.

— Alice’s Adventures in Wonderland, by Lewis Carroll (1865)
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Chapter 1

Introduction

One model of social learning that has attracted interest in recent years is

drawn from a swarm metaphor. Two popular variants of swarm models

exist, those inspired by studies of social insects such as ant colonies, and

those inspired by studies of the flocking behaviour of birds and fish. This

study focuses on the latter. The essence of these systems is that they exhibit

flexibility, robustness and self-organization [2]. Although the systems can

exhibit remarkable coordination of activities between individuals, this coor-

dination does not stem from a ‘centre of control’ or a ‘directed’ intelligence,

rather it is self-organising and emergent. Social ‘swarm’ researchers have

emphasized the role of social learning processes in these models [17, 16]. In

essence, social behaviour helps individuals to adapt to their environment, as

it ensures that they obtain access to more information than that captured

by their own senses.

This thesis details a number of investigations into a recently developed au-

tomatic program construction algorithm based on a Particle Swarm learning

model, called Grammatical Swarm (GS) [38]. In this GS methodology, each

particle or real-valued vector, represents choices of program construction

rules specified as production rules of a Backus-Naur Form grammar.
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This approach is grounded in the linear Genetic Programming representa-

tion adopted in Grammatical Evolution (GE) [42], which uses grammars

to guide the construction of syntactically correct programs, specified by

variable-length genotypic binary or integer strings. The search heuristic

adopted with GE is a variable-length Genetic Algorithm. A variable-length

representation is adopted as the size of the program is not known a-priori

and must itself be determined automatically. In the GS technique presented,

a particle’s real-valued vector is used in the same manner as the genotypic

binary string in GE. This results in a new form of automatic programming

based on social learning, which we dub Social Programming, or Swarm Pro-

gramming. It is interesting to note that this approach is completely devoid

of any crossover operator characteristic of Genetic Programming.

There are three primary investigations documented in this thesis; the first of

these investigations attempts to replicate the results produced in the study

by [38] with the implementation of a new GS algorithm i.e. it aims to re-

produce a version the GS which is constructed so that it is identical in every

aspect to the version presented in the GS proof of concept paper.

The second investigation performs a study into the effects of different quality

Pseudo-Random Number Generators (PRNGs) on the GS.

The third investigation, introduces a novel variable-length Particle Swarm

Algorithm for the automated construction of a program using a Social Pro-

gramming model. The performance of this variable-length Particle Swarm

approach is compared to its fixed-length counterpart on a number of bench-

mark problems.
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1.1 Objectives

• To develop a GS algorithm identical in construction to that of the

algorithm presented in the proof of concept paper. This replicated GS

implementation will be constructed using an equivalent PRNG and

identical values to those used in the original for each of the various

algorithm settings. This aims to verify that both implementations

are equivalent, thus ensuring that the investigations conducted in this

study produce valid results.

• To develop two implementations of the GS using a different quality

PRNGs for the production of random numbers where necessary in

each, in order to determine if different quality PRNGs effect the per-

formance of a GS algorithm.

• To investigate if an increase in the size of the fixed-length vector rep-

resentations effects the performance of the algorithm, in this case dou-

bling the fixed-length vector size.

• To develop a novel version of the Grammatical Swarm algorithm through

modification of the structure primary components of the Particle Swarm

learning algorithm by means of incorporating variable-length capabil-

ities into the particle vector representations.

• To show how particle vector size evolves over the course of simulations

in order to determine (1) if the vectors tend to converge at a certain

size and (2) if particle bloat is an issue in the variable-length form of

GS.

• To investigate if an increase in the size of the variable-length vector

representations effects the performance of the Variable-Length GS al-

gorithm i.e. the doubling of the potential size of a variable-length

vector.
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1.2 Methodology

This thesis builds on the work of existing algorithms. The original algo-

rithms are presented and discussed firstly in terms of their background and

composition and this is followed by a thorough description of the workings

of the algorithms, accompanied with various implementation details and

mathematical formula where necessary. This information is also reinforced

by example and with the aid of diagrams.

The various investigations performed in this thesis were empirically anal-

ysed using four benchmark functions. The results obtained from the various

experiments conducted are, in the majority of cases, presented in the form

of graph plots and the results are generally summarised in tabular form to

facilitate discussion.

Due to the stochastic nature of the population-based evolutionary experi-

ments each experiment conducted were simulated exactly 100 times and the

mean values over all the runs were calculated to ensure accuracy of the re-

sults.

1.3 Contributions

The following provides a list of the primary contributions of the thesis:

• The verification of the results in the original GS implementation pre-

sented in [38].

• The discovery that a poorer quality PRNG does in fact degrade the

performance of the GS algorithm.

• The discovery that an increase in the size of the fixed-length vector
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representations results in a significant improvement in performance for

a number of different optimisation problems.

• Another contribution that this thesis offers is the development of a

novel Variable-Length GS algorithm. The study demonstrates the fea-

sibility of successfully generating computer programs using a variable-

length form of the Grammatical Swarm algorithm on a diverse selection

of optimisation problems. The study found that that the conventional

bounded GS outperforms the Variable-Length GS, however it must

be stressed that future investigations may find in the variable-length

favour.

• An analysis of the behaviour of the interchangeable nature of the size

of the vector representations throughout the course of the simulation

on tacking the various problems.

• The discovery that an increase in the implementation size of the Variable-

Length GS vector representations results in a significant improvement

in performance for a number of different optimisation problems.

1.4 Overview of the Thesis

Chapter 2 provides a review of the scientific background of the thesis.

Firstly it introduces the concept of optimisation. This is followed by an

overview of the Evolutionary Computation methodology, presenting a ded-

icated explanation to each of the following traditional population-based

search strategies, called Evolutionary Algorithms(EA): Evolutionary Strate-

gies(ES), Genetic Algorithms(GA), Genetic Programming(GP) and Evolu-

tionary Programming(EP). This is followed by a detailed description of an-

other EA called Grammatical Evolution. GE is a novel EC method that

can be used to produce computer programs or solutions in an arbitrary lan-

guage. A description of the algorithms workings and its parallels with the
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workings of biological systems found in living creatures in nature are high-

lighted. Finally, the Chapter presents a description of another relatively new

optimisation method that is based on a social-psychological metaphor called

Particle Swarm Optimisation. Note that an emphasis is given to both the

GE and PSO algorithms as these form the basis of the work presented in

Chapter 3.

Chapter 3, entitled “Social Programming” provides an overview of the

Grammatical Swarm (GS) algorithm. GS is a form of Swarm/Social Pro-

gramming and it is a hybrid algorithm consisting of a Particle Swarm learn-

ing algorithm coupled to GE which providing a method for the automatic

generation of computer programs. A detailed description of the algorithm

is provided by sectioning the algorithm into its various components and

presenting an example program generation walkthrough. Next, four opti-

mization problems that are considered benchmark standards in EC field are

introduced. These problems were tackled by the various GS experiments

presented in the remainder of the thesis. The final section of the Chapter

documents the first of these experiments which had the objective of verifying

the GS results presented of the original proof of concept paper.

Chapter 4 examines the performance effects of different quality Pseudo-

Random Number Generators (PRNG) on the GS algorithm. An introduc-

tion to the principles of randomness focusing on the difficulty of producing

numbers that are truly random using determinist method. Next, two differ-

ent quality PRNGs are described, the first is the standard C/C++ rand()

which is commonly described as being weak in the literature. The second

presents an implementation of a leading PRNG in the scientific community

called the Mersenne Twister. It has proven to be a robust and stringent

method for producing random numbers and it passes all the various tests



1.4. Overview of the Thesis 7

for randomness. Furthermore, the results of a comparative experiment on

the effects of two GS algorithms are presented, with each implemented using

one of the aforementioned PRNGs. The Chapter concludes with a discussion

of the experimental findings.

Chapter 5 details the researcher’s novel implementation of a Variable-

Length GS algorithm. Firstly, the results of an investigation conducted into

the effects of modifying the canonical fixed-length GS are presented. This

experiment involved increasing the vector-length of the population of particle

representations to double the original size. This is followed by an overview

of the Variable-Length GS, which outlines its implementation details and

draws a particular emphasis to four implementation strategies which were

necessary to incorporate variable-length particle dynamics in the new al-

gorithm. The remainder of the Chapter documents the proof of concept

experiments each presented in the form of comparative study between the

various strategy implementations. They are listed as follows:

• An investigation into the performance effects of four different Variable-

Length GS implementations.

• An investigation into the performance effects of using a Variable-

Length GS implemented with particles that are initialised so that they

can take on a potential vector size of double that of the size of the par-

ticles in the first Variable-Length GS implementation.

• A comparative analysis of the fixed-length and variable-length forms

of GS is presented.

• An investigation is conducted into the evolution of particle size in each

of the Variable-Length GS implementations, in an effort to obtain

further information about the effects of the various implementation

strategies.
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The final section presents a discussion of the various experiments docu-

mented in the Chapter. In particular, it emphasises the performance of the

novel Variable-Length GS incarnation in comparison to the canonical fixed-

length (bounded) GS.

Chapter 6, presents a summary of the Thesis, focusing on the findings of

the various investigations documented in Chapters 2-4. Finally, some topics

that may be worthy of future research are discussed.

A Bibliography and an Index of the important terms, names, formula

and various symbols used throughout the thesis is given at the end of this

document.



Chapter 2

Scientific Background

This chapter discusses the scientific background of the thesis. It was com-

piled following an exhaustive search of the available literature. It aims to equip

the reader with a sufficient grounding of the Evolutionary Computation (EC)

methodology fundamentals. It gives a detailed description of the methodologies

primary techniques. In particular, an emphasis is geared towards the Grammati-

cal Evolution (GE) evolutionary algorithm and the Particle Swarm Optimisation

(PSO) model. Overall, it serves as an introduction to Grammatical Swarm (GS)

algorithm which is presented in the following Chapter entitled Social Program-

ming. The GS algorithm constitutes a Particle Swarm algorithm coupled to a

GE evolutionary algorithm, thus justifying the chapters emphasis on both of

these algorithms.

2.1 Evolutionary Computation

In the late 1850’s, Charles Darwin published a book entitled The Origin of

Species [7] which introduced the modern theory of evolution through natu-

ral selection. His book was very influential resulting in the popularisation of

his theory which has been accepted as the dominant scientific explanation

of diversification in nature. Natural selection is the fundamental concept
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underlying his theory of evolution . This is a biological process that affects

the inheritance of individual traits from generation to generation. It results

in the modification of an entire population over time such that individuals

in successive generations gradually adapt to their environment.

About a century later, a number of methods were designed independently by

various computer scientists, that simulated the principles of Darwinian evo-

lution and natural selection inside a computer. These Evolutionary Compu-

tation simulations, more commonly referred to as Evolutionary Algorithms

(EAs) have since grown in popularity. EAs are powerful, efficient and adap-

tive search mechanisms that have been used with much success for a variety

of applications such as, machine learning, design, classification, automatic

program generation, etc. They have proved to be particularly successful

for solving combinatorial optimisation problems , in most cases, achieving

better results than the more conventional methods.

The following section will present some of the core EAs that are in existence.

Firstly, an introduction is provided in the form of an overview of the history

of the core EAs. This is followed by a formal description of a generic EA.

Finally, the section is concluded with a more detailed description of the core

EAs.

2.1.1 Evolutionary Algorithms

History of Evolutionary Algorithms

The most successful of the Evolutionary Algorithms (EAs) include Evo-

lutionary Strategies (ES), Evolutionary Programming (EP), Genetic Algo-

rithms (GAs) and Genetic Programming (GP). One of the first EA was

introduced in 1973 by Ingo Rechenberg [46]. He developed the ES and his

algorithm was primarily used for numerical optimisation. Their simulations
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focused on the propagation of behaviour traits using selection and mutation

in an effort to find an optimal solution to a given problem. Shortly after-

wards, Laurence Fogel , introduced EP which used a tree representation to

solve finite state machines. EP emphasized the propagation of behavioral

traits using the entire species in the evolutionary process, as opposed to the

ES technique where evolution was based at an individual level. In the mid

1970’s the Genetic Algorithm was introduced by John Holland [15] which

was similar to ES but with one primary difference; it used a crossover op-

erator to evolve individuals. Much later, in the year 1992 the concept of

Genetic Programming was popularised by John Koza [18]. The fundamen-

tals of GP were inspired by the EP technique and it was used to evolve

parse trees of statements. Recently, GP was extended with the introduction

of a grammatical approach to Genetic Programming, and this was called,

Grammatical Evolution(GE). GE will be discussed in detail in Section 2.4.

Formal Algorithm Representation

Formally, an EA can be generally characterised by Algorithm 1 shown below.

This algorithm was adapted from [1] and a full description of its workings

is presented in the paragraph which follows.

Algorithm 1: General Evolutionary Algorithm
1: t← 0
2: P (t)← initialise(µ)
3: F (t)← evaluate(P (t), µ)
4: repeat

P ′(t)←recombine(P (t),Θr)
P ′′(t)←mutate(P ′′(t),Θm

F (t)←evaluate(P ′′(t), γ)
P (t + 1)←select(P ′′(t), F (t), µ, Θs)
t←t+1
until Stopping Criterion;
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Given a population of µ individuals, P (t) = (x1(t), x2(t), ..., xµ) at time t,

where each individual represents a candidate solution to a given problem in

a search space S i.e. xi ∈ S. The fitness of each of these candidate solutions

is determined by applying a fitness function, f(x) to each individual in

P (t). Thus, the fitness of the entire population can be calculated from,

F (t) = (F (x1(t)), F (x2(t)), ..., F (xn(t))). The following explains what each

of the remaining strategy parameters represent:

µ , is the the total population size including parents and offspring.

γ , is the number of individuals in the current population.

Θr,Θm and Θs are the recombination, mutation and selection operators,

respectively. Each of these specify the probability of applying the

corresponding operator.

P ′′(t), denotes the new population, reduced to the size of the parent popu-

lation, µ.

This generic EA intends to show how the process of evolution is modeled

inside a computer. An EA like this can be used to find a solution to an

optimisation problem. The EA is initialised by scattering a population

of individuals(µ) throughout a conceptual landscape. An individual is a

structure that describes a potential solution to the given problem. This is

achieved by encoding the problem variable into the genome of each individ-

ual in the population. Each individual also has a fitness value which is a

measure of how close the individual is to the solution.

The population of individuals is evolved over a series of consecutive time

steps, each of which is called a generation . At each of these generations all

individuals in the population are subject to a fitness function, which serves

to rank each individual according to its worth in the particular environment.
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In other words, each individual is evaluated in terms of the solution that it

describes such that, if a good quality solution is derived then that individual

is assigned a fitness value that corresponds to the quality of that solution.

Once the fitness(F) of the entire population is computed the population is

evolved and this achieved by applying the following evolutionary operators

to the population.

Selection: In the context of an EA, selection, identified in the generic al-

gorithm by the selection operator,Θs is a combination of reproduction

and selection. Its aim in this context is the same as in natural selection

i.e. to adapt a population to its environment. The process removes

the weaker individuals from the population thus, allowing the more

successful ones to reproduce and consequently propagate their genetic

material onto subsequent generations. The expression ’survival of the

fittest’ sums up the selection operators intent. Selection is responsible

for determining which parents will breed, the number of offspring to

produce and selecting the individuals that are deemed to be too weak

to survive into the next generation. A significant number of selection

methods have been proposed over the years, the most prominent being

variants of tournament selection and roulette selection.

Recombination: Recombination is sometimes referred to as crossover. Crossover

is the process of selecting two or more parent individuals and combin-

ing them together to produce a new individual offspring with contains

some of the characteristics of both individuals. This introduces the

concept of a generation where if the parents generation is denoted by

N , the offspring’s generation is then N + 1 and N + 2 will denote

the next generation after that and so on for each subsequent genera-

tion. Typically, the parents are removed to allow the new offspring to

propagate their genetic material. The rate at which crossover occurs

is defined by the recombination operator probability, Θr. There are a
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number of variations of crossover to include Single Point, Two Point,

Uniform and Arithmetic. Each of these vary in the method in which

they select sequences of information from the parents, to recombine to

form an offspring.

Mutation: During the evolutionary process of an EA a populations individ-

uals can sometimes converge on a solution too early and as a results

the algorithm gets trapped at a local optimum, a situation which is

referred to as premature convergence. One of the primary causes of

premature convergence is the lack of diversity in the population i.e.

the individuals in the population are too similar to each other.

A consequence of using crossover is that it reduces the population

diversity. Recombination does ensure, that the fitter individuals ge-

netic material propagates down through the generations but this means

that in each of the subsequent generations the populations individuals

gradually becoming more alike which results in the loss of the unique

characteristics. This may be desirable in some ways as the unique

characteristics may weaken the individuals, however these character-

istics may be needed to improve or even solve the problem in later

generations.

This problem is resolved with the introduction of the mutation oper-

ator, Θm. The mutation operator increases genetic diversity in the

population, by randomly altering a small proportion(defined by Θm)

of an individuals genetic material to produce a new individual [33].

This promotes exploration of the landscape thus helping to reduce the

probability of premature convergence. Mutation is typically applied

after crossover and for best performance the mutation should be set

to a small value. Goldberg [10] maintains that best results are ob-

tained by setting the mutation rate to the inverse of the total number
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of chromosomes in the genes.

