
1

Genetic Algorithms for Synthesizing Data Value Predictors

Scott R Lenser Desney S Tan

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

{slenser, desney}@cs.cmu.edu

ABSTRACT
As processor architectures increase their reliance on
speculative parallel execution of sequential programs, the
importance of not only what instructions to execute, but
also how to resolve data dependences has increased. Data
dependences present a major hurdle to the amount of
instruction-level parallelism that can be exploited. Data
value prediction is a technique that bypasses these
dependences by speculating on the outcomes of producer
instructions, allowing consumer instructions to execute in
parallel. The goal of our project is to explore the
application of genetic algorithms (GAs) to the design of
value prediction hardware.

KEYWORDS: Genetic programming, genetic algorithm,
data value prediction.

1. INTRODUCTION
Modern processors use speculation extensively to avoid
stalling the pipeline and thereby to maximize instruction
level parallelism. There are two fundamental restrictions
that limit the amount of instruction level parallelism that
can be exploited in sequential programs: control flow and
data flow. Control flow imposes serialization constraints at
forks or branches in a program. Data flow imposes
serialization constraints on pairs of instructions that are
data dependent (ie. one instruction relies on the output of
the other for its input). Although a large amount of research
has been done in examining control flow limits and
methods to overcome restrictions, much less attention has
been paid to reducing or eliminating data flow
dependences.

In our research, we use a method called genetic
programming to explore the design space associated with
the creation of novel prediction strategies. Genetic
programming, derived from genetic algorithms, is efficient
in searching extremely large problem spaces. Its behavior
is based on the concepts of natural selection and genetics.
In this approach, groups of individuals (each prediction
scheme in our case) undergo genetic operations such as
recombination (with crossover) and mutation to yield
individuals with better evaluation function values (or
measures of how well the individual performs the specified

task). By applying the genetic operations on large groups of
individuals over several generations, we are able to
produce individuals that lead to better and better solutions.

The rest of this paper is organized as follows. In section 2,
we will briefly discuss related work. In section 3 we
present the implementation scheme and methodology used
to test the results. In section 4 we present the results along
with an analysis and discussion of them. In section 5 we
suggest future directions and work and in section 6 we
conclude.

2. RELATED WORK
Researchers have tried various schemes for reducing data
flow dependences. Initial work was done in predicting
recurring values. Harbison’s Tree Machine uses a value
cache to store and look up the results of recurring
arithmetic expressions to eliminate redundant computation
[10]. Lipasti et al. introduced value locality, a concept
related to redundant computation, and utilized a technique
they called Load Value Prediction (LVP) that exploits the
affinity between load instruction addresses and the values
that loads produce. They go on to extend this approach to
Last Value Prediction, a technique that applies to all
instructions that write to registers [11]. Along similar lines,
Tullsen explored a storageless method called register value
prediction (RVP) for instructions that typically produced
values already in the register file [18].

More recent work has been done in predicting patterns
from which values are generated. For example, Gonzalez
uses stride predictors to keep track not only of the last
value produced by an instruction, but also the difference (or
stride) between that value and the previous one [8].
Sazeides extends this method with the two-delta stride
predictor that only replaces the stride with a new stride if it
has been seen twice in a row (and thus is confident of the
change) [13]. Sazeides also explores the use of context
predictors that base their prediction on the last several
values seen, thus capturing reference patterns that are not
reflected in the simple stride prediction scheme. Much
research has also been done on the evaluation of
combinations, or hybrids, of the predictors described here
[2, 12, 19].

2

3. IMPLEMENTION
We utilized several packages in implementing our
algorithms:
• GAlib: a set of genetic algorithm objects implemented

in C++ and developed at MIT. The library includes
tools for using genetic algorithms to do optimization in
any C++ program.

• ATOM: program analysis tool developed and
maintained by the Digital Western Research Lab. The
tool, which provided an interface to flexible code
instrumentation, allowed us to produce traces of the
Spec95 benchmarks.

There were several steps in running our genetic algorithm.
Although most of steps were based upon a generic genetic
algorithm, they had to be customized and tweaked in order
for it to function correctly. In this section, we will discuss
the decisions made and implementation details in the
representation of individuals, the generation of the initial
population, the crossover and mutation operations, and the
evaluation (or fitness) function with its predict (speculative
value generation) and update (feedback with actual value)
phases.