2.1.2 Evolutionary Strategies

ES were developed by Rechenberg [46]. The first ES which was developed

was called the (1+1) or the two-membered ES. This used the principle of

mutation to find a solution. In this implementation, normally distributed

mutations are applied to each parent in the population, resulting in the gen-

eration of one offspring per parent. The two-membered ES was eventually

extended with the introduction of the multi-membered or (m+1) strategy. In

this strategy, the number of parents were increased to m which necessitated

the use of a recombination operator.

There are two variants of this (m+1) strategy:

(µ, γ): This is called the comma strategy, where µ parents are used to gen-

erate γ offspring. In the population of the next generation, µ is selected only

from the offspring, γ. This may result in good solutions being removed, since

the parent population is destroyed but on the other hand, the diversity of

the population is increased as there is a greater quantity of γ.

(µ+γ): This is called the plus strategy, where µ parents are used to generate

γ offspring but in this case the µ parents and γ offspring are concatenated

to form a new population. The best individuals from both µ and γ are then

selected to be the parents for the next generations offspring.

There are two reproduction operators in ES, Gaussian mutation and inter-

mediate recombination. The former, which is used in the (1+1) strategy,

adds a random number generated from a Gaussian distribution to each el-

ement of an individuals vector (genome) to create a new individual. The

latter, is used in the situation where two parents are used to produce one

offspring i.e. (m+1). Elements from the vectors of both parents are added
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together and an average is calculated, element by element which are used in

turn to form an offspring.

2.2 Evolutionary Programming

In the 1960’s L.J. Fogel, introduced a new stochastic optimization strat-

egy, called Evolutionary Programing (EP). The book “Artificial Intelligence

Through Simulated Evolution [9]” which described the EP process received

considerable attention at the time and it is regarded as a landmark publi-

cation in the EC field. This book described the process of evolving a finite

state automata in order to predict a series of strings of symbols. EP is

similar to ES but with one primary difference, EP does not exchange (ge-

netic)material between individual representations i.e. it is completely devoid

of any recombination operators. Instead, a mutation operators is used. A

commonly used representation is that of a fixed-length real-valued vector.

The process of selection in a typical EP is described as follows:

1. Populate a conceptual landscape with random solutions.

2. Select the individuals in the population to be the parents and mutate

each to form N offspring.

3. Assess each member of the entire population based on its fitness. Use

some form of stochastic tournament to determine a number of survivor

solutions that will form the next generation.

2.3 Genetic Programming

Genetic Programming (GP) was conceived by J. Koza [18] in 1992 and it

was inspired by EP. In GP, individual representation are not in the form

of a fixed-length linear genome, instead an individual is represented as a

variable-sized tree of values. These trees are used to construct computer
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programs that once compiled and executed describe a potential solution to

the given problem. For example, the program which describes a simple

expression a-a*b is shown in the following tree structure:

a

ba

*

−−−

GP is similar to a GA in that, typically the same variety of reproduction

operators1 are used in both algorithms to evolve the population, however in

this case the operators are tailored so that they can be applied to the tree

representations. For example, a common crossover operator used in GP is

the subtree crossover . This allows for subtrees to be swapped between two

parent tree representations. The parents are selected based on their evalu-

ated fitness. The closure principle [20] ensures that on applying operators

to the populations will not result in an illegal tree structures by permitting

only structurally equivalent subtrees to be swapped.

2.3.1 Genetic Algorithms

The Genetic Algorithm (GA) was originally developed by Bremermann [3]

and later popularised by J.H. Holland [15] in the 1970’s. Hollands origi-

nal experiments investigated the effects of natural adaptation in stochastic

search algorithms which resulted in the development of the Schema [14].

Today, the GA is the most popular form of EC. The conventional GS uses a

fixed-length string of binary values called individuals to represent candidate

solutions. A population of these binary individuals are refined over genera-

tions through the use of various reproduction operators described in section
1Mutation is one exception to this as it is generally not used in GP.
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2.1.1. An individuals vector structure is commonly described as being anal-

ogous to that of the genome, with each element having the same purpose as

a gene of a biological organism.

Recombination occurs in the traditional binary string GA in the form of

bit-string crossover. This process involves selecting two parents(based on

evaluated fitness) , then selecting a crossover point and swapping sequences

of binary information(chromosomes) to produce two new offspring. Mu-

tation in the binary representation GA is typically implemented using the

bit-flipping method. As its name suggest, it simply inverts a bit in an indi-

vidual to form a new offspring. The parents are generally replaced by the

new offspring.

2.4 Grammatical Evolution

For many years, it has been possible, through the use of EAs, to generate

computer programs automatically (e.g.[18]). Although, there had been much

success, researchers, in their experiments, would generally develop some self-

tailored(bespoke) programming language to meet the needs of their partic-

ular problem. The fact that their experiments were bound to this specific

language had obvious limitations. These limitations were, however, eventu-

ally overcome with the introduction of Grammatical Evolution (GE).

GE is a system that is capable of automatically generating and evolving

computer programs in an arbitrary language. It is a relatively new addition

to the evolutionary computation methodology, devised by researchers [48, 41,

37, 43] at the University of Limerick over six years ago. Since its inception, it

has been successfully applied to problems in many different domains [5, 12,

34]most notably, it has enjoyed considerably success in Financial Modelling

[39] applications.
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It can be considered a form of grammar-based genetic programming.

GE is similar to GP in that both are capable of automatically generating

compilable programs. GP, as described previously in Section 2.3, uses parse

trees to represent a program. GE, however, does not employ the same tech-

nique, instead a Backus Naur Form (BNF) grammar is used to construct

programs that are represented as a linear genome. Therefore, GE can be

considered a form of grammar-based genetic programming.

The GE approach can be separated into two distinctive parts, 1) the search

algorithm and 2) the mapping process. A Genetic Algorithm (see Section

2.3.1) is used as the as the primary search mechanism in the conventional

GE. The mapping process consists of generating programs(solutions) by se-

lecting rules(mapping) from the BNF grammar. The selection of rules is

governed by the contents of the linear genome which is typically in the form

of 1-dimensional binary vector. The GA maintains a population of these lin-

ear genomes, evolving each using the crossover and mutation reproduction

operators. The contents of the linear genome and consequently the choice of

BNF rules that are selected is determined by its position in the GA search

space.

The following section describes the significance of the GE to the mapping

process evident in molecular biology. This is followed by a description of the

principles behind the BNF grammar notation. Finally a detailed overview

the mapping process of GE is presented, using an example to show how GE

can be used in the construction of a simple mathematical expression.

2.4.1 Biological System Metaphorical Approach

GE was derived largely from a biological metaphor and the workings of the

approach can be communicated effectively using this analogy. GE employs
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Figure 2.1: A comparison between GE approach and the molecular biological
process of transcription and translation.

a genotype-phenotype mapping similar to that of the molecular biological

processes of transcription and translation. The following is a comparison

between the steps involved in generating a program using a GE approach

and the biological steps involved in generating a phenotype in a genetic sys-

tem, as is found in all living organisms in nature. The diagram presented in

Figure 2.4 illustrates this.

It is evident that there is a direct analogy between the GE approach and the

process of creating a phenotype that occurs in a Biological System(BS). The

following paragraphs aims to reinforce the information presented in the dia-

gram above by giving a comparative description between the GE approach

and that of a BS. The diagram presented above in Figure 2.4 illustrates the

the direct analogy between the GE approach and the process evident in a

Biological System(BS). The following paragraph aims to reinforce the infor-

mation presented in the diagram above by given a comparative description

between the GE approach and that of a BS.
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1. Binary String/DNA:

BS - In nature, all types of plants, animals and even bacteria are com-

posed of cellular units. A cell is the basic unit of any living organ-

ism. All cellular forms of life need some mechanism to pass their

individual characteristics onto their offspring. This is achieved

by copying genetic material usually in the form of Deoxyribonu-

cleic acid (DNA) into every new cell produced by that organism.

DNA can be considered a blueprint for the individuality for a liv-

ing organism. The function of DNA is to generate proteins; which

are essential to the structure, function, growth and development

of cells. Thus, the life, growth and individual traits of a living

organism are all described by its DNA.

GE - The string of binary digits used to represent the genotype in GE

are functionally equivalent to that of DNA in a biological context.

DNA stores the genetic information that is used to determine the

creation of proteins. The binary string used in GE has the same

objective, as it also stores information that determines how a

program is to be constructed.

2. Integer String/RNA:

BS - Consider a DNA to be similar in structure to a ladder where

each rung of the ladder is called a nucleotide. There are four

types of nucleotides, Adenine(A), Tyrosine(T) , Guanine(G) and

Cytosine(C). A sequence of three rungs of the ladder(three nu-

cleotides) is called a codon(e.g ATC). These codons first need to

be transcribed into a slightly different format before it can be

used to generate a protein. In a process called transcription, a

cell synthesizes segments of DNA strands, called genes, into an

RNA polymer. There are three types of RNA named, rRNA ,
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tRNA and mRNA with the most significant being mRNA (mes-

senger RNA). The purpose of mRNA is to deliver the information

transcribed from the DNA to a cell organelle called a ribosome.

A ribosome can be considered as a protein production factory.

GE - The computational equivalent of transcription is achieved in more

simplistic manner than that of the biological process, described

above. In the GE binary string there are only two nucleotides,

namely, 1 and 0, unlike a BS where there are four such nucleotides

that constitute a DNA molecule. The binary string is sectioned

into groups of 8 nucleotides(bits) (e.g.1010101), which is also

called a codon and each of these (binary) codons is then repre-

sented in integer format.

3. Production Rules/Amino Acids:

BS - In the ribosome, the sequence of codons in the mRNA, is used to

specify the building blocks of proteins. These building blocks are

known as amino-acids. The sequence of codons on the mRNA

specifies the formation of amino acids in the protein that is to be

encoded. The particular arrangement of amino-acids makes up a

specific type of protein. Therefore, using this process, it possible

to produce any type of a protein depending on the arrangement

of amino acids.

GE - The codons(in integer format) contain the necessary information

to select production rules from the BNF grammar. The sequence

in which the production rules are selected determines the struc-

ture of the newly generated computer program. It is important

to note that a different sequence of the same codons will produce

a different program. This makes it possible to construct a variety

of programs from the same grammar.
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4. Program/Protein & Executed Program/Phenotypic Effect

These stages are self-explanatory therefore they do not warrant a de-

tailed explanation. They show the results of the both the GE and

BS processes. In the case of GE, a fully compilable and syntactically

correct program is generated and in the case of a BS, a full three-

dimensional protein structure is created. The program is executed to

produce some specific results, usually in the form of a solution to a

particular problem. Similarly, the protein will be used to achieve some

specific function within a phenotype.

The following subsections provides a more detailed description of GE, start-

ing with an overview of the BNF notation. This is followed by a program

generation example in the form of a step by step walkthrough, showing how a

simple syntactically correct mathematical expression can be generated using

a GE approach.

2.4.2 The Concept of a Grammar & Backus Naur Form

Avram Noam Chomsky, one of the most influential linguist of the 20th

century, first introduced the concept of formal grammars. His work was

concerned with the production of a system that had the capability to build

properly formed phrases of a natural languages such as French and English.

The principle behind his work is that every natural language is composed of

basic units, called words. Chomsky recognized that words that constitute

a natural language can be classified into grammatical categories. Such that

almost all words in a language falls into a specific category e.g. articles,

nouns, pronouns, verbs, etc. A sentence can be produced from a template

of these grammatical category words where words can be substituted by

other words from the same category without corrupting the validity of the

sentence.
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Chomsky used a grammar to specify the rules that governed the correct

production of a sentence. By following simple rules a valid sentence could

be generated. He categorised four types of grammars: Unrestricted Gram-

mars, Context Sensitive Grammars, Regular Grammars and Context Free

Grammars. The true benefit of these formal grammars is that not only can

they be used to formalise both natural spoken languages but they can also

be used to generate computer programming languages. In fact, grammars

can be used to describe just about anything[x], such as maths expressions,

neural networks, graphs, etc. GE is primarily concerned with Context Free

Grammars, although there is no reason why other grammars should not

work.

The Backus Naur Form (BNF)notation is used to express context-free gram-

mars. It was originated by John Backus and shortly afterwards it was im-

proved by Peter Naur. The improved version was popularised, following its

use in defining the successful Algol 60 [55] programming language, see [35].

BNF breaks down the grammar of the language into derivation rules which

are generally referred to as production rules. These production rules allow

for the generation of syntactically correct instances of the language. The

production rules ensure that it is not possible to produce invalid instances

of the language. In the case of GE, this means that only valid programs can

be generated.

A BNF production rule takes the following format:

<N>::= a

The <N>, represents a symbol and ’a’, represents a series of zero or more

non-terminal and terminal symbols. The non-terminals are typically

delimited by the ’<>’, angle brackets and these can be broken down recur-

sively to terminal symbols. A terminal symbol can never appear on the
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left hand side of the production rule and it can not be broken down further

as it is the basic unit of the language e.g. a word in a sentence or, a key

word or variable in a computer program. The notation allows for different

alternatives to be specified making it possible to select different options for a

particular non-terminal and this is represented by the vertical bar or pipe

symbol, ’|’.

More formally, a BNF grammar is represented by the 4-tuple NT , T ,P,S.

where,

1. NT , is a finite set of symbols, called non-terminal vocabulary.

2. T , is a finite set of symbols, called terminal vocabulary.

3. NT and T do not have any elements in common i.e. NT ∈ T = {}

4. S is called the start symbol, which is a member of NT i.e. S ∈ NT

5. P, is a set of procedures called Productions or Production Rules that
are used in the process of mapping members of the set of non-terminals,
NT to the members of the set of terminals, T .

The BNF notation is best explained by example. The following shows a

BNF grammar that can describe an integer number of any size.

(A) <Number> ::= <SingleDigit> (0)
| <Number> <SingleDigit> (1)

(B) <SingleDigit> ::= 0 (0)
| 1 (1)
| 2 (2)
| 3 (3)
| 4 (4)
| 5 (5)
| 6 (6)
| 7 (7)
| 8 (8)
| 9 (9)

Figure 2.2: Example Grammar for Generating Numbers



2.4. Grammatical Evolution 26

This grammar allows one to construct either an individual digit or concate-

nating a series of single digits which can be used to describe any whole

number. The start symbol of the grammar is the non-terminal <Number>

in production rule (A). This production rule can become one of two alterna-

tives, identified in the diagram by the numbers to the left hand side of the

respective alternative i.e. 0 and 1.

If we want to generate a single digit we take the first alternative, (0). This

alternative is the non-terminal symbol <SingleDigit> which is specified

in production rule (B). It can become any one of the ten alternative digits

i.e. 0-9.

In order to generate a multi-digit number we follow a similar procedure,

again we commence by selecting the start symbol, <Number> in produc-

tion rule (A), however, in this case we take the second alternative, (1).

This alternatives consists of two non-terminal symbols, <Number> and

<SingleDigit>. The non-terminal, <Number> can be used to preform

a recursive mapping of itself. <Number> can be chosen an infinite amount of

times, thus, providing the capability to select a infinite amount of <SingleDigit>

non-terminals all of which, can in turn, map to digits.

2.4.3 The GE Mapping Process

A comparative description of the biological analogy between the GE map-

ping process and that of the mapping of a genotype to phenotype employed

by biological systems in nature, was presented in Section 2.4.1. This was
1The numbers, delimited by parenthesis to the left of each rule are used for explanatory

purposes only. They do not constitute part of the actual BNF grammar itself. The same

applies to the production rule letters.
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followed by an introduction to formal grammars and more specifically the

BNF notation. The information presented in this section aims to clarify

the GE process further by providing an indept walkthrough of its mapping

process. This walkthrough shows how it is possible to construct a simple

mathematical expression using the GE approach.

NT = {<expr>, <unaryop>, <binop>, <operand>, <power>}
T = {√, +, -, ×, ÷, 2 , 3, 4.0, (, ), x, y }
S = {<expr>}

and the production rules, P are written as follows:

(A) <expr> ::= <expr><binop><expr> (0)
| <operand> (1)
| <unaryop> (<expr>) (2)
| <operand><power> (3)

(B) <unaryop> ::= √

(C) <binop> ::= + (0)
| − (1)
| × (2)
| ÷ (3)

(D) <operand> ::= x (0)
| y (1)
| 4 (2)

(E) <power> ::= 2 (0)
| 3 (1)

Figure 2.3: Simple Mathematical Expression BNF Grammar

The aim of the GE mapping process is to construct a program or solution

by using the information contained in an individual’s binary genome. To

show how this is achieved, we will take a sample genome and show how it is

used to select rules from a BNF grammar. This BNF grammar shown below

represents the rules that govern the construction of a simple mathematical

expression. Three sets are listed - NT , T and S, which represent the set of

non-terminal symbols, the set of terminal symbols and the start symbol,

respectively. The expression produced as a result of selecting the produc-

tion rules, P will contain only elements from the set of terminals i.e. an
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expression produced from this grammar is one that is comprised of elements

in the set VT. As in all BNF grammars, we commence with the selection of

the start symbol, S, in the case of this grammar, the <expression> symbol.

The grammar consists of five production rules, identified by the letters A to

E to the left of each rule. During the mapping process, there are a num-

ber of alternatives that can be selected for each of these production rules,

apart from production (B), for which there are no alternatives therefore the

<unaryop> non-terminal will always derive the
√

symbol each time that it

is mapped.