Representation of Individuals
We originally considered having individuals organized as
directed acyclic graphs since this most closely represents
the hardware that a human would generate. We had
planned on doing crossover of sub-graphs by selecting sub-
graphs with exactly one output and either zero or one input
from each individual and swapping the sub-graphs. We feel

this would produce the highest quality individuals and is
most similar to what a human innovator might try.
Unfortunately, many complications are introduced by this
crossover operation, including:
• more complex constraint calculation
• complex graph operations to find appropriate sub-

graphs
• redundant graph elimination for removing multiple

predictions that can result from this scheme
• garbage collection on the crossed over individual to

remove unused sections of the graph

Given the time constraints, we had to abandon this idea in
favor of tree-based individuals. Each individual is
composed of two trees: one that generates a 64-bit value to
predict and the other that generates a single-bit value that
indicates whether or not to make the prediction. In order to
better understand the basic building blocks used, we
decomposed existing value predictors (simple stride, 2-
delta stride, last value, 2-level context, 2-level stored, etc.)
into promitives. The primitives that we found essential can
be seen (in no particular order) in Figure 1.

A problem encountered with our initial naïve
implementation was that our primitives do not allow for
tagged associative lookup tables that might produce better
results. In tree based individuals, a single lookup table can
only produce a single value. We were, for example, unable
to find a way to easily incorporate tables that produce a
valid bit and a value into a tree structure. We simulate this
structure, however, by encouraging the genetic algorithm to

Construct Input
lengths

Output
lengths

Description of Construct

CONST -- n Generate constant bit string
ADD m, n m Add two bit strings
SUB m, n n Subtract two bit strings
SATADD m, n m Saturating add of two bit strings
SATSUB m, n m Saturating subtract of two bit strings
JOIN m, n n + m Join two bit strings
CAT m, n n Concatenation
LUT m, n m Look up table
BLUT m, n m Look up table for branch updates
REF -- m Reference to output of a lookup table
PC -- m (<=64) Lowest m-bits of PC
PQ -- 1 Whether we attempted a prediction or not
PV -- m (<=64) Lowest m-bits of predicted value
CV -- m (<=64) Lowest m-bits of correct value (available in nodes

involved in updates)
BT -- 1 Whether last branch was taken
P -- 1 Whether the previous prediction was correct
PN -- 1 Whether the previous prediction was incorrect
EQ m, m 1 Equality
XOR m, m m Exclusive or
MUX n, m, m m Multiplexing
MSB m 1 Most significant bit

Figure 1: Primitives used to construct representations of individual predictors

3

produce individuals with multiple lookup tables (perhaps
one with the tag and the other with the value) indexed by
the same expression. We have not provided primitives to
support schemes that require LRU state machines due to
the added complexity.

An implementation problem with the tree-based
representation is that some nodes require more information
than other nodes. For instance, CONST nodes need the
constant value, REF nodes need the referent ID, LUT
nodes need a ID value, but ADD, OR, etc. nodes need no
additional information. We handle this by defining a extra
data member in the storage for each node which is either
NULL or points to additional data needed by that node.

Initial Population
We generate the random trees in a top down fashion using
a recursive procedure. We randomly select a primitive to
use to produce a value. We use rejection sampling to
remove primitives that are illegal for any reason. The
following are the reasons that a primitive might be rejected:
• the primitive has children but the maximum tree depth

is 1
• a bit width above 64 bits is required but the maximum

tree depth is 2 and this primitive will require us to
generate a value with more than 64 bits in one node
which is impossible

• the primitive cannot produce the required bit width as
output (e.g. EQ can not produce a 64 bit value)

• the primitive can only be used in the update phase but
this part of the tree will be evaluated during the predict
phase (before any feedback has returned)

• the reference (REF) primitive was selected but there
was nothing to refer to

We propagate the location in the tree, the bit width of
output required, the phase of processing, the maximum
depth of the tree, and the bit widths for which references
are available through parameters to the random tree
generation function. When necessary, we select bit widths
for children of a node randomly with biases towards bit
widths of 1 and 64 over other bit widths

Operators
There are two main types of operators applied to
individuals in the creation of the subsequent generation,
crossover and mutation. Crossover takes two individuals
from a population and combines parts of them to produce
new individuals. Crossover is good at reusing building
blocks from individuals to produce new structures.
Mutation takes one individual and modifies the individual
in some way. Mutation is good at doing local exploration
of the solution space around an already known good
solution. Mutation is also important to ensure that all
possible genetic material is potentially available at all
times. Without mutation, it is possible for legal individuals
to never be considered simply because the genes that

compose them got eliminated in a previous generation.
Mutation allows this genetic material to reappear in the
population.