Production Number of
Rule Alt’s
(A) 4
(B) 4
(C) 3
(D) 1
(E) 2

Table 2.1: Number of Production Rule Alternatives

Table 2.1, shown above, summarises the number of alternatives available per

production rule. If we take the first rule from the grammar, identified by the

letter, A, which describes the <expression> non-terminal, there are exactly

five possible alternatives available i.e. <expression> can become either <Ex-

pression> <operator><expression>, <variable>, <unaryop><expression>

<operator>), <variable> or <power>. Similarly rule B, has four alterna-

tives which means that <binop> can be transformed into one of those four

rules and so on for the remainder of the productions rules, (C), (D) and (E).

As mentioned previously, GE uses the information contained in an indi-

viduals’ genome in the mapping of non-terminal to terminal symbols. The

diagram in Figure 2.4 shows an instance of an individuals’ genome. Em-
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225220 155 147 227 111 220255 152 246 228 129 155

11011100 11100001 10011011 10010011 11100011 01101111 11100100 10000001 10011011

Figure 2.4: This shows an individuals’ genome, represented both in binary
and in decimal format.

phasized in this diagram is the division of the binary string(genome) into

codons which is also shown beneath in decimal format. Of course, it is not

necessary to convert the binary codons to integer format as binary values

can be computed without effort by a computer; the integer representation

is used only to facilitate ease of reading.

The mapping process in GE is concerned with determining which of the

possible alternatives(if there are alternatives) in a production rule to se-

lect. The first codon in the diagram contains the binary digits - 11011100 ,

this converted decimal notation is the value 220 . Taking the start symbol

<expression>, or production rule (A), we see that there are four possible

alternatives (See Table 2.1) that can be derived. The following mapping

function is used to determine which of these alternatives to select based on

the genomes codon’s value:

Alternative = CodonV alue % Num. of Rule Alternatives

where,

• Num. of Rule Alternatives: is the total number of rule alternatives for

the current non-terminal.

• Codon Value: represents the value of the currently selected individuals’

genome codon.
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• %: represents the modulus operator.

Substituting the information obtained from the grammar gives,

Alternative = CodonV alue % Num. of Rule Alternatives

⇒ 220 % 4

⇒ 0

This, gives us a value of 0, which means that the first alternative, <expression>

<binop><expression>, is selected. This alternative contains three non-terminals,

each of which must be mapped to terminal symbols. We continue the pro-

cess taking the leftmost non-terminal from the chosen alternative which is

another <expression> symbol. Then using the value of the second codon

along with the total number of alternatives, we substitute them into the

mapping function in order to determine an alternative for this current sym-

bol. This give, 225 % 4 = 1 , therefore we select alternative (1), which

means that we now have <operand><binop><expression>. Continuing the

same process, we take the next codon value, 155 to determine which one

of the three operand to choose for the <operand> non-terminal. This

gives, 155 % 3 = 2 , therefore the <operand> non-terminal becomes al-

ternative (2), 4.0. This is a terminal symbol, so this cannot be mapped

further, instead we move on to process the next leftmost symbol which is

the <binop> non-terminal. Again, taking the next codon value, 147 and

known that there are four possible alternatives for <binop>, we calculate

147 % 4 = 3 . This gives us the ÷ terminal. We follow the same proce-

dure for the final <expression> non-terminal. 227 % 4 = 3 , so this be-

comes <operand><power>. The next codon is 110 , giving 111 % 3 = 0 ,

therefore we select the x terminal. Finally, the <power> non-terminal

becomes the value of 3 , calculated from 255 % 3 = 1 . The expression

generated as a result of applying the mapping process to the grammar is:

4.0÷ x3



2.4. Grammatical Evolution 31

At times, during the translation process, it is possible to have a situation

where genotypes that are not long enough to transform all the non-terminals

into terminal symbols. If such an event occurs, a process called wrapping

is used. Wrapping a genotype involves reusing the codons contained in the

genotype. When the translation process has moved to the end(the right

hand side) of the genotype (i.e. the last codon in the genotype is used) and

there are still more codons needed to complete the translation the process

is continued by simply moving to the first codon(the left-hand side) in the

genotype, thus extending the quantity of codons until all non-terminals are

transformed. An individual genotype can be wrapped a specified number of

times.

The BNF grammar in the given example allows for the production of a

number of simple mathematical expressions. However, this is done, purely

to illustrate how a BNF grammar can be used, in the GE process, complete

compilable programs are generated. The same technique as above is used

but in that case the grammar is is tailored to produce code in a given lan-

guage. Chapter 5, “Variable Length Grammatical Swarm”describes in detail

some grammars that generate programs that were used in the experimental

setup of this study.

The mapping process involves moving in a left to right direction along the

genome2, converting each of the binary codons into its corresponding integer

values and then, using the mapping function, calculating the appropriate

rule to selected from the BNF grammar. The process continues until one of

the three situations listed below arises:
2However, this is not the case in a variation called πGrammatical Evolution [40]. This

is a position-independent implementation of the Grammatical Evolutionary genotype-
phenotype mapping process where the order of derivation sequence steps are no longer
applied to non-terminals in the predefined fashion described above.
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1. Phenotype Produced. All non-terminals have been mapped onto

terminals. The result is that a fully compilable and functional program

is generated. In the case of the given example, a complete and syntac-

tically valid expression is generated. The program that is generated is

called an individual or a phenotype.

2. Wrapping. This occurs when all codons in the genome have been used

once and there are still non-terminal that need to be transformed to

terminals. In other words, there are no more codons available to com-

plete the transformations. The situation is resolved by invoking the

wrapping operator. This allows for the remainder of the non-terminal

to be transformed by returning to the beginning of the genome(left-

hand side) and processing the same codons over again. The codons

will continue to be processed until (a) either situation 1 occurs or (b) a

the wrapping threshold is reached. The wrapping threshold is defined

as the maximum number of wrapping events that can occur.

3. Termination. If the wrapping thresholds is reached and there are still

rules that are not fully transformed, the mapping process is stopped.

This typically results in the generation of an uncompilable program.

To discourage the breeding of individuals with traits that result in

termination the individual is assigned a minimal fitness value.

2.5 Particle Swarm Optimisation

There are many types of creatures found in nature that exhibit social be-

haviour in order to improve their situation or to solve problems. This social

behaviour is particularly evident when creatures behave as a swarm, ex-

changing their best experiences in an effort to find an optimal solution to a

problem. Popular every day examples are the swarming behaviour evident

among social insects such as ants and bees or the flocking of birds and the
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schooling of fish. Creatures that exploit the efforts of their neighbours i.e.

those that behave as a swarm to solve problems are said to exhibit swarm

intelligence.

2.5.1 Background

Since the early 1990’s, researchers have been investigating into this swarm-

ing behavior, in an effort to model the underlying principles of a swarm and

to use this to for function optimisation. Their efforts were rewarding and

today there are models that have achieved much success. One such model

that has been particularly successful is Particle Swarm Optimisation (PSO).

The PSO [17] model, is a relatively new variety of optimisation algorithms.

It was first introduced in 1995 by a social psychologist, Kennedy and an

engineer and computer scientist, Eberhart. It is inspired by the flocking be-

havior of birds and the schooling behavior of fish. Kennedy and Eberhart’s

model was strongly influenced by a swarming algorithm produced some years

earlier by biologist Frank H. Heppner.

Heppner’s [13] research into modeling the flocking behavior of animals, in

particular birds. He developed an algorithm that consisted of a number of

birds where each bird was programmed to search for a suitable roosting area.

Upon initialization of the algorithm, the birds would form into flocks, and

fly randomly throughout the solution space. If a bird in a flock flew above a

good roosting area then it would either land or stay with the flock (depend-

ing on the weighting of certain parameters). Each bird tended to stay in the

center of other birds in the flock. When one bird found a suitable roosting

area the other nearby birds would adjust their trajectories and follow it.

Thus, each bird would effectively pull the others to the solution.
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Based on this, Kennedy and Eberhart realised that “social sharing of infor-

mation among conspecies offers an evolutionary advantage” and as a result

they developed the PSO model. However, instead of finding a suitable roost-

ing area such as in Heppner’s simulations the PSO model is capable of finding

solutions to optimisation problems. Since its inception, PSO has had sig-

nificant success in the research community. Most notably in the training of

feed-forward neural networks. It has also proven to be comparable in perfor-

mance with traditional evolutionary algorithms such as Genetic Algorithms

(GA) [47].

2.5.2 The Basic Particle Swarm Algorithm

PSO is an adaptive algorithm that uses a population of individuals called

particles for the optimization of continuous, non-linear problems. It is simi-

lar to evolutionary algorithms such as Genetic Algorithms (See 2.3.1) in the

sense that it uses a population of individuals. However, unlike a GA, where

the individuals in population are updated using principles of natural selec-

tion, the PSA maintains the same population and updates every individuals

position at each iteration in an effort to find the best solution.

The Particle Swarm Algorithm (PSA) is initiated by populating an n-dimensional

environment with particles. The solution to the problem is at an unknown

location in this n-dimensional environment that is more commonly referred

to as a problem space or search space. Each particle in the population

describes a possible solution to the problem and this is determined by a

particles location.

The particles are scattered throughout the search space during the initializa-

tion process i.e. they are randomly assigned locations. As well as a current

location, each particle in the swarm has a velocity associated with it. The
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value of a particle at a particular location in the search space is known as

its fitness. As a particle moves closer to the solution its fitness increases.

The fitness of each particle in the swarm is evaluated at the end of every

iteration. This facilitates the comparison of different solutions to the given

problem, each particles location being a potential solution.

Each of the particles maintain a memory of the best position in the search

space that it has found to date, pbest. A global best position, gbest is also

stored. This is the best position obtained so far by any particles in the

swarm. In some variations of the algorithm, a neighbourhood topology is

defined to constrain the interaction of particles. At every iteration each of

the particles adjusts its velocity, calculating a new point where particles are

moved, to examine. The velocity is influenced by the particles velocity at

the previous time step(t-1), the location of pbest and gbest positions and

some random parameters that will be described subsequently. Thus, at ev-

ery time step, a particle is moved to a new position in the search space by

computing a new point based on the particle’s own history and the influence

of the other members of the swarm.

The following provides a list of the steps involved in the algorithm.

Step 1. Initialize each particle in the population by randomly selecting val-

ues for its location and velocity vectors.

Step 2. Calculate the fitness value of each particle. If the current fitness

value for a particle is greater than the best fitness value found by a

particle so far, then revise pbest.

Step 3. Determine the location of the particle with the highest fitness and

revise gbest if necessary.

Step 4. For each particle, calculate its velocity according to equation (1.1).

Step 5. Update the location of each particle.
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Step 6. Repeat steps 2 - 5 until stopping criteria are met.

PSO Velocity Update Equation

Velocity

gbest Proximity

pbest Proximity

Current Location

xi

xi+1

pi

vi

New Location

pg

Figure 2.5: PSO Velocity Update

The velocity update , vi(t + 1) is computed using the equation below:

vi(t + 1) = (ω ∗ vi(t)) + (c1 ∗R1 ∗ (pbest− xi)) + (c2 ∗R2 ∗ (gbest− xi)) (2.1)

This equation lies at the core of the PSO algorithm as it is responsible for

the movement of the particles throughout the search space. Figure 2.5 above

illustrates the updated process.

The other parameters are explained in the following sub-sections.

PSO Position Update

Once the velocity update for particle is determined, its position and pbest is

updated if necessary.

xi(t + 1) = xi(t) + vi(t + 1) (2.2)



2.5. Particle Swarm Optimisation 37

yi(t + 1) = yi(t)if, f(xi(t)) ≤ (yi(t)) (2.3)

yi(t + 1) = yi(t)if, f(xi(t)) > (yi(t)) (2.4)

Once the particles are updated it is necessary to determine if gbest needs to

be updated. The following equation shows how this is achieved.

ŷ ∈ y0, y1, . . . , yn|f(ŷ) = max(f(y0), f(y1, . . . , f(yn)) (2.5)

2.5.3 Parameter Selection

The Inertia Weight, ω

The inertia weight, ω:

where,

ω = ωmax− ((ωmax− ωmin)/itermax) ∗ iter (2.6)

wmax = 0.9, wmin = 0.4 and itermax is the total number of iterations and

iter is the current iteration.

The inertia weight, commonly denoted by the ω symbol, was proposed by

Eberhart and Shi [50, 49] to enforce convergence. It achieves this by con-

trolling the momentum of the particles in the swarm. During the velocity

update(calculation of vi), the inertia weight ω is multiplied by the velocity

at the current time step, vi. Therefore, the value of ω determines the influ-

ence of the previous iterations velocity when computing the new velocity.

The control parameters, c1 and c2

It is necessary to balance both the social and individualistic factors asso-

ciated with each of the particles in the swarm. We want to control the
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extent to which the particles [move towards the direction of]learn from its

own previous best(individuality) and the extent to which it learns from its

peers(sociality) in the swarm. This is achieved through the use of two pa-

rameters, c1 and c2 control the weight of the personal best dimension and

the global best dimension value, respectively. The c1 parameter, is the self

confidence factor. The c2 parameter is the swarm confidence factor. This

is shown in the velocity update equation (1). To introduce some variety or

some chaos into the equation these weights are randomly altered using two

more parameters, R1 and R2. These are random number calculated in the

range [0, 1].



Chapter 3

Social Programming

3.1 Introducing Grammatical Swarm

The term Grammatical Swarm (GS) refers to a novel Evolutionary Algo-

rithm that is based on the principles of social learning. GS, introduced in

2004 by O’Neill and Brabazon [38], can be considered a form of Social Pro-

gramming or Swarm Programming as it is based on an algorithm inspired

by the swarming behaviour evident in nature (Section 2.5). The GS algo-

rithm is a hybrid algorithm consisting of a Particle Swarm learning algorithm

coupled to a Grammatical Evolution (GE) genotype-phenotype mapping to

generate programs or solutions in an arbitrary language.

GE (Section 2.4) can be separated into two components 1) the search mech-

anism and 2) program generation. The conventional GE uses a Genetic

Algorithm (GA) as its search mechanism. In this conventional implemen-

tation a population of individuals are scattered throughout a conceptual

landscape, evolving to produce fitter individuals based on the natural selec-

tion metaphor using reproduction operators such as crossover and mutation.

Individuals are represented in the conceptual landscape in the form of binary

linear genomes. The information contained in these linear genomes is then
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used to govern the selection of rules from a BNF grammar which in turn pro-

duce a functional solution usually in the form of a compilable program. GS,

is similar to the implementation of GE in that it also constitutes a search

mechanism and a program construction mechanics, but GS has one primary

alteration in that it does not use a Genetic Algorithm to fulfill its search

capabilities. Instead, GS adopts a Particle Swarm Optimisation learning

strategy e.g. the GS algorithm is completely devoid of any reproduction

operators.

This chapter describes in detail the working of this GS algorithm by pre-

senting an in-dept description of its implementation. Firstly, an overview of

the various parameters and properties of the GS search engine are presented.

This is followed by a detailed walkthrough of the GS approach demonstrated

with the use of a simple sample optimisation problem. This is followed by

the a review of the comparative investigations conducted in the GS proof

of concept paper [38]. These investigations use a number of combinatorial

problems which are also described in detail in this section. The comparative

investigation also documents the results of the first experiment of this the-

sis. This experiment indents to verify the integrity of the both the original

GS and the GS that is used in the various experiments documented in the

remainder of the thesis.

3.2 GS Parameter Selection

3.2.1 Maximum Velocity, VMax

VMax is applied to the each particle in the swarm at every iteration in order

to control the maximum distance a particle can move in a single time step.

In the GS implementation the maximum velocities VMax are bound to value

of ± 255. This means that a particle can move a maximum of 255 in either
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a positive of negative direction.

3.2.2 Dimension and Velocity Capping, CMin & CMax

Represented in a programming language, a particle is typically made up

of a number of vectors(see Code) with each of these vectors consisting of

a number of elements. In the GS algorithm, there is a restriction placed

on each of the vector elements so that a particle can only contain values

within the range [0, 255]. The lower bound, 0 and upper bound, 255 are

referred to as CMin and CMax, respectively. This is implemented after the

new velocity has been calculated and added to the particles current vector,

xi to the compute the particles next position, xi(t+1) in the search space. If

xi(t+1) has a value greater than the value defined by CMax then that value

simply becomes CMax. Similarly, if the value is smaller than CMax then

xi(t+1) is increased to CMin. The following shows how this is implemented

in C++ code(lines 4 and 5).

1: for(int i=0;i<n_particles;i++) {

2: for(int d=0;d<n_dim;d++) {

3: p[i].next[d]=p[i].current[d] + p[i].velocity[d];

4: if(p[i].next[d]>cmax) p[i].next[d]=cmax;

5: if(p[i].next[d]<cmin) p[i].next[d]=cmin;

6: }

7: }

3.2.3 Real Valued Vectors

In the conventional GE or more specifically the GA search engine employed

by GE, a population of individuals in the form of variable length binary

strings are used to search for the optimal solution. GS does not follow a

similar approach, instead each particle(equivalent to a GA individual) uses

a vector of real-valued numbers in the range [0, 255]. However, the GE
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mapping function can only accept whole numbers but the velocity update

function contains parameters that hold floating point numbers; for example

R1 and R2 are random numbers in range [0,1]. This can be seen in the

following PSO equation, which is described in full in the previous Chapter.

vi(t + 1) = (ω ∗ vi(t)) + (c1 ∗R1 ∗ (pbest− xi)) + (c2 ∗R2 ∗ (gbest− xi)) (3.1)

As floating point multiplied by a whole number a floating point number

will always be produced in velocity calculations. Therefore it is necessary

to round the floating point values up or down to the nearest integer value.