The normal way of doing crossover for tree based
individuals is to use sub-tree swapping. Sub-tree swapping
consists of copying both parents, selecting a sub-tree from
each parent, and then swapping the two sub-trees,
producing two new and different offspring. Simple sub-tree
swapping is not applicable directly in this domain since
sub-trees in our individuals may have incompatible
environments in which they work. Sub-trees must produce
results of a particular bit width in order for the trees that
they are a part of to be able to be evaluated. For instance,
EQ can only compare values of equal bit width so replacing
one of EQ's children with a new sub-tree of different bit
width would make it impossible to evaluate the individual.
Also, more primitives are available in sub-trees that are
only executed during lookup table update phases since
more information is available in hardware at this time.
Allowing these sub-trees to move from update areas of the
tree to normal areas of the tree would result in the
individual using information that could never actually be
used in hardware.

There are three possible solutions to this problem:
1) allow the generation of individuals that can not be

evaluated
2) allow the generation of individuals that can not be

evaluated but fix them up before using them
3) prevent the creation of invalid individuals

Solution 1 requires the evaluation function to assign fitness
values to individuals that can not be evaluated normally.
These fitness values must be higher for individuals that are
more legal to ensure that the genetic algorithm makes
progress. This approach adds complications in trying to
ensure that the algorithm makes progress, selecting a
population size (since many individuals will be illegal), and
additional run time in producing individuals since most of
the individuals produced are useless. Solution 2 can be very
effective if it is easy to fix up individuals. However, in
many of our cases, it was not clear how this could be done.
To work well, the individuals after fix up should be as
similar as possible to the individuals before fix up so that
the sub-block reuse of the genetic algorithm can be
effective. We did not feel this was feasible for many of the
individuals we were interested in. Solution 3 limits the
possible number of different individuals that can be created
by crossover. This is good if all the useful individuals can
be created but bad if some useful individuals cannot. We
felt a combination approach between solutions 2 and 3
would give the best results. We try to generate correct
individuals except in the few cases where the errors
introduced are easily remedied. We employ a robust
crossover strategy to ensure that as many useful individuals
as possible can be generated by the crossover.

4

Because we want crossovers that make sense, we must
ensure that the bit widths used by the individuals at the
crossover point are compatible. We must also ensure that
the sub-trees are compatible in terms of information
available during evaluation. For example, the correct value
(CV) can not be used in the prediction itself since it is not
yet available. To solve this, we could compute the legal
range of values for the output of each sub-tree along with
the legal range of values that can be accepted by the node’s
parent. These ranges could then be compared to find all
possible places to crossover that did not involve changing
primitives or constant values to produce new bit widths.
We describe our simpler approach later.

Additional constraints were imposed on the possible
locations of some of the primitives. For instance, the CV
(correct value) primitive and the REF primitive can only be
used during the update phases, and the BT (branch taken)
primitive can only be taken during the branch update phase.
This means these primitives can only appear in branches of
the tree that are evaluated during these phases (see
evaluation below for a description of the evaluation
phases). The most general way of ensuring that primitives
remain in the correct evaluation phase is to test each
possible sub-tree to see if it has any phase specific
primitives and crossover appropriately. We simplified this
process at the expense of some potentially good crossovers
by enforcing the rule that no sub-tree ever moves from an
update phase to a predict phase or from a branch update
phase to any other phase.

We also ensure that references can only refer to lookup
table nodes (LUTs and BLUTs) that are evaluated during
the predict phase, or those that the sub-tree with the
reference provides the update value for. The most general
solution would be to allow reference nodes to refer to
update nodes (and branch update reference nodes to branch
update nodes) which do not create cycles of references in
updating. This would be incredibly complex to implement,
however, and unlikely to be particularly useful.

Initially we had planned to have MASKHI and MASKLO
primitives that would select some of the most significant or
least significant bits off a value. This would have
introduced constraints on bit values that are inequalities.
Checking to see if two sets of constraints from two
individuals were compatible turned out to be too complex
since it involves solving sets of linear inequalities. We
found that all the schemes proposed by people that we saw
only use the MASKLO operation and only use it to extract
bits off of the PC or the correct or predicted value. We
were able to remove the inequality constraints by adding
additional primitives that correspond to different numbers
of bits from the PC, CV, or predicted value.
Despite removing the inequality constraints the remaining
constraints are still complex. The JOIN primitive makes the
constraints complex by adding an addition operation to the

equality operation introduced by the other primitives. This
results in bit width constraints that are sets of linear
equalities. Fortunately, since we are using trees that result
in a single cut point, the constraints are often easily
determined by local variable values. For most cases, the
constraint ends up just enforcing that the bit widths are
equal. This is not true for the index to a lookup table since
the index can be any width compared to the output. We
ignore the special case introduced by the MSB (most
significant bit) operator and the additional special case of
CAT, which has similar constraints to lookup tables. We
handle these two possible cases by having two kinds of
crossovers, normal crossovers that preserve bit width and
lookup table crossovers which only crossover at lookup
table indices. To simplify implementation, crossover was
applied only to corresponding trees in individuals (ie. the
predict tree from one individual would only crossover with
the predict tree from another).

To perform normal crossovers, it is necessary to find the bit
widths of all possible sub-trees along with which stage of
processing that are processed in (normal [prediction],
update, or branch behavior update). We do this in a
preprocessing step where we traverse the tree saving this
information. The LUT crossover involves finding all the
LUT and BLUT nodes in the tree and storing their location
and update stage. We do this during the same tree traversal.
We randomly select between LUT crossover and normal
crossover if both are possible. If neither type of crossover
is possible, we simply copy one of the parents.

Additional complications are introduced during crossover
by references. One problem with references is that since
they refer to another part of the tree, the lookup table they
refer to may not exist within the sub-tree that was selected
for crossover. This results in references that do not refer to
anything. We solve this problem by finding all references
that refer to lookup tables not present in the individual.
This is done in a two step process. First a tree traversal is
done to find all possible referents (i.e. lookup tables to refer
to). Then, a second traversal is done to make sure that all
reference nodes refer to one of these referents. References
that are invalid are fixed by choosing a new referent if
possible. The set of referents that can be chosen from
includes all referents that are evaluated in the update phase
and all referents that are on a path from the reference node
to the root of the tree which it is legal for the reference
node to refer too. A referent on the path to the root is legal
if the value of the referent is guaranteed to be available
during the evaluation of the reference node, i.e. the path
came from the update node for the lookup table and not the
index node.

Another problem with references during crossover is
duplication of reference IDs. Consider the following
scenario. A highly fit individual is chosen for crossover
with two different individuals producing two different

5

offspring that include the same LUT. The two offspring are
themselves highly fit and are selected to crossover with
each other. The crossover happens in such a way that the
LUT from each offspring is present in this new descendant.
Because this descendant has two copies of the LUT, both
with the same ID number, any references to the value of
this LUT are now ambiguous. To fix this, we rename all
the references during crossover after copying from the
destination parent and before swapping a sub-tree with the
source parent. We do this by performing a tree traversal
during which we build up a map from old IDs to new IDs
while replacing every ID we find.

Evaluation
Evaluation is the process by which individuals in a given
generation are measured to determine whether or not they
should be allowed to survive and propagate to the next
generation. The evaluation step consists of two phases: the
predict phase and the update phase. In the predict phase,
the individuals are given information that would normally
be available after the ‘decode’ stage in the execution
pipeline, typically the Program Counter (PC) and any prior
knowledge or state in the lookup tables (LUTs or BLUTs).
From this, the data is run through the individual and a
prediction might be made. After this is done, the second
phase of evaluation, the update phase, begins. In this phase,
the actual values are calculated and updated throughout the
individual (we separated the LUT and BLUT because of
their different update times) and the cycle continues.
Finally, the actual values are compared to the predicted
values to get a fitness measure for the individual. Fitter
individuals have a higher chance of surviving and
propagating into the next generation.