Thus, ensuring that only whole can be used in the mapping process.

3.2.4 Fixed Length Particles

Each particle in the population contains a number of vectors which describe

its current and next location and velocity. In the PSO the number of di-

mensions is typically set according to the particular problem it intends to

optimize. For example, consider the following equation 2x + 1y = 4 , then

each particles’ vectors would contain two elements, one to hold a value for

variable x and one for variable y. However, when a particle describes an

interchangeable number of rules that may be selected during the mapping

process, it makes it difficult to set the total number of dimensions. In the GS

implementation, all these vectors are of a fixed length and in the case of this

implementation vector is constrained to 100 dimensions. The conventional

GE uses variable length individuals in its GA search engine. Each individu-

als’ binary string can increase or decrease in size which is adjusted at each

generation. Thus, the genome length of the fitter individuals propagates to

subsequent generations.
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3.2.5 The Wrapping Operator

In the GE mapping process it is possible to have a situation where there are

not enough codons to map all the non-terminal symbols to terminals. This

will generally result in the generation of an invalid individual or a program

that will not compile. Chapter 2 already described how this problem is over-

come by wrapping the genome. In GS, this wrapping operator is also used;

allowing a vector’s elements to be used more than once. A situation may

also occur where all non-terminals are mapped to produce a full program

before the end of the genome is reached, thus leaving a surplus of unused

codons. These extra codons(considered introns) are ignored and although

they are of no use in this particular mapping the may be used in subsequent

iterations.

3.2.6 Other Parameter Settings

For each of the experiments conducted in this thesis the following settings

are adopted and any deviations will be noted.

Population Size A swarm of thirty particles is used to populate the search

space.

Social Learning Factors C1 and C2 are set to the value of 1.

The Stopping Criterion The particles will continue to search for a solu-

tion for 1000 iterations. If a solution is found before the last iteration

is reached, the search will still carry on until the 1000 iteration if fin-

ished. This is not strictly necessary but it is done in an effort to obtain

accurate readings when averaging over a number of runs.

Inertia weight The inertia weight, ω:

where,

ω = ωmax− ((ωmax− ωmin)/itermax) ∗ iter (3.2)
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ωmax = 0.9, wmin = 0.4, itermax = 1000 which is the total number

of iterations and iter is the current iteration.

3.3 GS - Program Generation

This section intends to further clarify the workings of GS. A sample problem

specification is given and a brief walkthrough will guide the reader through

the phases involved in the construction and evaluation of a candidate solu-

tion program to solve the problem. It is anticipated that this will reinforce

the readers understanding of the GS algorithm, in particular how it is used

to solve problems.

This walkthrough will take a sample particle and use it to construct a so-

lution to a simple problem. The problem is of a simple anagram which

consists finding a particular word given a series of letters that once arranged

in a certain order constitute that word. There are six letters are a,e,i,c,t,s.

The target word chosen is ’cat’ i.e. the problem is considered as solved if

a particle contains the correct information to produce a program from the

BNF grammar to describes the word ’cat ’. This example is intentionally

simplistic as it aims only to communicate the workings of GS.

3.3.1 PSO - Search Mechanism/Engine

Figure 3.1 illustrates the entire GS process of producing a sample solution.

The cube in the upper left of the diagram illustrates the concept of a swarm

of particles. More specifically, this cube represents a conceptual search space

environment ; shown within are vectors that represent a swarm of particles.

PSO was also previously described in detail in Chapter 2 (2.5) therefore it

is unnecessary to delve into its specifics again. Instead this example is con-



3.3. GS - Program Generation 45

<Word>::=<Letter>
       | <Letter><Word>
<Letter>::= a (0)

         |  c (3)
         |  t (4)

         |  e (1)
         |  i (2)

(0)
(1)

BNF Grammar

255 121271 ......221 158


<Word>

<Word><Letter>

<Letter><Letter>

c<Letter>

110

221 % 2 = 1

158 % 5 = 3

110 % 2 = 0

255 % 5 = 0

ca

Particles

PSO Search Engine

Fixed Length Vector

Figure 3.1: The Grammatical Swarm process, illustrating 1) the concept of a
swarm of particles(fixed length vectors) in a search space. and 2) the mapping of
the sample BNF grammar to produce a candidate solution

cerned about how the particles can be used to solve the given problem.

In the canonical PSO the values contained each of the elements of a particle’s

vector are typically inserted into the parameter space a defined optimisation

problem (function). Consider the following example problem(function) e.g.

2x4 + 1y − c = 2 . A PSO particle describing a potential solution to this

problem would contain three elements i.e. element 0(x0), element 1(x1)and

element 2( x2) would hold candidate values for the x, y and c parameters,

respectively.

To evaluate the particle the values in the corresponding element of the par-

ticles’ vector would be substituted into the parameter space and it would be

evaluated by judging how close the result are to the target answer i.e. 2 .

In the PSO search mechanism used by the GS, the values contained in the

vectors are not used in the same way. The GS process is more complicated,
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as these values do not slot directly into the parameter space of the function,

instead they are used to govern the rule selection of a BNF grammar in the

mapping process. Refer to the diagram which an instance of particle is used

to illustrates this for the given problem.

3.3.2 GE - Mapping Process

The GE mapping process was described in Chapter 2, therefore it does

not warrant another detailed explanation. Note that the GE process can be

adopted directly without requiring any alteration, unlike the adoption of the

PSO search engine, where it is necessary to adjust some of its parameters

and even introduce new parameters (CMin, CMax (See Section 3.2.2 above)).

Referring to the sample problem, Figure 3.1 shows the BNF grammar for

the problem in the top right and it shows in detail how each of the rules are

mapped to produce a word using a combination of the terminal symbols.

What is most important here is to understand how the PSO plugs into the

GE mapping process by using a fixed length particle in the place of the

binary individual of a GA, used in the conventional GE.

3.3.3 The Fitness Function

As the given problem is very simplistic, the fitness function can be effortlessly

constructed. The purpose of the fitness function is to evaluate the particle in

the swarm according to the quality of solution described. This is achieved

by comparing the number and order of letters contained in the candidate

solution to the target solution (i.e. ’cat ’). One point is awarded for each

correct letter in the candidate solution string, regardless of order and an

extra point is given if all three are in the correct order. If the string ’cat ’ is

matched then the particle that describes the solution is assigned 4 points or

100% fitness. In the GS process presented in Figure 3.1 the given particle
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produced the word ’ca’. Thus, the particle(shown in expanded form in 3.1)

will be awarded a fitness of 0.5 or 50% of the solution is solved.

3.4 Grammatical Swarm Comparative and Verifi-

cation Study

In the proof of concept paper the developers of GS demonstrated the feasibil-

ity of the automatic generation of programs using a PSO/GE hybridization

approach. In evaluating their new algorithm they devised a series of exper-

iments to rate the performance of the GS. In an effort to obtain a good ap-

proximation as to how well the GS is at automatically generating computer

programs the experiments performed were in the form of a comparative study

between the GS and that of the traditional Genetic Algorithm driven GE

program generation approach. This thesis conducts a series of performance

and modification investigations into the GS algorithm, each of which will be

presented and analyzed in Chapter 4, Pseudo-Random Number Generators

and Chapter 5, Variable-Length Grammatical Swarm. In order to conduct

the various experiments, it was necessary to develop an implementation of

a GS algorithm. The algorithm was developed using the various implemen-

tation details documented in the GS proof of concept paper. The new GS

implementation was then used to tackle the various problem domains i.e.

the same problems tackled by the original GS [38] and the performance re-

sults were recorded and then compared to the results of the original GS.

In summary, this section will provide the following:

1. Introduce the problem domains: Four different benchmark prob-

lems were tackled in these comparative experiments. These benchmark

problems are well established as complex and sophisticated analysis

techniques in the field of EC. Their purpose was to accurately measure
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the GS algorithms performance potential. These problems warrant a

detailed explanation as they are used extensively in the experiments

documented in this thesis. There are four problems in total and they

are detailed in the following subsection 3.4.1.

2. Review of GS Performance: A synopsis of the results and con-

clusions obtained for each of the experiments documented in the GS

proof of concept paper is provided.

3. GS Verification Experiment: The results of a comparative study

between the GS described in [38] and a replication of this GS, devel-

oped by the researcher are documented.

3.4.1 The Problem Domains

Problem 1: Santa Fe Ant Trail

The original ant problem was first introduced in the early 1990’s for the

field of Artificial Life and shortly afterwards it was adopted by Koza where

it was used for GP performance testing [19]. It is now considered a standard

benchmark in the GP field and it has proved to be a particular deceptive

planning problem [24].

The ant problem consists of a 32 × 32 grid and an artificial ant which has

the objective of finding pieces of food scattered randomly along a specific

trail on the grid. The most common trail is the Santa Fe trail which consists

of 144 squares with 21 turns. The gird is toroidal which means that it does

not contain any boundaries such that, both the top and bottom and left and

right sides are all connected. Once the ant enters a cell with a one value

it is said to eat it. The ant has to collect(eat) 89 pieces of food in total in

a number of time steps. The diagram in Figure 3.2 illustrates the toroidal

grid; the highlighted squares represent the actual trail where a 1 value rep-

resents an instances of a food substance and a 0 represents the gaps on the
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Figure 3.2: The toroidal grid for the Sante Fe Ant Trail problem.

trail that are empty i.e. there are 89 squares in total containing the value 1 .

The artificial ant starts at the top-left hand corner of the grid faced in the

direction of the first food instance on the trail. The ant is represented in

the form of a program solution. It has limited capabilities as it can only

turn(90 degrees) left,right and move one square forward. It also has a seek-

ing or lookahead function which allows it to look into the square it is facing

for food. This lookahead function does not imposes an execution penalty

whereas using each of the other functions costs one time step to execute.

To find a solution to the problem it is necessary to construct a program that

contains the instructions to maneuver around the twisted trail to eat all 89

pieces of food. The fitness of a solution is determined by the calculating the

total number of food substances that are consumed. The grammar used in

this study is shown as follows:

<code> ::= <line> | <code> <line>

<line> ::= <condition> | <op>

<condition> ::= if(food_ahead){ <line> } else { <line> }
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<op> ::= left(); | right(); | move();

To clarify how the fitness of a solution is determined take the following

example program.

if(food ahead){if(food ahead){move(); }else{right();} }else{right();}

This example represents a solution(ant) that once executed is capable of

collecting one piece of food. Therefore, in the context of GS, a genome

containing the instruction to select the production rules to construct such a

solution would be awarded a fitness of 0.012 (1÷ 89) i.e. 1.2% of the entire

problem is solved.

Problem 2: Quartic Symbolic Regression

The objective of a symbolic regression problem is to find a function that

matches some unknown function on a specified interval. There are many

types of symbolic regression problems that are commonly used in GA and

GP fields, such as the Quartic polynomial, the Binomial-3 polynomial and

the Rastrigin function. An instance of the Quartic polynomial [19] is tackled

in each of the experiments conducted in this thesis.

The unknown function in a symbolic regression problem is commonly re-

ferred to as the target function, f(a)=y where a is the given input and y is

the given output, called the independent and dependent variables respec-

tively. In the case of the Quartic Symbolic Regression problem the target

function is defined in equation 3.3 and a graph of the problem is also pro-

vided.

f(a) = a + a2 + a3 + a4, a ∈ [0, 1]1 (3.3)
1Range may vary in other studies.
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Figure 3.3: Plot of Quartic Symbolic Regression, f(a) = a + a2 + a3 + a4 on the
interval [0,1].

The problem is initialised by randomly generating one hundred numbers

and inserting each in turn, into the parameter space (i.e. a) of the target

function. These 100 random numbers are stored memory in a list which

can be referred to as the input vector. The target function is evaluated for

each of these random values to produce a list of 100 corresponding output

solutions(y). This list is referred to as the input-output vector. The input-

output vectors can be collectively viewed as a list (ai, yi), where ai is drawn

from the range [0, 1].

The next step is to evaluate the candidate solutions. These input-output

vectors are made available to each newly generated candidate solution. The

fitness of a candidate solution is calculated by determining how similar the

candidate function is to the target function. This is achieved by calling the

candidate function 100 times, passing each of the values form the input vec-

tor, evaluating it to produce another (evolved) output vector.

The strength of a candidate solution (fitness) is determined by calculating

the reciprocal of the sum of the absolute error of the evolved and target
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output vectors.

The BNF grammar for this problem is shown below. A candidate solution

(expression) can consist of a particular arrangement of operators (+,-,*,/)

and an operand (a) symbol. Note, that there is no symbol in the grammar

to express a number as a power, instead this calculation is provided by

multiplying the operand the required number of times e.g. 22 = 2× 2.

<expr> ::= <expr> <op> <expr> | <var>

<op> ::= + | - | * | /

<var> ::= a

Problem 3: 3 Multiplexer

A multiplexer is a logical circuit that takes information from a number of

different inputs and combining them together to produce a single output. A

3 multiplexer is an instance of one, so called as it that takes three such inputs

and routes them to a single output. A multiplexer can produce a different

output depending of the boolean gates operated on the inputs. There are

three types of boolean gates used in this problem 1) AND 2) OR and 3) NOT.

An AND gates performs a logical and operation e.g. for three boolean inputs

1 0 1 each will be combined to produce an output of 1. The OR gate will

produce an output of 1 if either of the three inputs are 1 otherwise it will

produce an output of 0. A NOT gate simply inverts a bit.

The 3 Multiplexer problem is based in principle on the operation of these

logical circuits. The objective of the problem is to discover an expression

in boolean form that functions as a 3 multiplexer circuit given a list or

Truth Table of inputs(3) and corresponding outputs(1). The inputs and

outputs(target) for this problem are shown in the following Truth Table

3.1.
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Test I1 I2 I3 O1

(A) 0 0 0 0
(B) 0 1 0 1
(C) 0 0 1 0
(D) 0 1 1 1
(E) 1 0 0 0
(F) 1 1 0 0
(G) 1 0 1 1
(H) 1 1 1 1

Table 3.1: Truth Table for the 3 Multiplexor problem

There are eight test cases, identified in the table by the letters (A)-(H). The

BNF grammar below is used to generate candidate multiplexers so that a

correct arrangement of gates will produce the target outputs. The fitness

is calculated by given a value of 1 to every evolved expression that returns

the correct output using the three input cases. For example if the evolved

boolean expression returns the correct output for four out of the eight gates

then that candidate solution is assign a fitness of 0.5 (4÷8) i.e. exactly half

the problem is solved.

<mult> ::= guess = <bexpr> ;

<bexpr> ::= ( <bexpr> <bilop> <bexpr> ) | <ulop> ( <bexpr> ) | <input>

<bilop> ::= and | or

<ulop> ::= not

<input> ::= inputs[0] | inputs[1] | inputs[2]

Problem 4: Mastermind

Mastermind is a code breaking problem consisting of a number of colored

pins. The aim of the problem is for a code breaker to determine the correct

combination of colored pins in a given solution. Each pin can be one of four

different colors identified by the values 0,1,2 or 3 and there are eight pins
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in the solution. This allows for a large number of different combinations

which is why the problem is quite complex. In the case of the experiments

evaluated in this study the given solution is 3 2 1 3 1 3 2 0 .

The fitness is calculated by awarding one point for each pin that has the

correct color regardless of position; the code breaker earns an additional

point to solve by guessing the correct order. Consider, the following example,

where a candidate solution of 32132330 is produced. This will attain a fitness

of 0.67 (6÷ (8 + 1)) as there 6 pins out of a total of 8 with the correct color

but they are not in the correct order so a 6 out of a possible 9 points are

scored for this particular solution. The grammar adopted to describe the

solution can be written in one production rule; it is shown as follows:

<pin> ::= <pin> <pin> | 0 | 1 | 2 | 3

3.5 Experiment and Results

The results of this comparative study are shown in the following Table (4.2)

which lists the results obtained from three algorithms on tackling the vari-

ous problem described previously. The names of each of these problems are

listed in the leftmost column of the table along with the results obtained

for the corresponding algorithm. As shown in the table, three algorithms

are compared. The first two algorithms listed, under each of the problem

headings are the GS and GE implementation. The results from two these

algorithms are extracted from the investigation conducted in the original

proof of concept paper. The third algorithm listed, GS Verify, is the repli-

cate GS. This algorithm was developed using the details provided in the

original GS paper [38]. This study has two primary objectives, (1) to com-

pare the results of the GS implementation that is used in the experiments

in this study to that of the original GS implementaion (2) to ensure that



3.5. Experiment and Results 55

any of the experimental findings presented in the following Chapters are, in

fact, legitimate. The highest fitness obtained by any particle over an av-

erage of one-hundred runs is listed under the heading, Mean Best Fitness

where a rating of 1.0 would denote a successful solution and a rating of 0 is

the lowest possible fitness that can be obtained. The mean average fitness

results are listed in the second column and the total number of times that a

successful solution was obtained over the one-hundred runs are listed in the

last column.

Mean Best Mean Avg. Successful
Fit. (Std.Dev.) Fit. (Std.Dev.) Runs

S.F.A.T
GS 0.85 (0.19) 0.38 (0.04) 43
GE 0.90 (0.15) 0.52 (0.13) 58

GS Verify 0.83 (0.19) 0.04 (0.01) 38
Q.S.R

GS 0.31 (0.35) 0.07 (0.02) 20
GE 0.88 (0.30) 0.28 (0.28) 85

GS Verify 0.38 (0.39) 0.02 (0.01) 28
Multiplexer

GS 0.97 (0.05) 0.87 (0.01) 79
GE 0.95 (0.06) 0.88 (0.04) 56

GS Verify 0.98 (0.04) 0.49 (0.05) 87
Mastermind

GS 0.91 (0.04) 0.88 (0.01) 18
GE 0.90 (0.03) 0.89 (0.00) 10

GS Verify 0.90 (0.04) 0.45 (0.09) 13

Table 3.2: A comparison of the results obtained for Grammatical Swarm
and Grammatical Evolution extracted from the proof of concept paper [38]
and the GS results obtained in this study(GS Verify) over 100 runs across
all the problems analysed.

The results provided in the Table above are best analysed by categorizing

them into two discussion categories:

• A comparison between the GS implementation presented in the orig-
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inal proof of concept paper and that of the GS implemented in the

course of this study.

• A comparison between the GE and GS algorithm.

GS versus GS Verify

As can be seen from the results presented in the Table, there are differences

in the results obtained by the two implementations on tacking the various

problems. It is particularly evident for the mean average finesses, where

each of the original GS values are significantly higher than those obtained

from the replication. On analysis of the mean best fitnesses results, one

can see that the variation between the two is far less, the larges difference

obtained being on the Quartic Symbolic Regression problem beating the

original GS by 0.07. On analysis of the total number of successful runs,

there are some interesting variations evident. The original GS beats the

replicated implementation on both the Santa Fe Ant Trail problem and on

the Quartic Symbolic Regression problem. The difference in the number of

extra successful solutions obtained by each of the algorithms varies from five

(S.F.A.T and Mastermind) to eight (Multiplexer & Symbolic Reg.). A full

discussion of these results is presented in the subsection 3.5.1.

GS versus GE

As shown in the results Table, GE outperforms GS on two out of the four

problems tackled. The GS performed particularly poor on the Quartic Sym-

bolic Regression problem relative to the GE’s performance. Thus, this is a

very difficult problem for the GS algorithm. The GS does however, outper-

form GE on tackling the Mastermind problem. Note, that the information

presented here on the GE and GS is is limited and is considered a summary

of the study documented in [38]. For a full description of both the imple-

mentation details and comparative results of the GS and GE experiments,
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refer to that paper.

3.5.1 Discussion

As stated in the results section, there is a difference in the results obtained

from both the original GS implementation and the GS verification implemen-

tation on tackling the four problem. Every effort was made to ensure that

the various parameter and algorithm settings of the replicate was set iden-

tical to that of the original version. The most significant variation between

the two sets of results can be seen in the mean average fitnesses recorded.

This prompted an investigation into both of implementation and a miscal-

culation in the average fitnesses outputted in the original implementation

was discovered. In the case, of the mean best fitnesses, the variations are

too small and are thus deemed insignificant. The total number of successful

runs has shown that there is a variation, particularly the second and third

problems, where there is a difference of eight full solutions obtained over

the one-hundred runs. Interestingly, in this case, each implementation beats

each other once.

Taking then mean of the results excluding the miscalculated mean average

fitnesses the researcher concludes that the variation is probably due to the

stochastic nature of the GS algorithm and that overall both GS algorithms

have a similar performance level. However, it must be noted that further

investigation is warranted, in order to determine the exact cause of the dis-

crepancies in the results.

With regard to the performance comparison between GS and GE, the re-

sults suggests that although GS was outperformed by two out of the four

problems analyzed it still offers a great deal of potential. This is due to the
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fact that the algorithm operated with such a small population of individuals

and that it had not been subject to any particular modifications or enhance-

ments.

There is potential for parameter tweaking, natural selection or replacement

operators, crossover, introduction of a variable-length approach, etc. Re-

search into parameter tweaking and modification of the basic PSO algo-

rithm itself has proved to be very successful as the algorithm tends to be

sensitive even to slight adjustments. Since the PSO is at the heart-beat of

Grammatical Swarm, there is good reason to suggest that performing fur-

ther investigations into improving GS using some combination of the afore-

mentioned enhancement suggestions will strengthen the GS algorithm and

possibly yield a significant performance improvement.

One of primary studies of thesis documents the results of an investigation

conducted into the effects of one such enhancement. Chapter 5 describes

experiments performed into the effects of modifying the PSO particles fixed-

length vectors so that the length constraint is removed. Thus, producing a

Variable-Length Grammatical Swarm, where vector elements can increase

or decrease in size over simulation time.



Chapter 4

Pseudo-Random Number

Generator Investigations In

Grammatical Swarm

4.1 Introduction

This primary purpose of this Chapter is to document the results of an em-

pirical investigation conducted into the performance effects of using two

different quality Pseudo-Random Numbers Generators (PRNGs) on the GS

algorithm. The following paragraphs give the breakdown of the Chapters

content.

The first Section introduces PRNGs and it explores the significance of ran-

dom numbers in the EC field and more specifically their significance in GS.

This Section also describes the two PRNGs that are used in the experiment.

The first of these PRNGs is the system supplied rand() and it is consid-

ered a poor quality PRNG. The second PRNG is a Mersenne Twister (MT)

implementation which is referred to by its class header name eorng.h. The
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MT is considered a leading PRNG algorithm across the computer science

community.

Section 4.3 documents the experimental setup details. This Section is intro-

duced with a discussion on previous PRNG studies conducted on other EAs.

Furthermore, the Chapter is concluded with a discussion of the experimental

findings which is presented in Section 4.4.

4.2 Pseudo-Random Number Generators

Evolutionary Computation techniques are dependent on the use of random

numbers as randomness is an important criterion for the successful opera-

tion for each of the algorithms in this field. Not only are random numbers

responsible for the scattering of the populations representations through-

out the conceptual landscape but they are also required for various types of

updates and/or modifications to the population throughout the entire sim-

ulation. In algorithms that are based on GA principles, random numbers

are required to apply reproduction operators such as stochastic selection,

recombination and mutation (See Section 2.1.1). The GS algorithm is no

different as it too relies on the use of random numbers. In the PSO learning

algorithm of the GS, random numbers are central to the velocity update of

particle representations.

Researchers and practitioners in the scientific community generally use two

primary techniques to generated random numbers, namely, hardware devices

and software algorithms. Hardware random number generators operate by

extracting random properties from a physical process such as radio inter-

ference or thermal noise to produce a range of numbers. Since hardware

random number generators tend to be quite slow, expensive and suffer from

bias(in that certain numbers maybe outputted more frequently than others)
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they are deemed impractical for more common applications and their use is

typically confined to specific tasks where a high degree of randomness is nec-

essary such as cryptography, security keys, generating credit card numbers,

etc. The second generation technique uses software algorithms to produce

random numbers. Such algorithms that are ran on a deterministic com-

puter are called Pseudo-Random Number Generators (PRNG). A PRNG

by definition cannot produce true random numbers; they can only attempt

to approximate the properties of true randomness. John Von Neumann, a

founder of the modern computer once stated that

“Anyone who considers arithmetical methods of producing ran-

dom digits is, of course, in a state of sin [54].”

This remark emphasizes that it is not a trivial task to produce true random

numbers using arithmetical methods. All PRNGs need to be initiated with

some value called a seed and a sequence of random numbers is generated

from this point on i.e. using the same seed value will produce the same string

of numbers regardless. Depending on the memory constraints of a computer

the sequence of numbers will eventually begin to repeat itself. However,

PRNGs have advanced over the years and today they are capable of gener-

ating strings of numbers that are almost indistinguishable from true random

numbers and are capable of passing various statistical tests for randomness.

These statical tests have made it possible to categorise a variety of differ-

ent PRNG according to their quality. The following Section introduces two

different quality PRNGs. It provides a discussion based on material from

the available literature on the various reasons why each is either deemed a

strong or a weak quality PRNG.

4.2.1 The C/C++ System-Supplied PRNG - rand()

As previously stated, this Chapter presents an investigation into the effects

of two different PRNGs in the implementation of the Grammatical Swarm
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algorithm. This section introduces the first of these, which will be referred to

to as rand(), which is the standard system-supplied C/C++ algorithm for

generating pseudorandom numbers. An identical version of the algorithm is

also available on most UNIX based systems as the standard PRNG but in

this case it is implemented by calling the random() function.

Although, the rand() algorithm has been adopted as the standard for the

popular C/C++ programming languages and UNIX based systems it is in-

adequate for most scientific purposes. This fact is highlighted throughout

the literature. In a book dedicated to numeric computation methods [45],

entitled, “Numerical Recipes in C: The Art of Scientific Computing”, the

author advises its readers to be very suspicious of system-supplied pseudo

random number generators.

The following excerpt from this book emphasizes this point by implying

that there is a substantial quantity of scientific papers that may be deemed

invalid because researchers may have used bad system-supplied PRNG in

their experimentation:

“If all scientific papers whose results are in doubt because of bad

rand()s were to disappear from library shelves, there would be a

gap on each shelf about as big as your fist.”

The author stresses that the period of the rand() algorithm is often very

large and this can be disastrous in many circumstances.

A paper by Joel Heinrich [11] shows how rand() fails the simple maximum

spacing test which all popular PRNGs pass. Heinrich stated that the fa-

mously flawed randu generator generator also failed this test and that the

rand() algorithm should not be used on any platform. The following pro-
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vides a synopsis of the rand() algorithms implementation details used in

the GS experiments conducted.

Implementation Synopsis

To use the rand() PRNG in C/C++, it is necessary to include the <cstdlib>

or for older (C) compilers the <stdlib.h> library header in the program file.

These libraries contain various functions that are used to produce random

numbers, namely the rand() and srand(). The rand() function returns a

random number in the range [0, RAND_MAX], where the integer RAND_MAX is

specified by the system as it varies depending on the compiler; it generally is

32767. Like all PRNGs the rand() algorithm needs to be initiated with an

arbitrary seed. This is implemented by calling the srand() function. The

srand() function takes the seed as its argument e.g srand(seed). The seed

is generally set to a value such as the system clock or some interchangeable

values. Of course, the rand() function does not, generate true random num-

bers but a sequence of numbers. The sequence starts at the value (position)

specified by the selected seed and the sequence will eventually repeat(when

RAND_MAX is reached). If the same seed is selected then the same sequence

of numbers will be generated.

The following code shows the how the rand() PRNG is implemented in the

C/C++ programming language. Note that this is extracted from the code

used in the experimental setup of this study. The seed that is used, line

17, returns the system time in integer format e.g. 1125416205. The code

details a function randomNum(double low, double high) which take the

high and low arguments that determine the range of numbers which will be

outputted.
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1: #include <stdlib.h>

17: srand((unsigned)time(NULL));

23: double randomNum(double low, double high)

24: {

25: double range=((high-1)-low)+1;

26: return low+double(range*rand()/(RAND_MAX + 1.0));

27: }

4.2.2 An Implementation of the Mersenne Twister PRNG

-eoRng

The Mersenne Twister [30] is a relatively new PRNG algorithm, introduced

in 1998 by Matsumoto and Nishimura. The algorithm was developed as a

stringent and efficient method for producing uniform pseudo-random num-

bers. Until the introduction of the algorithm there was a limited selection of

PRNGs that were capable of meeting the demands of the scientific commu-

nity where there are many disciplines that frequently require an efficient al-

gorithm to produce high quality random numbers. Most of the older PRNGs

were inadequate for valid scientific experimentation primarily because they

contained flaws. The paper presented by [44] almost ten years before the

introduction of the MT, highlights the deficiencies in many of these older

PRNGs, which were published in books and even became standards for pop-

ular programming languages.

The strength of the MT algorithm can be largely attributed to its impres-

sively large period and equidistribution properties - “...the algorithm pro-

vides a super astronomical period of 219937− 1 and 623-dimensional equidis-

tribution up to 32-bit accuracy, while using a working area of only 624

words.” It is a successor of the Twisted Generalised Feedback Shift Reg-

ister (TGFSR)[27, 28] , modified to provide 1) an incomplete array which
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allows for the provision of the Mersenne-prime1 period and 2) an efficient

algorithm for testing primitivity called the inversive-decimation method.

The following provides a summary of the PRNG algorithms key strengths:

• Long Period - It has an extremely long period 219937 − 1 in compar-

ison to other popular generators and has a very large k-distribution

property.

• Efficiency - It does not require large amounts of memory as only

consumes 624 words of 32 bits.

• Speed - It is very fast as it avoids using multiplication and division

being about four times faster than the C/C++ standard rand() [29].

• Statistically Tested - It has passed statistical test including the

stringent diehard tests by George Marsaglia [26] and the load test by

Stefan Wegenkittl [8].

The MT algorithm was originally presented in the ANSI C programming

language. This study uses a modified implementation of that algorithm to

perform a comparative analysis between the MT and rand() PRNGs. This

modified implementation is provided in the form of a persistent C++ class

in a header file, of the same name, eoRng.h2. This library file was developed

by Maarten Keijzer. The following paragraph provides a synopsis of its

implementation.
1A Mersenne-prime number is of the form Mn = 2n − 1 where n is a prime num-

ber. Mersenne numbers are named after a 17th century French mathematician Martin
Mersenne. They are the largest known prime numbers today.

2Available from:
http://cvs.sourceforge.net/viewcvs.py/eodev/paradisEO/utils/eoRNG.h
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Implementation Synopsis

The eoRng.h PRNG library must be included at the top of the code file (see

line 1 in code segments below) where the pseudo-random numbers are to be

generated. The first step in the implementation is to create an object of type

eoRng. The constructor of the class takes as its argument a seed(See line

number 28 in the code below.) In the case of this implementation an eoRng

object called rng is created and the seed is an unsigned long value of exactly

32-bits in size, identified in the sample code below by the uint32 typedef.

Line 27, shows how the seed is declared and assigned a value computed by the

performing some arithmetic and a bit shifting operation on the current time

and the executed programs process identification number(PID), respectively.

1: #include<eorng.h>

18: typedef unsigned long uint32;

27: uint32 seed = time(NULL) ^ (getpid() << 16);

28: eoRng rng(seed); //initial seed

42: rng.reseed(seed); //reseed

The various member functions are called depending on the specific function

needed. In the case of this PRNG study, random() and uniform() are the

primary functions called. The random function returns an random integer

between zero and a value passed as an argument to random. An example

of this PRNGs use in the implementation is given in sample code below. It

shows the rng eoRng class instance invoking the random member function

which takes the maximum value of a particle CMax (See Section 3.2.2) as an

argument.

Another another member function called flip() is used in some of the

experiments presented in the following Chapter, which as its name suggests

is used to simulate an instance of a coin flip.
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for(int i;i<ndim;i++)

{

p[i].current.push_back(rng.random(cmax));

p[i].next ...

}

4.3 Experimental Settings

4.3.1 Experiment: The Effects of Two different Quality

PRNGs on GS

This experiment examines the performance effects of using two alternative

PRNGs on the GS algorithm. The alternative PRNGs were presented in

the previous section, namely, the eorng MT implementation and the system

rand(). As explained, these are two different quality algorithms with the

MT being much more stringent than that of the standard rand(). This

experiment intends to determine if the performance of the GS is effected by

the choice of PRNG.

PRNG investigations have previously been conducted on a variety of EC

algorithms. Various studies have illustrated that the performance of evo-

lutionary algorithms can be affected by the choice of PRNG. The research

conducted by Daida et al. [6] demonstrates that unexpected improvements

were found on diverse performances measures when a weak PRNG was used,

improvements could be as substantial as 800%. Foster and Meysenburg [32]

also produced some relevant work. They investigated the performance ef-

fect of using PRNGs of various quality on a simple GA [31] and they later

extended that work, by performing a study [32] on a GP algorithm. Their

findings indicated that in very few instances, a weak PRNG resulted in

slight performance improvements however Foster and Meysenburg found no
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Setting Value
Population Size 30
Population Size 30
Particle Vector Length 100
Iterations 1000
VMAX ±255
CMin 0
CMax 255
Wrapping Operator On
Max Wraps Allowed 10
Number of Runs 100

Table 4.1: The experimental settings for both GS implementations on the
PRNG investigation.

evidence of stronger GA performance with good PRNGs. Thus there is

no evidence to support the notion that improved PRNG quality caused im-

proved GP performance. Erick Cantu-Paz [4] conducted a set of experiments

to show the effect of PRNGs on a simple GA and to identify the components

that are most affected by the PRNG. The result of the experiments show

that the PRNG used to initialize the population is vital while the impact

of the PRNG used as input to other operations is relatively insignificant to

performance. In an effort to ensure that experiment results are interpreted

consistently, Cantu-Paz states that it is advisable to use the best PRNG

available.

This PRNG investigation, was conduced by tackling each of the four prob-

lems using two implementations of the GS algorithm. These two implemen-

tations were identical in every aspect apart from the type of PRNG used.