To determine the fitness of an individual, instruction traces
were applied to individual predictors and the following
counts linearly combined:
• Prediction made; value correct (MC)
• Prediction made; value incorrect (MI)
• Prediction not made; value correct (NC)
• Prediction not made; value incorrect (NI)

The objective of the evaluation function was simply to
reward correct predictions and to punish incorrect ones so
that the overall fitness of the population would increase. In
order to ensure that the predictor would not degrade into
one that did not ever make predictions even when it could
do so correctly, we weighted the NC case so that it was not
as desirable as the MC case. NI is undesirable but does not
hurt the system (and is thus ignored), and MI, which makes
an incorrect prediction, causes bad results to be produced
further in the pipeline and should be avoided if possible. It
is important that individuals get credit for producing
correct values but failing to decide to predict. This allows
the GA to get credit for improving prediction accuracy
even though each individual is better of making no
predictions than using the predictions it is currently

making. Without this, the GA would quickly converge to a
solution that makes no predictions and then remains stuck
for a long time. The evaluation function we initially used
was:

 Fitness = 2(MC) – (MI) + (NC)

The scores are then scaled linearly such that the probability
of the selecting the best individual for propagation is a
constant factor, which we will call the quality probability
multiplier (QPM), times the probability of the selecting the
worst individual.

4. METHODOLOGY AND RESULTS
Because this is a prototype system, we chose a simple data
set on which to operate and optimize. We picked an
arbitrary component of the Spec95 benchmark suite,
‘099.go’. The 099.go component is an example of the use
of Artificial Intelligence in game playing. It is based
largely upon the internationally ranked ‘Go’ playing
program called 'The Many Faces of Go' by David Fotland.
This is a cpu-bound integer benchmark and a simple base
test of simple integer performance. Theoretically, methods
used to attain results using this set of data can be applied to
a more general set of data in order to produce more general
data value predictors.

We instrumented the 099.go benchmark using the ATOM
analysis tools [17] in order to produce traces (including
program counter, branch behavior, and generated values) of
the program. Since the evaluation function is only used as
an input to the selection process, we made the tradeoff of
small inaccuracies incurred by using only a subset of the
benchmark (10,000 instructions) for reduced running time.

We ran the genetic algorithm several times, randomly
seeding the initial populations (of 100 – 400 individuals).
We manually inspected the individuals and the average
weighted scores that were produced at each generation.
During the initial tests, we noticed that the generations
were not converging as quickly as we had expected. We
found simple tweaks that help the convergence immensely.

In the initial runs, individuals would quickly grow very
large and complex. This makes the population consume
extremely large amounts of memory, causes crossovers to
become somewhat ineffective, and makes the individuals
difficult to interpret. In order to remedy this, we imposed a
penalty for trees that grew too large. We subtracted a
thousandth of the node size from the fitness of all
individuals to encourage the GA to decrease size by
compacting the representation where possible. This solved
these size-related problems.

Another interesting observation in the initial runs of the
GA was that the best individuals were not influencing the
populations as much as we would have liked. We had to

6

increase the QPM from a value of 1.5 to 5. This basically
makes it 5 times as likely for the best individual in a
population to propagate than the worst. Because of this,
better solutions tend to spread more rapidly and have a
better chance of influencing the rest of the population in the
crossovers.

With these two adjustments, the GA started to converge a
lot more quickly. The GA showed steady progress (see
Figure 2 for a typical run). In fact, the GA, given no prior
knowledge of any predictors, was able to come up with a
last value predictor and a variation of a context predictor. It
also found a novel confidence predictor, which predicts
based on whether or not the last branch was taken.

In Figure 3, we examine the interesting predictors produced
by the GA. We simplified each tree to remove redundancy
and irrelevant features. In the output produced by the GA,
indentation indicates that a node is a child of another node.

For a LUT, the first child is the index into the LUT and the
second child is the value that is used to update the LUT.
The number in “[]”s is the number of bits in the output of a
node. This output will become the input to its parent node.
The number in “{}”s is the extra argument for the node
(table reference number for the LUT, and value for
CONST).