The first implementation used an instance of the eoRng and the second used

the rand(). This allowed for a comparative study between the two alter-

native PRNGs. The results of the experiment are described with the aid of

plotted graphs of the fitness, showing both the mean average and mean best
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Figure 4.1: Plot of the results achieved by the two GS implementations,
eoRng and rand() which showing the mean fitness(left) and the cumulative
frequency of success(right) on tackling the Santa Fe Ant Trail problem.

fitness and cumulative frequency of success attained by the particles in the

swarm over the course of the simulation. Table 4.1 shows the various param-

eter and population initialization settings chosen for each implementation.

Santa Fe Ant Trail

The plots presented above in Figure 4.1, represent the average fitness val-

ues sampled over 100 simulation runs by both GS implementations (eorng

and rand()), showing the mean fitness(left) and the cumulative frequency

of success(right) on tackling the Santa Fe Ant Trail problem. The mean

fitness samples, both best and average are almost identical although the

eorng implementation obtaining a slightly higher best fitness value. The

difference is far too small to be considered significant. However, the plot
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Figure 4.2: Plot of the results achieved by the two GS implementations,
eoRng and rand() which shows the mean fitness(left) and the cumulative
frequency of sauces(right) on tackling the Quartic Symbolic Regression prob-
lem.

of the cumulative frequency of success shows a definite improvement, it is

evident that the eorng implementation solved the Santa Fe Ant problem

more times than that of the alternative rand() implementation.

Quartic Symbolic Regression

The results obtained from the Quartic Symbolic Regression problem tackled

are presented in the two plots above in Figure 4.2. It is evident from the

results shown in both the best fitness(left) and the cumulative frequency

of success plots(right) that the GS implementation based on the superior

quality eorng PRNG outperforms the GS implementation that uses the

alternative, rand() PRNG. There is a significant performance improvement

in terms of the total number of successful solutions obtained by the eorng

GS implementation. It outperforms the weaker PRNG by a total of 8. This
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Figure 4.3: Plot of the results achieved by the two GS implementations,
eoRng and rand() which shows the mean fitness(left) and the cumulative
frequency of success(right) on tackling the 3 Multiplexer problem.

indicates that for this type of problem domain the choice of PRNG could

have a significant impact on the performance of the algorithm.

3 Multiplexer

Figure 4.4 shows the mean fitness(left) and cumulative frequency of suc-

cess(right) plots for the two alternative GS implementations on tackling the

3 Multiplexer problem indicate that there is no difference between the two

implementations. The mean best and average fitness and the total number

of successful runs are all equal. Thus, one can conclude that for this type of

problem the choice of PRNG does not in any way influence the performance

of the GS algorithm on this problem domain.
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Figure 4.4: Plot of the fitness achieved by the two GS implementations,
eoRng and rand() which shows the mean fitness(left) and the cumulative
frequency of success(right) on tackling the Mastermind problem.

Mastermind

Figure 4.4 shows the plots of the results obtained for this problem. The plot

of the best fitness(left) shows that there is a tie between both of the GS

implementations. However, there is a difference between the two implemen-

tations in the cumulative frequency plot(right). This shows that the eorng

GS implementation does solve the mastermind problem more than times,

although the difference is very slight i.e it only outperforming the rand im-

plementation one time more out a hundred runs. Needless to say that the

difference is deemed insignificant and thus one can conclude that in this type

of problem the choice of PRNG does not effect the overall performance of

the GS algorithm.
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Mean Best Mean Avg. Successful
Fit. (Std.Dev.) Fit. (Std.Dev.) Runs

S.F.A.T
rand() 0.81 (0.19) 0.04 (0.01) 34
eorng 0.83 (0.19) 0.04 (0.01) 38
Q.S.R
rand() 0.32 (0.34) 0.02 (0.01) 20
eorng 0.38 (0.39) 0.02 (0.01) 28

Multiplexer
rand() 0.98 (0.04) 0.49 (0.05) 87
eorng 0.98 (0.04) 0.49 (0.05) 87

Mastermind
rand() 0.90 (0.04) 0.43 (0.12) 12
eorng 0.90 (0.04) 0.45 (0.09) 13

Table 4.2: A summary of the results for each of the problems tackled by
both PRNGs, showing the Mean Best and Average Fitness with Standard
Deviations (delimited with parenthesis’) and the total number of Successful
Runs for each problem.

4.4 Discussion

Table 4.2 provides a summary and comparison of the results obtained for

two GS implementations, each using a different quality PRNG on tackling

the various problem domains. It shows that in terms of the total number

of successful solutions obtained for each of the problem domains over one

hundred runs, the GS implemented with the eorng PRNG outperforms the

rand() PRNG on three of the four problems, although there is only a differ-

ence of 1 run on the Mastermind problem. The performance is matched on

the 3 Multiplexer problem, with each implementation attaining a 87 runs

each. It is particularly evident from the Quartic Symbolic Regression prob-

lem that the two GS implementations are affected by the choice of PRNG.

With regards to the mean average fitness results, there is no significant

performance difference evident. The mean best fitness performance results

show that there is, again a significant difference on the Quartic Symbolic

Regression problem. A sight difference between the two implementations is
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also evident on the Santa Fe Ant Trail. However, the other two problems

achieve identical mean best fitnesses regardless of the choice of PRNG.

In conclusion, this investigation had the objective of determining each of the

following:

• If the choice of PRNG influences the performance of the GS algorithm

and to what extent.

• If a GS implemented with a high quality PRNG (such as the eorng)

outperforms a GS implemented with a poor quality PRNG(such as the

system rand()).

• If the case of a performance difference, is the performance difference

evident across all problem domains or is it specific to certain types of

problems.

It is evident from the results that the choice of PRNG does, in fact, influence

the performance of the GS algorithm on certain problems, with the stronger

PRNG implementation outperforming the weaker implementation. The ex-

tent of the performance difference varies depending on the type of problem,

for half of the problems there was only a very slight difference (Mastermind)

to no difference being evident at all (Multiplexer). Note that the eorng will

be adopted as the PRNG of choice for each of the experiments conducted in

Chapter 5.



Chapter 5

Variable-Length

Grammatical Swarm

5.1 Introduction

This Chapter presents a series of investigations into the effects of modifying

the vector-lengths representations in the PSO search component of the GS

algorithm. The primary objective of the Chapter is to (1) examine the ef-

fects of increasing particle representation sizes and (2) introduction a new

implementation of the GS algorithm, where the vector-length constraint is

removed which is referred to as the Variable-Length GS algorithm.

The following gives the structure of the Chapter:

• Section 5.2, documents an investigation conducted into the effects of

modifying the canonical fixed-length vector representations of GS. This

experiment involves increasing the vector-length of the population of

particle representations from 100 codons to 200 codons i.e. double its

original size. The results are presented in the form of a comparative

study between the original GS (100) and the larger 200 codon GS.
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• Section 5.3, introduces the Variable-Length GS, giving an overview

of the algorithm’s initialisation details and the four different variable-

length particle updated strategies developed. This Section presents

the following proof of concept Variable-Length GS experiments:

– Experiment A: A Variable-Length GS Initialised with 100 Codons

– Experiment B: A Variable-Length GS Initialised with 200 Codons

– Experiment C: A Comparative Analysis of the 100 and 200 Codon

Variable-Length GS.

• The final experiment analyses the evolution of the size of the variable-

length particle representations throughout simulation on tackling the

various problem domains presented in Chapter 3. This experiment

was conducted in an effort to gain further insight into the extent of

the variable-length particle change and more specifically to determine

if the GS suffers from bloat .

• The final Section presents an extensive discussion based on the results

obtained from each of the experiments in the Chapter.

5.2 Particle Size Investigations in Fixed-Length

GS

The particles in the GS algorithm [38] are represented as fixed-length vectors.

A full description of the implementation details concerning the fixed-length

aspect of the particles used in GS is provided in Section 3.2.4. In this sec-

tion we present the results of an experiment which was conducted in order

to determine the performance effect of increasing the size of the particles’

vectors or in other words increasing the amount of instructions that describe

a solution i.e. contained in the genome.
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In the conventional GS, the length of a particle was bounded to a hard-length

constraint of 100 elements, in the experiment documented here, this value

is doubled by initializing each particle in the swarm so that they contain

vectors of 200 dimensions (or codons). Adjusting the size of the vectors in

this way, means that during the mapping process there are exactly twice as

many codons in the genome.

This experiment aims to determine if an increased amount of codons will

assist the swarm in finding a solution with greater speed or perhaps finding

an ever better solution or both. As the quantity of codons, is effectively

doubled, there is an increased possibility that a large number of codons

will be redundant in the mapping of terminals to non-terminals as a

solution can potentially be produced with a small number of codons, par-

ticularly with the use of the wrapping operator. However, the fact that

the redundant codons are considered introns (i.e. they may be switched

on in subsequent iterations) and giving that number of codons constituting

the interons in this modified GS will typically be larger than those in the

conventional 100 codon implementation, may have a positive impact on the

performance of the modified implementation. For example, in the mapping

of a genome (particle) which contains 100 codons (elements), where the first

50 elements are used to derive terminals from non-terminal to results in

the construction a full solution. The remaining 50 unused codons are con-

sidered introns. An objective of this experiment is to determine if carrying

extra genetic information (in this case double i.e. 100 to 200), which will

probably be unused for the majority of the simulation, does give the swarm

an advantage.
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Setting Value
Population Size 30
Particle Vector-Length 200
Iterations 1000
VMAX +-255
CMin 0
CMax 255
Wrapping Operator On
Max Wraps Allowed 10
Number of Runs 100
PRNG eoRng

Table 5.1: The experimental settings for the Fixed-Length GS particle vector
size investigation.

5.2.1 Results

Two variants of the GS are used in this experiment:

• The conventional Fixed-Length GS initialised with all the parameters

as described by O’Neill and Brabazon in [38]. This GS implementation

is identified in the results by the following, GS, key.

• The same conventional Fixed-Length GS implementation as above but

in this case each of the particle vector representations is initialised such

that it now contains 100 more elements (codons) i.e. a total dimension

size of 200 for each of the current, next and best vectors. The

additional elements are also populated with random values real-values

in the range [CMin, CMax]. This GS implementation is identified in

the results below by the, GS(200), key.

These two GS implementations were used to tackle each of the benchmark

problems (See Section 3.4.1). The mean average and mean best particle

scores were recorded. The results compare the mean over a total of 100 runs

which is presented in the form of graphs in the following subsections under

the headings of the corresponding problem tackled. Table 5.1 summarises
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Figure 5.1: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the 100 codon and 200 codon GS implementations on
tackling the Santa Fe Ant Trail problem.

the implementation details used in this experimental setup.

Santa Fe Ant Trail

The Santa Fe Ant trail problem was tackled by both the original 100 di-

mension particle representation, GS and the 200 dimension representation,

GS(200). Both graphs show that there is a significant difference between

the two implementations for this type of problem. Although, the mean

fitness graph(left) shows that the mean average fitness difference between

both implementations is very slight, the GS(200) implementation achieved

a much higher mean best fitness, scoring a maximum of 0.90 at the last

iteration compared to a mean best fitness of 0.83 for the GS. The improved

performance is much more evident, in the cumulative frequency of success

plot(right). There is a very significant improvement with the 200 codon im-
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Figure 5.2: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the 100 codon and 200 codon GS implementations on
tackling the Quartic Symbolic Regression problem.

plementation which solves the ant problem 20 times more than that of the

GS implementation.

Quartic Symbolic Regression

An instance of the Quartic Symbolic Regression problem was tackled by

both of the GS implementations, for 100 runs each. As can be seen from the

two plots presented above in Figure 5.2, the mean best and mean average

fitness(left) and the cumulative frequency(right) of success results are almost

identical. The only difference being the cumulative frequency plot for the

GS, obtaining one more successful run than the GS(200) implementation.

However, the difference is too small to be of any significance. Overall, the

results show that the there is no gain in performance achieved when using

an increased particle vector representation.
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Figure 5.3: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the 100 codon and 200 codon GS implementations on
tackling the 3 Multiplexer problem.

The 3 Multiplexer

The multiplexer problem is the third problem tackled in this experiment.

The mean fitness(left) and cumulative frequency of success(right) plots are

shown above in Figure 5.3. As can be seen the mean best and average fitness

differences are very slight. The mean best for GS(200) achieved a very slight

improvement with it recorded a value of 0.99 compared to 0.98.The same

is true for the mean average fitness values recorded, with the 100 vector, GS,

sored 0.49 compared to the 200 vector implementation, GS(200), 0.5. The

cumulative frequency of success plot shows that the GS(200) is evidently

the stronger algorithm in this problem domain; it found the target solution

5 times more that that of the 100 vector implementation.
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Figure 5.4: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the 100 codon and 200 codon GS implementations on
tackling the Mastermind problem.

Mastermind

An instance of the mastermind problem was the fourth problem tackled.

The first plot(right) in Figure 5.4 shows the mean best and average fitnesses

shows that the plots are identical, apart from a very slight improvement by

the 200 codon GS(200)implementation. As can be seen from the cumula-

tive frequency of success plot(left), there is an improvement, with the 200

codon GS(200) solving the problem a total of 3 times more. Note that the

mastermind is a particularly difficult problem for the both the GS and the

GE(See Section 2.4) algorithms, therefore any slight improvement such as

that obtained here, could in fact, be very promising.
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5.3 Introducing the Variable-Length Grammatical

Swarm Representation

This following introduces the novel variable-length implementation of the

Grammatical Swarm algorithm which will be referred to as the Variable-

Length GS. In contrast to the GS algorithm presented in Chapter 3 and

Chapter 4 this implementation adopts variable-length particle vectors. Al-

though the elements were bounded in length in this canonical GS, not all

elements were necessarily used to construct a program during the mapping

process, and as such the programs generated were variable in size. This

study aims to determine if a variable-length particle representation can out-

perform the fixed-length GS representation. The following will present the

Variable-Length GS implementation details as well as four different imple-

mentation strategies. The results of each of the strategy implementations

on tackling the four problem domains are also presented subsequently.

5.3.1 Initialisation

For each particle in the swarm a random number is generated in the range

[dimMin, dimMax], where dimMin is set to 1 and dimMax is set to the de-

sired maximum number of codons. This random number determines the

length of the particles vector. For example, if the number 40 is randomly

generated for a particle in the swarm. This number is used to determine the

vector length of that particle. Thus, in this case, it constitutes a vector of

40 dimensions in length. After each of the thirty particles have been created

with variable length vectors, they are then initialised. The particles cur-

rent vectors are initialised with random numbers in the range [CMim,CMax]

and similarly the velocity vectors are also populated with random numbers,

however they are bound to values drawn from ±255.
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Four different approaches to a variable-length particle swarm algorithm were

investigated in this study.

5.3.2 Variable-Length GS Strategies

Strategy I - Each particle in the swarm is compared to the global best

particle (gbest) to determine if there is a difference between the length of

the current particles vector and the length of the gbest vector. If there is no

difference between the vector sizes then an update is not required and the

algorithm simply moves on and compares the next particle to gbest. How-

ever, when there is a difference between the vector lengths, the particle is

either extended or truncated. If the current particles, pi vector length is

shorter than the length of gbest, dimensions are added to the particles vector

extending it so that it is now equivalent in length to that of gbest. The par-

ticle’s new dimensions contain values which are copied directly from gbest.

For example, if gbest is a vector containing fifty dimensions and the current

particle has been extended from forty five to fifty dimensions then the values

contained in the last 5 dimensions (46-50) of gbest are copied into the five

new dimensions of the current particle. If the particle has a greater num-

ber of dimensions than the gbest particle, then any the extra dimensions are

simply truncated so that both gbest and the current particle have equivalent

vector lengths.

Strategy II - This strategy is similar to Strategy I, the only difference is

the method in which the new dimensions are copied. In the first strategy,

when the current particle, xi is extended the particle’s new dimensions are

populated by values which are copied directly from gbest. In Strategy II,

values are not copied from gbest instead random numbers are generated in

the range [CMin, CMax] and these values are copied into each of xi’s new

dimensions.
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Strategy III - The third strategy involves the use of probabilities. Given

a specified probability, the length of the particle is either increased or de-

creased. A maximum of one dimension can only be changed at a time i.e.

either a dimension is either added or removed from the current particle, xi.

If xi is longer than gbest then the last dimension of xiis discarded. If xi is

shorter than gbest then xi is increased by adding an extra dimension. In

this situation the new dimension takes the value of a random number in the

range [CMin, CMax].

Strategy IV - The fourth strategy involves the generation of a random

number to determine the number of dimensions that will be added to or

removed from the current particle, xi. If the length of xiis shorter than the

length of gbest the difference, dif between the length of gbest and the length

of xi is calculated. Then a random whole number is generated in the range

[0, dif ]. The result of this calculation is then used to determine how many

dimensions will be truncated from xi. A similar strategy is applied when

the length of xi is smaller than the length of gbest. However, in this case the

random number generated is used to determine the number of dimensions

that xi will be extended by. After xi is extended, each of these extended

dimensions are then populated with random numbers generated in the range

[CMin, CMax].

A strategy is not applied ever time it was possible to modify xi, instead,

applying a strategy is determined by the outcome of a certain probability

function i.e. the outcome of this function is used to determine if a strategy is

to be applied to xi. In our implementation, a probability of 0.5 was selected.