One interesting note is that, for both value predictors, the
GA decided to use the value of the previous instruction to
index into the LUT. We believe that this is more a figment
of the implementation of crossover than a useful feature.
For the confidence predictor, the GA was able to find
looping patterns where backward branches usually
indicated good prediction accuracy.

Improvements
Although the GA was able to find interesting results, we
recognize certain problems with the current

Produced by GA Hand-simplified version Description
LUT[64]{61360}(
 LUT[8]{58877}(
 CONST[1]{0}(),
 PC[8]()),
 CV[64]())

LUT[64]{61360}(
 PC[8](),
 CV[64]())

Basic last value prediction scheme,
where a LUT is indexed by bits from
the PC and updated with the correct
value (CV)

LUT[64]{100163}(
 LUT[13]{100164}(
 LUT[8]{100165}(
 LUT[8]{100166}(
 CONST[1]{0}(),
 PC[8]()),
 LUT[8]{100167}(
 PC[1](),
 PC[8]())),
 CV[13]()),
 CV[64]())

LUT[64]{100163}(
 LUT[13]{100164}(
 PC[8](),
 CV[13]()),
 CV[64]())

Context predictor, where the context is
provided with the previous correct
value (CV) of the instruction

BLUT[1]{22632}(
 CONST[1]{0}(),
 BT[1]())

BLUT[1]{22632}(
 CONST[1]{0}(),
 BT[1]())

Decides to make a prediction if the last
branch was taken

Figure 3: Selected predictors produced by Genetic Algorithm

Figure 2: Progress of Genetic Algorithm

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60 70 80 90

Generation

A
ve

ra
ge

 P
op

ul
at

io
n

S
co

re

7

implementation. In the generation of the initial population,
we currently randomly generate all individuals. Seeding it
with both known good predictors and randomly generated
individuals instead could potentially provide crossover with
more powerful building blocks to work with. This would
give the GA the opportunity to make improvements to
existing good solutions. This could be achieved through
either small variations or combinations of predictors.

Since individuals are punished for incorrect predictions, the
population quickly converges to one that never predicts.
Once the value prediction has improved, it is advantageous
for individuals to start predicting. Unfortunately, in our
design, by the time this occurs, the genetic material
required may be lost. We lose genetic material in two
ways: material disappearing from the population, and
material becoming locked in an inappropriate evaluation
phase. In the first case, material is lost when unfit
individuals are eliminated from the population.

In the latter case, material can move only from the predict
phase to the update phase and not back. After enough
generations, material may get trapped in the update phase
and cannot be used by the predict phase. This results in the
removal of possible solutions from the search space. A
solution to this is to check to see if material in the update
phase could potentially move back to the predict phase and
to allow such crossovers. In order to do this we would have
to check all possible sub-trees for material specific to the
update phase. Sub-trees without such material can safely be
moved back to the predict phase if desired.

We did not implement mutation due to time constraints.
We do not believe that this is a large problem for the value
predictors because of the relatively small number of
generations that we were able to run (<100). It did,
however, limit the production of useful confidence
predictors because material was lost to the predict phase.
The confidence predictors tended to converge to BLUTs
indexed by a constant zero, which can easily be made to
never predict. In these individuals, the only material
available in the predict and update phases is the constant
zero. A simple mutation scheme would include
replacement of sub-trees with random trees. This would
allow lost material to be reintroduced into the population
when it is potentially more useful.

5. FUTURE WORK
While we have been encouraged by our results, there is still
work to be done in simulating a more complete set of data
in order to generalize the predictors that are produced.
Also, genetic programming searches tend to produce
somewhat verbose predictors that could perhaps be reduced
in complexity. Methods such as eliminating unused
memory and extracting useful sub-components of the
predictors are another line of interesting research. Our
evaluation function does raw counts and linearly combines

them to form the fitness value. Perhaps this could be
extended to account for other intangible factors in
determining a good predictor, such as cost-effectiveness or
ease of implementation.

6. CONCLUSION
We have explored the use of genetic programming to
search the design space in the synthesis of novel and more
complete data value predictors. We have implemented a
tree-based genetic algorithm with a very specific set of
building blocks, which we believe to be minimal and
mostly complete. We have also implemented a means to
generate a random population and to propagate the
generations (with single point crossover and mutation) in
order that they may evolve and improve. Simple
experiments conducted show that even with the small data
sets that were used (due to time constraints), large
improvements in the performance of predictors was seen.
We hope that further work will be conducted in this area to
explore the synthesis of more general predictors.

REFERENCES

[1] Steven J.Beaty. "Genetic Algorithms and Instruction
Scheduling," in Proceedings of the 24th Annual
International Symposium on Microarchitecture,
1991, pp. 206.

[2] Brad Calder, Glenn Reinman, and Dean M.Tullsen.
"Selective Value Prediction," in Proceedings of the
26th Annual International Symposium on Computer
Architecture, 1999, pp. 64-74.

[3] Karel Driesen, and Urs Hölzle. "The Cascaded
Predictor: Economical and Adaptive Branch Target
Prediction," in Proceedings of the 31st Annual
ACM/IEEE International Symposium on
Microarchitecture, 1998, pp. 249-258.

[4] Joel Emer, and Nikolas Gloy. "A Language for
Describing Predictors and its Application to
Automatic Synthesis," in Proceedings of the 24th
International Symposium on Computer Architecture,
1997, pp. 304.

[5] Stephanie Forrest. "Genetic algorithms," in ACM
Computing Surveys 28, 1 (Mar. 1996), pp. 77-80.

[6] Jason R., and C.Patterson. "Accurate Static Branch
Prediction by Value Range Propagation," in
Proceedings of the Conference on Programming
Language Design and Implementation , 1995, pp.
67-78.

[7] David E.Goldberg. "Genetic and Evolutionary
Algorithms Come of Age," in Communications
ACM 37, 3 (Mar. 1994), pp. 113-119.

8

[8] J. Gonzalez and A. Gonzalez. “The Potential of Data
Value Speculation to Boost ILP,” in 12th Annual
International Conference on Supercomputing, 1998.

[9] Marshall Graves, and William Hooper. "A Few New
Features for Genetic Algorithms," in Proceedings of
the 36th Annual Conference on Southeast Regional
Conference, 1998, pp. 228-235.

[10] Samuel P. Harbison. “An Architectural Alternative
to Optimizing Compilers,” in Proceedings of the
Seventh International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS VII), 1982, pp. 57-65.

[11] Mikko H.Lipasti, and John Paul Shen. "Exceeding
the Dataflow Limit via Value Prediction," in
Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture,
1996, pp. 226.

[12] Bhuslav Rychlik, John Faistl, Bryon Krug, and John
Paul Shen. "Efficacy and Performance Impact of
Value Prediction," Technical Report CMuART-
1998-04.

[13] Yiannakis Sazeides, and James E.Smith. "Modeling
Program Predictability," in Proceedings of the 25th
Annual International Symposium on Computer
Architecture, 1998, pp. 73-84.

[14] James E.Smith. "A Study of Branch Prediction
Strategies," in 25 years of the International
Symposia on Computer Architecture (selected
papers), 1998, pp. 202-215.

[15] James E.Smith. "Retrospective: A Study of Branch
Prediction Strategies," in 25 years of the
International Symposia on Computer Architecture
(selected papers), 1998, pp. 22-23.

[16] Avinash Sodani and Gurindar S. Sohi.
"Understanding the Differences Between Value
Prediction and Instruction Reuse," in Proceedings of
32st Annual International Symposium on
MicroArchitecture, 1998, pp. 205-215.

[17] Amitabh Srivastava and Alan Eustance. “ATOM: A
System for Building Customized Program Analysis
Tools,” Western Research Laboratory Research
Report 94/2.

[18] Dean M.Tullsen, and John S.Seng. "Storageless
Value Prediction using Prior Register Values," in
Proceedings of the 26th Annual International
Symposium on Computer Architecture, 1999, pp.
270-279.

[19] Kai Wang, and Manoj Franklin. "Highly Accurate
Data Value Prediction using Hybrid Predictors," in
Proceedings of the Thirtieth Annual IEEE/ACM
International Symposium on Microarchitecture,
1997, pp. 281-290.