Therefore 50% of the time a specified strategy is applied and 50% of the time

xi is not modified at all.
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Setting Value
Population Size 30
Particle Vector-Length Variable
Particle Vector-Length Initialisation [1,100]
Sensible Initialisation Off
Iterations 1000
VMAX +-255
CMin 0
CMax 255
Wrapping Operator On
Max Wraps Allowed 10
Number of Runs 100
PRNG eoRng

Table 5.2: The experimental settings for the Variable-Length GS particle
vector size investigation.

5.4 Proof of Concept Experiments and Results

5.4.1 Experiment A: A Variable-Length GS Initialised with

100 Codons

In order to determine the feasibility of generating solutions using a GS algo-

rithm with variable-length particles, four Variable-Length GS implementa-

tions were produced and the performance of each implementation was mea-

sured. Each of these four implementations were identical in every aspect

except for the strategies that they employed to update the swarm particles.

These strategies were presented in Section 5.3.2 above. The graphs in the fol-

lowing subsections present the results obtained by the four implementations

on tackling the various problem domains. Each of the implementations are

referred to in the following subsections according to the strategy(Strategy

I - Strategy IV) which it employed. Table 5.2 provides a summary of the

settings used in the in each of the Variable-Length GS algorithms.
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Figure 5.5: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the four Variable-Length GS strategies initialised with
100 codons on tackling the Santa Fe Ant Trail problem.

5.5 Results

Santa Fe Ant Trail

The four Variable-Length GS implementations each tackled an instance of

the Santa Fe Ant Problem. The results of these are presented in the mean

fitness and cumulative frequency of success plots in Figure 5.1. The first plot

shows that the most successful implementation is the one which employed,

Strategy IV, scoring a total an average best fitness of 0.80 and an average

best fitness of 0.03. The worst performance in terms of mean fitness was

Strategy II. The cumulative frequency of success plot show that the Strategy

IV is also the best at finding correct solution; it did so a total of 31 times.

The weakest performance was Strategy II as it found a successful solution 7

times less than that of Strategy IV.
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Figure 5.6: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the four Variable-Length GS strategies initialised with
100 codons on tackling the Quartic Symbolic Regression problem.

Quartic Symbolic Regression

The Quadratic Symbolic Regression problem was also tackled by the four

GS implementations. It is evident from the two plots presented above in

Figure 5.6 which show the mean fitness and cumulative frequency of success

that there the different strategy implementations have a significant effect

on the performance of the Variable-Length GS algorithm for this type of

problem. The third strategy is the winner in terms of both mean best and

successful runs. It obtained a total of mean best fitness of 0.23and it found

the solution 13 times. The implementation that employed Strategy IV was

by far the weakest, scoring only 0.25 for its mean best fitness and finding

the only finding a full solution 5 times. The mean average fitness was the

same for all four implementations, at 0.01.
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Figure 5.7: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the four Variable-Length GS strategies initialised with
100 codons on tackling the 3 Multiplexer problem.

The 3 Multiplexer

The multiplexer problem was the third problem tackled by the GS imple-

mentations. The results (Figure 5.7) obtained from this problem suggest

that there is little difference in the various implementations. This is par-

ticularly evident form the mean best fitness plot, where the three of the

strategies converge at the same point, 0.94 and the fourth, Strategy I con-

verges just below it scoring a mean best fitness of 0.93. The cumulative

frequency of success plot, also shows that there is little difference with the

weakest strategy finding the solution 54 times in comparison to the Strategy

IV, which finds it three times more.
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Figure 5.8: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the four Variable-Length GS strategies initialised with
100 codons on tackling the Mastermind problem.

Mastermind

An instance of the mastermind problem was tackled by the four GS imple-

mentations, in order to further verify the feasibility of producing solutions

in the form of computer programs using a variable-length GS particle repre-

sentation. The results from this problem are shown in Table 5.8. The first

plot of the mean best and average fitnesses shows that the plots are almost

identical, apart from a very slight disimprovement in terms of mean best

fitness runs by the Strategy I implementation. The cumulative frequency of

success plot shows that the difference between the implementations is also

very slight. The best performance was achieved by Strategy III, with a total

of 14 successful runs while the first strategy only solved the problem 10

times.
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5.5.1 Experiment B: A Variable-Length GS Initialised with

200 Codons

Section 5.2 presented the results of a study conducted on the performance

effect of an increased particle size in the Fixed-Length GS. In that study, the

size of the particles’ vectors was increased to 200 dimensions. The swarm

particles in the canonical GS, presented in [38], were 100 dimensions in size,

therefore that study was conducted with a particle vector size(or the number

of codons) that was effectively doubled. As can be seen from the the results

of that experiment a significant improvement can be obtained by implement-

ing a GS with a larger particle size representation. These improved results

prompted a similar study on the Variable-Length GS implementation. The

following subsections presents the results of that study.

Unfortunately, it is not possible to conduct the exact same particle size study

on the Variable-Length GS. The reason for this is obvious, because each

variable-length particle in the search space does not contain a fixed number

of dimensions. Instead, the same initialization procedure as described in

Section 5.3.1 is used but in this case, during particle initiation the random

numbers are drawn from the range [1, 200] as opposed to the previous range

of [1, 100]. Each time a particle is initialised, its length must be set, as each

particle is variable in length a number is chosen randomly and this number

determines the length of the particle. Increasing the range (from 100 to 200)

that the random numbers are drawn from, effectively increases (doubles) the

potential vector length of each particle in the swarm. Thus the 200 particle

size or 200 codon Variable-Length experiment presented here is setup in a

very similar method to the bounded implementation study of 5.2 in an effort

to ensure a relatively fair comparison of experiment results.

This study is conducted similarly to the the 100 codon Variable-Length
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Setting Value
Population Size 30
Particle Vector-Length Variable
Particle Vector-Length Initialisation [1, 200]
Sensible Initialisation Off
Iterations 1000
VMAX +-255
CMin 0
CMax 255
Wrapping Operator On
Max Wraps Allowed 10
Number of Runs 100
PRNG eoRng

Table 5.3: The experimental settings for the Variable-Length GS particle
vector size investigation for the 200 codon implementation.

GS implementation presented in Experiment A 5.4.1. Again, four different

Variable-Length GS algorithm implementations are produced, one for each of

the four strategies. In the case of the particles are initialised as described in

the previous paragraph i.e. the random number generator function responsi-

ble for determining the number of dimensions that a particle may contain is

modified so that numbers are now drawn from an increased range. The four

implementations are used to tackle the various problems, 100 times for each

problem and for each strategy. The results are provided in the following

subsections, under the heading of the respective problem tackled. Table 5.3

provides a summary of the settings used for each of the implementations.
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Figure 5.9: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the four Variable-Length GS strategies initialised with
200 codons on tackling the Santa Fe Ant Trail problem.

5.6 Results

Santa Fe Ant Trail

The first problem tackled by the 200 codon implementation is the Santa Fe

Ant Trail. As can be seen from Figure 5.9 in both mean and best fitness

plots(left), Strategy I achieves the highest fitness score and the Strategy IV

implementation is the weakest. The cumulative frequency plots confirm this,

as the first strategy is obviously the strongest, solving the problem a total

of 45 times and Strategy IV is also the weakest in terms of successful runs,

finding a full solution only 33 times.
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Figure 5.10: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the four Variable-Length GS strategies initialised with
200 codons on tackling the Quartic Symbolic Regression problem.

Quartic Symbolic Regression

Each of the four increased codon length, Variable-Length GS implementa-

tions tackled an instance of the quartic symbolic regression problem. The

third strategy implementation was by far the strongest. This is evident

from Figure 5.10 in both the mean and average fitness plot(left) and the

cumulative frequency of success plot(right). This implementation solves the

problem 26 times and achieves an mean best fitness of 0.36. As in the Santa

Fe Ant problem, the implementation that uses Strategy IV performs the

worst, solving the problem just 15 times, with a mean best of just 0.26.
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Figure 5.11: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the four Variable-Length GS strategies initialised with
200 codons on tackling the 3 Multiplexer problem.

The 3 Multiplexer

The third problem tackled was the 3 Multiplexer. Figure 5.11 shows that

Strategy III is the most successful for this type of problem. It is particularly

evident in the cumulative frequency of success plot(right) where it evidently

outperforms the other strategies, finding the target multiplexer 77 times

compared to the weakest Strategy I which solves the problem 6 times less.

Although this its success is not as evident in the mean fitness plot(left) it is

still achieves the highest score.
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Figure 5.12: Plot of the Mean Fitness(left) and Cumulative Frequency of
Success(right) for the four Variable-Length GS strategies initialised with
200 codons on tackling the Mastermind problem.

Mastermind

An instance of the mastermind if tackled by each of the four implemen-

tations. Figure 5.12 shows both mean best fitness(left) and cumulative of

success(right) plots of the results. It is evident that Strategy II is the most

successful. It achieves a total of 15 successful runs and it also narrowly

beats the competing implementations in terms of mean best fitness.
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5.6.1 Experiment C: A Comparative Analysis of the 100 and

200 Codon Variable-Length GS

The objective of this Section is to provide a comparison between the two

Variable-Length Grammatical Swarm implementations presented in the pre-

vious experiments in Section 5.4.1 and Section 5.3. The results of these

experiments are summarised in Table 5.4 on page 98. The Table shows

the Mean Best, Mean Average and the total number of Successful Runs at-

tained by the corresponding algorithm implementation. The four strategies

are compared for both the 100 and 200 codon implementations under the

headings of the various problem domains.

The results show that there is no clear winner in terms of the most successful

strategy. When looking at the mean best fitness and total number of suc-

cessful runs, this variation in performance becomes evident with Strategy

I being the most successful on the Santa Fe Ant Trail, Strategy II on the

Mastermind and Strategy III wins on both the Quartic Symbolic Regression

and 3 Multiplexer problems. Thus, it is difficult to form a definite conclu-

sion with regard to the strategies, however it should be recognised that the

different strategies can significantly affect the performance of the Variable-

Length GS depending on the type of problem domain tackled.

One can form a more definite conclusion with regard to the different codon

length initialisation. It is evident for the results that the 200 codon Variable-

Length GS achieves higher performance levels when compared to the 100

codon implementation. The 200 codon implementation in the clear winner

it attained a higher mean best fitness and it solved the problems the most

times across all four problems. Thus, it is recommended to initialise the

Variable-Length GS to 200 condon for maximum performance.
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Mean Best Mean Avg. Successful
Fit. (Std.Dev.) Fit. (Std.Dev.) Runs

Santa Fe Ant
(100 Codon) I 0.77 (0.17) 0.02 (0.02) 27
(200 Codon) I 0.86 (0.19) 0.03 (0.02) 45
(100 Codon) II 0.77 (0.19) 0.02 (0.02) 24
(200 Codon) II 0.84 (0.19) 0.03 (0.02) 40
(100 Codon) II 0.78 (0.20) 0.02 (0.02) 27
(200 Codon) III 0.80 (0.19) 0.03 (0.02) 35
(100 Codon) IV 0.80 (0.19) 0.03 (0.02) 31
(200 Codon) IV 0.81 (0.18) 0.03 (0.02) 33

Q.S.R
(100 Codon) I 0.20 (0.30) 0.01 (0.01) 12
(200 Codon) I 0.32 (0.37) 0.02 (0.07) 22
(100 Codon) II 0.19 (0.28) 0.01 (0.01) 10
(200 Codon) II 0.29 (0.36) 0.02 (0.01) 20
(100 Codon) III 0.23 (0.31) 0.01 (0.01) 13
(200 Codon) III 0.36 (0.38) 0.02 (0.01) 26
(100 Codon) IV 0.16 (0.20) 0.01 (0.01) 5
(200 Codon) IV 0.26 (0.32) 0.02 (0.01) 15
Multiplexer
(100 Codon) I 0.93 (0.08) 0.40 (0.11) 54
(200 Codon) I 0.95 (0.07) 0.46 (0.08) 71
(100 Codon) II 0.94 (0.08) 0.40 (0.10) 55
(200 Codon) II 0.96 (0.07) 0.45 (0.08) 73
(100 Codon) III 0.94 (0.07) 0.40 (0.09) 54
(200 Codon) III 0.97 (0.06) 0.46 (0.08) 77
(100 Codon) IV 0.94 (0.07) 0.40 (0.09) 57
(200 Codon) IV 0.95 (0.07) 0.46 (0.09) 72
Mastermind
(100 Codon) I 0.90 (0.04) 0.36 (0.15) 10
(200 Codon) I 0.89 (0.06) 0.39 (0.14) 12
(100 Codon) II 0.90 (0.04) 0.36 (0.14) 12
(200 Codon) II 0.91 (0.04) 0.40 (0.13) 15
(100 Codon) III 0.90 (0.04) 0.38 (0.14) 14
(200 Codon) III 0.90 (0.03) 0.40 (0.13) 11
(100 Codon) IV 0.90 (0.04) 0.38 (0.15) 12
(200 Codon) IV 0.90 (0.04) 0.41 (0.11) 13

Table 5.4: A comparison of the results obtained by the 200 codon and
100 codon particle initialised Variable-Length GS Experiment. It shows the
Mean Best and Average Fitness with Standard Deviations (delimited with
parenthesis’) and the total number of Successful Runs for each problem
tackled by the four strategies.
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5.7 Variable-Length GS Particle Size Evolution

In many population-based algorithms that use variable-length representa-

tions experience a problem where the size of the solution representation

increases in length during the evolutionary process. This increase can be

very large and it is referred to as bloat or fluff [23]. Bloat increases the

structural complexity of the algorithm and results in an is a very ineffi-

cient algorithm especially in terms of computer memory resources. Many

studies have been conducted on the bloating of representations such as

[22, 23, 21, 36, 53, 51, 52, 25]. There are many general explanation for

bloat which can be generally applied to any progressive search technique.

Langdon defines bloat as

“The increase in program’s size from one generation to the next

while the performance of programs within the population is es-

sentially the same as in previous generations.”

Bloat is very common in GP, therefore in an effort to determine if bloat

occurs in the Variable-Length GS an investigation was performed which ex-

plores the evolution of particle size in the Variable-Length GS algorithm and

the results of this experiment are present in this section.

The investigation aims to determine each of the following:

• Does bloat occur in the Variable-Length GS algorithm and if so is it

specific to a particular problem domain or a set of problem domains.

• Do particles converge at a certain size and if so, is there a particular

particle size or range that a particle achieves a good fitness.

• Is there a common pattern of particle size change throughout the 1000

iterations.



5.7. Variable-Length GS Particle Size Evolution 100

The experiment was designed such that at each iteration, the vector size

of the best and average particles were recorded in the problems tackled in

the experiment described in the Section 5.4.1 i.e for the 100 Codon GS

Initialisation. That is, the particle size (codon length) results presented

here were extracted from Experiment A. The results are presented below

in the form of two plots, the first shows the plot of the size of the mean

best and average particle vector (or codon) size at each iteration in the

experiment. The second plot shows the best particle size of the mean best

particle at a certain fitness. E.g. a particle with a mean best fitness of

0.6 has in of 40 dimensions in size. A table accompanies each of the four

problems in an effort to aid in the analysis of the particle size and mean

fitness comparison. In each of these tables the codon lengths are shown

delimited by parenthesis’, where the value under the Mean Best Fit. column

is the Mean gbest Codon Length and the values which fall under the heading

of Mean Avg Fit. represent the Mean Average Codon Length recorded.
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5.7.1 Results

Santa Fe Ant Trail
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Mean Best Mean Avg. Successful
Fit. (Cod. Len.) Fit. (Cod. Len.) Runs

Santa Fe Ant
I 0.77 (50) 0.02 (54) 27
II 0.76 (51) 0.02 (51) 24
III 0.78 (51) 0.02 (51) 27
IV 0.80 (61) 0.02 (61) 31

The two plots show that the codon length of the mean gbest and average

particle is in the range [50, 61]. This suggest that bloat is not an issue for

this type of problem. The Strategy IV implementation which solved the

problem the most times and had the achieved the highest fitness out of all

strategies, had a particle length of 61. This may employ that larger particles

perform better. It is also interesting to note that the particle size seems to

fluctuate frequently throughout the iterations(albeit small changes).
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Quartic Symbolic Regression
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Best VGS I
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Best VGS IV

Mean Best Mean Avg. Successful
Fit. (Cod. Len.) Fit. (Cod. Len.) Runs

Q.S.R
I 0.20 (45) 0.01 (42) 12
II 0.19 (49) 0.01 (48) 10
III 0.23 (55) 0.01 (54) 13
IV 0.16 (54) 0.01 (54) 5

The results from the Quartic Symbolic Regression problem show that the

particle length never go beyond the range [42, 55] for mean best and average

fitness. In the Santa Fe Ant Trail problem the particles with the most codons

score the highest fitness both in terms of mean best and average and total

number of successful runs, this is also the case in this problem. However, the

lowest fitness has also has a relatively high particle size. Therefore, the large

the particles, do not necessarily mean attain high a fitness nor outperform

the particles with fewer codons.
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The 3 Multiplexer
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Best VGS I
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Best VGS III
Best VGS IV

Mean Best Mean Avg. Successful
Fit. (Cod. Len.) Fit. (Cod. Len.) Runs

Multiplexer
I 0.93 (49) 0.40 (46) 54
II 0.94 (52) 0.40 (49) 55
III 0.94 (57) 0.40 (56) 54
IV 0.94 (53) 0.40 (49) 57

As can be seen in the plots and table, the 3 multiplexer problem result are

too similar to draw a conclusion with regards to the codon length, however

the evolution of the codon size shows that the particles tend to grow rapidly

at the start until a certain fitness point is reached, then a high period of

fluctuation is evident for the remainder of the iterations.
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Mastermind
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Best VGS I
Best VGS II

Best VGS III
Best VGS IV

Mean Best Mean Avg. Successful
Fit. (Cod. Len.) Fit. (Cod. Len.) Runs

Mastermind
I 0.89 (61) 0.36 (59) 10
II 0.90 (57) 0.36 (55) 12
III 0.90 (65) 0.38 (64) 14
IV 0.90 (60) 0.38 (58) 12

The particle size for the mastermind is presented in the plots above along

with a table which gives additional information. The plots are somewhat

similar the ones attained on tackling the multiplexer problem. Again we see

that bloat is certainly not an issue, with the maximum number of codons

being 65. Slight fluctuation of particle size throughout the course of the

simulation is also evident here.
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5.8 Discussion

Each of the experiments are discusses below under its corresponding exper-

iment heading with the aid of result summary Tables where deemed appro-

priate.

5.8.1 Fixed-Length Particle Size Investigation

The first experiment which is documented in Section 5.2, performed an in-

vestigation into the effects of modifying the canonical fixed-length particle

representation GS. The modification referred to is in the form of an in-

creased number of codons in the particle representations. The canonical GS

presented in the [38] and in the experiments described in the previous Chap-

ters adopted a GS implementation with particles consisting of 100 codons.

This study doubles the size of the particles to 200 codons in an effort to

gain a performance improvement. Table 5.5 gives a summary of the results

recorded.

It is shown from the table that a significant performance improvement can

be obtained by doubling the size of the codons in the fixed-length vector.

This improvement is most evident in terms of total number of successful

runs and in terms of mean best fitness. A very significant improvement was

gained on tackling the Santa Fe Ant Trail problem, beating the smaller 100

codons implementation by a total of 20 runs and the mean best fitness im-

proved by 7%. The differences were not as large on the 3 Multiplexer and

Mastermind problems, with no significant improvement in terms of mean fit-

ness, however the number of successful solutions does increase. The Quartic

Symbolic Regression showed no significant change. One can say that the 200

codon GS implementation is superior to the 100 codon implementation and

it it is suggested that the 200 codon version should be adopted, certainly

when tackling problems such as the Santa Fe Ant Trail, 3 Multiplexer and
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Mean Best Mean Avg. Successful
Fit. (Std.Dev.) Fit. (Std.Dev.) Runs

S.F.A.T
100 Codons 0.83 (0.19) 0.04 (0.01) 38
200 Codons 0.90 (0.16) 0.05 (0.01) 58

Q.S.R
100 Codons 0.38 (0.39) 0.02 (0.01) 28
200 Codons 0.38 (0.38) 0.02(0.01) 27

Multiplexer
100 Codons 0.98 (0.04) 0.49 (0.05) 87
200 Codons 0.99(0.03) 0.50 (0.05) 92

Mastermind
100 Codons 0.90 (0.04) 0.45 (0.09) 13
200 Codons 0.91 (0.04) 0.43 (0.12) 16

Table 5.5: A summary of the results for the Fixed-Length Particle Size
Experiments, showing the Mean Best and Average Fitness’ with Standard
Deviations (delimited with parenthesis’) and the total number of Successful
Runs on tackling each of the problem domains.

Mastermind.

5.8.2 Variable-Length GS 100 Codon Implementation

Two different experiments were conducted using the Variable-Length GS

algorithm. The first of these adopted a 100 codon initialisation strategy

i.e. the maximum number of codons that a particle can take on is 100

or a maximum vector size of 100 dimensions. A summary of the results

for each of the four strategies on tackling the various problems is shown

in the Table 5.6. It is clear that the different strategies do influence the

performance of the GS algorithm. While there is no clear winner across all

four problem strategies, III and IV were the most successful overall, with

Strategy IV producing best performance on the Santa Fe Ant Trail and

Multiplexer problems, while Strategy III had the better performance on the

Quartic Symbolic Regression and Mastermind instances.



5.8. Discussion 107

Mean Best Mean Avg. Successful
Fit. (Std.Dev.) Fit. (Std.Dev.) Runs

Santa Fe Ant
I 0.77 (0.17) 0.02 (0.02) 27
II 0.77 (0.19) 0.02 (0.02) 24
II 0.78 (0.20) 0.02 (0.02) 27
IV 0.80 (0.19) 0.03 (0.02) 31

Q.S.R
I 0.20 (0.30) 0.01 (0.01) 12
II 0.19 (0.28) 0.01 (0.01) 10
III 0.23 (0.31) 0.01 (0.01) 13
IV 0.16 (0.20) 0.01 (0.01) 5

Multiplexer
I 0.93 (0.08) 0.40 (0.11) 54
II 0.94 (0.08) 0.40 (0.10) 55
III 0.94 (0.07) 0.40 (0.09) 54
IV 0.94 (0.07) 0.40 (0.09) 57

Mastermind
I 0.90 (0.04) 0.36 (0.15) 10
II 0.90 (0.04) 0.36 (0.14) 12
III 0.90 (0.04) 0.38 (0.14) 14
IV 0.90 (0.04) 0.38 (0.15) 12

Table 5.6: A summary of the results obtained by the [1, 100] particle ini-
tialised Variable-Length GS Experiment. It shows the Mean Best and Av-
erage Fitness’ with Standard Deviations (delimited with parenthesis’) and
the total number of Successful Runs for each problem tackled by the four
Variable-Length GS strategies.

5.8.3 Variable-Length GS 200 Codon Implementation

In the fixed-length particle size investigation documented Section 5.3, an

investigation was performed into the performance effects of increasing the

particle representation to double its original size. A similar1 study was

performed on the Variable-Length GS and it is documented in Section 5.3.

A summary of the results for each of the four Variable-Length GS strategies
1The Variable-Length GS uses a different implementation strategy to that of its fixed-

length counterpart therefore it was not possible to perform the study such that every aspect
of the variable-length implementation was identical to the fixed-length implementation,
however an adjustment was made to the Variable-Length GS implementation in an effort
to achieve a relatively fair comparison (See Section 5.3)
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Mean Best Mean Avg. Successful
Fit. (Std.Dev.) Fit. (Std.Dev.) Runs

Santa Fe Ant
I 0.86 (0.19) 0.03 (0.02) 45
II 0.84 (0.19) 0.03 (0.02) 40
III 0.80 (0.19) 0.03 (0.02) 35
IV 0.81 (0.18) 0.03 (0.02) 33

Q.S.R
I 0.32 (0.37) 0.02 (0.07) 22
II 0.29 (0.36) 0.02 (0.01) 20
III 0.36 (0.38) 0.02 (0.01) 26
IV 0.26 (0.32) 0.02 (0.01) 15

Multiplexer
I 0.95 (0.07) 0.46 (0.08) 71
II 0.96 (0.07) 0.45 (0.08) 73
III 0.97 (0.06) 0.46 (0.08) 77
IV 0.95 (0.07) 0.46 (0.09) 72

Mastermind
I 0.89 (0.06) 0.39 (0.14) 12
II 0.91 (0.04) 0.40 (0.13) 15
III 0.90 (0.03) 0.40 (0.13) 11
IV 0.90 (0.04) 0.41 (0.11) 13

Table 5.7: A summary of the results obtained by the [1, 200] particle ini-
tialised (200 Codon) Variable-Length GS Experiment. It shows the Mean
Best and Average Fitness’ with Standard Deviations (delimited with paren-
thesis’) and the total number of Successful Runs for each problem tackled
by the four Variable-Length GS strategies.

on tackling the various problems is shown in Table 5.7.

Firstly, it is obvious that there is a significant performance increase to be

gained compared to the 100 codon variable-length implementation. Sec-

ondly, as is the case in the 100 codon implementation, the choice of strategy

does effect the performance of the algorithm. In this 200 codon imple-

mentation, there no one strategy wins on all problems. The results vary

considerably across each of the problem domains. Strategy III is the most

successful as it is the winner on two of tackling both the Quartic Symbolic
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Regression and Multiplexer problems. On the Santa Fe Ant Trail problem,

Strategy I is most successful and Strategy II wins on tacking an instance of

the Mastermind problem.

5.8.4 Variable-Length GS Comparative Analysis

Section 5.6.1 presented a comparison of the two Variable-Length experi-

ments, namely the 100 codon implementation and the 200 codon imple-

mentation. As perviously discusssed, the results showed that none of the

strategies were completley successful across all problem domains, instead

there was a large variation in their performances. For instance, a Strategy

that performed best on the Santa Fe Ant Trail problem could perform very

poor on the Mastermind problem. It is recommended that the type of strat-

egy selected should consider the problem domain that will be tackled. As

for the number of codons that the algorithm should be initialised to, it is

recommended that the larger 200 codon implementation should be adopted

regardless of the type of problem.

5.8.5 The Evolution of Size in the Variable GS

The results from the analysis into the evolution of size in the Variable-Length

GS particle representations suggest that the is no evidence of bloat. This

is an interesting observation as in many variable-length Evolutionary Algo-

rithms the representations tend to grow over simulation time. However, the

results show that the more successful particles tend to be those with the

most codons; this is the case in three out of the four problem domains. The

absence of bloat is a characteristic of the swarms behaviour warrants further

investigation.
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Mean Best Mean Avg. Successful
Fit. (Std.Dev.) Fit. (Std.Dev.) Runs

Santa Fe Ant
GS (Var) 0.86 (0.19) 0.03 (0.02) 45
GS (Fix) 0.90 (0.16) 0.05 (0.01) 58
Q.S.R

GS (Var) 0.36 (0.38) 0.02 (0.01) 26
GS (Fix) 0.38 (0.39) 0.02 (0.01) 28

Multiplexer
GS (Var) 0.97 (0.06) 0.46 (0.08) 77
GS (Fix) 0.99 (0.03) 0.50 (0.05) 92

Mastermind
GS (Var) 0.91 (0.04) 0.40 (0.13) 15
GS (Fix) 0.91 (0.04) 0.43 (0.12) 16

Table 5.8: A comparison of the results obtained by the best Variable-Length
GS and best Fixed-Length GS. It shows the Mean Best and Average Fitness
with Standard Deviations (delimited with parenthesis’) and the total number
of Successful Runs for each problem tackled by the four strategies.

Table 5.8 presents a final comparison between the best performances of both

fixed-length and variable-length representation algorithms, in terms of to-

tal number of successful runs, across all strategies and codon implemen-

tations. It is shown that the fixed-length implementation achieves better

performances as it beats the variable-length counterpart on all problems.

The results in this table were attained by the larger 200 on all problems

apart from the Quartic Symbolic Regression where its best performance was

achieved by with the 200 codon implementation. As such, the recommenda-

tion at present would be to adopt the Fixed-Length GS implemented with

particle representation of 100 codons.

In summary, the following conclusions can be drawn from the series of in-

vestigations examined in this Chapter:

• Doubling the total number of codons in the particle representation

in the Fixed-Length Grammatical results in a significant performance
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improvement across all problem domains.

• It is possible to generate computer programs to solve a diverse set of

benchmark program-generation problems using a variable-length par-

ticle swarm algorithm.

• The Variable-Length GS does not suffer from bloat.

• The overall best performance achieved on tackling the various prob-

lems was achieved using the Fixed-Length GS implemented with par-

ticle representation of 200 codons.



Chapter 6

Conclusion

This Chapter consists of two sections; the first gives a brief overview of the thesis

highlighting the primary findings and contributions and the second discusses

possible research directions that could strengthen the Grammatical Swarm (GS)

algorithm by extending and refining the work presented in this study.

6.1 Summary

Chapter 2, explored the scientific background of this thesis. Firstly it in-

troduced the concept of numeric optimisation and this was followed by an

overview of the Evoutionary Computation (EC) methodology which pro-

vided an explanation of the more traditional population-based Evolutionary

Algorithms(EAs). This formed the grounding for the introduction of two

more resent EC techniques, namely the Grammatical Evolution(GE) and

Particle Swarm Optimisation(PSO).

The research conducted in this study is based on Social Programming or

more specifically the GS Algorithm which was presented in Chapter 3. GS

is a hybrid algorithm consisting of a Particle Swarm learning algorithm cou-

pled to Grammatical Evolution genotype-phenotype mapping to generate



6.1. Summary 113

programs or solution in an arbitrary language.

This thesis documented the results of a number of empirical investigations

into the GS algorithm. The first of these investigation conducted was pre-

sented in Chapter 3. This was a verification experiment, in that it had the

objective of reproducing an existing study. Specifically, a GS algorithm was

developed so that it was identically in every aspect to that of the original

GS presented in that algorithms proof of concept paper [38]. The new imple-

mentation was constructed based entirely on the information on that paper

using the same settings and parameters as the original. The newly imple-

mented algorithm was then evaluated on the same set of test problem. The

results showed that there was some variation in the two sets of results with

a significant difference between the mean average results recorded. Upon

investigation, the deviations were found to be the result of a simple calcula-

tion error in the original implementation and thus, both GS implementations

were considered valid.

Chapter 4 presented an empirical investigation conducted into the perfor-

mance effects of using two different quality Pseudo-Random Numbers Gen-

erators (PRNG) on the GS algorithm. Firstly, an overview of the significance

of random numbers in the EC field and more specifically their significance

in GS is given. It highlights the difficulties involved in producing random

numbers by deterministic methods. This leads onto a discription of the

following two PRNGs which are used in the experiment: (1) the system

supplied rand() and (2) an implementation of the Mersenne Twister called

eorng. The rand() PRNG is referred in the litrature [11, 45, 44] as being

of poor quality while the latter is considered a leading method of produc-

ing pseudorandom numbers across the scientific community [26]. Next, the

experimental setup and results are presented. Finally, a discussion of those
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results is given which concludes that the choice of PRNG does, in fact, in-

fluence the performance of the GS algorithm on certain problems. However,

for half the problems analysed, the choice of PRNG did not affect the per-

formance in any significant way.

Chapter 5, presented a series of empirical experiments conducted on the

GS algorithm. The first of these performed an investigation into the effect

of increasing the size of the algorithms’ particles fixed-length vector rep-

resentations. In the canonical GS, particles have a hard-length constraint

consisting of 100 codons. In this experiment the number of codons was

doubled such that each particle representation in the swarm contained 200

codons. The investigation demonstrated that this modification resulted in

a significant improvement the algorithms performance.

The Chapter then introduced a variable-length form of GS, where the hard-

length particle vector-length constraint is removed, thus allowing the particle

representations to take on any number of codons, limited only by the mem-

ory constraints of the computer. The results of two Variable-Length GS

proof of concept experiments were described. The two experiments differed

only in their implementation details; the particle representation Variable-

Length GS in the first was initialised to take on a maximum of 100 codon,

whereas in the second experiment this was increased to 200 codons. The in-

vestigation demonstrated the feasibility of successfully generating computer

programs using the Variable-Length GS.

A performance comparison based on the results of the experiments showed

that by increasing the initialised particle representation size, such that all

particles can potentially take on double the original number of codons, leads

to an increase in performance. However, this implementation was outper-
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formed by the simpler fixed-length form of GS, with particle representations

taking on a vector size of 200.

6.2 Future Work

A number of new directions for future research presented themselves through-

out the course of this study. The following provides a summary of those

ideas.

PRNG Investigations The PRNG study documented in Chapter 4 showed

that the choice of PRNG can influence the performance of the GS algo-

rithm on certain problems, with the stronger PRNG implementation

outperforming the weaker one. The experiments were conduced us-

ing two different quality PRNGs, the (weaker) system rand() and

the more stringent eorng PRNG. A possible direction for future re-

search is to perform a more detailed study such as that conducted

in [32, 32, 31, 4] where a larger number of varying quality PRNG

were used to test the effects of different quality PRNGs. A more de-

tailed study could help us make a more informed decision concerning

the type of PRNG to use when implementing the GS. Such an inves-

tigation could also determine that other PRNGs could yield further

performance improvements.

Fixed-Length GS This study demonstrated that increasing the number of

codons in the particle repersentations to double their original size (i.e.

from 100 to 200) leads to a significant gain in performance. Therfore,

increasing the number of codons even furter is a potential topic for

future research. Also, a detailed analysis is warrented in the effects of

this in terms of swarm behaviour and intron usage in order determine

why the increase leads to such a significant performance gain.
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Variable-Length GS The study presented a number of different imple-

mentation strategies. Each of these strategies had a different success

rate depending on the type of problem tackled. Future work will in-

vestigate why this is so. In this initial proof of concept study we

have not attempted parameter optimisation for the various variable-

length strategies and this may also lead to further improvements of

the Variable-Length GS algorithm.

It must also be noted that both variable-length and fixed length forms

of GS are completely devoid of any reproduction operators, therefore

there is potential for further enhancements to the GS by introduc-

ing concepts such as selection, crossover, replacement and mutation.

Overall, the results presented are very encouraging for future devel-

opment of the GS algorithm, and other potential Social or Swarm

Programming variants.
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