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Abstract. This paper discusses the application of genetic programming to the 
synthesis of compound 2D kinematic mechanisms, and benchmarks the results 
against one of the classical kinematic challenges of 19th century mechanical de-
sign. Considerations for selecting a representation for mechanism design are 
presented, and a number of human-competitive inventions are shown. 

1 Introduction 

Kinematics – the science of pure motion – is concerned with the analysis and synthe-
sis of mechanisms composed of connected rigid elements. It deals with the relative 
geometric displacements of points and links of a mechanism, without regards to 
forces that generate those displacements or the physical embodiment that realizes 
them.  

The interest in kinematics has its origins in machines as old as civilization [16], but 
was largely invigorated in the 18th century with the invention of the steam engine and 
the beginnings of the industrial age [4]. Initially, designs were produced and analyzed 
by practitioners in an ad-hoc manner, but the pressure for rigorous and systematic 
performance led, within a few generations, to the establishment of increasingly gen-
eral methods for geometric analysis and classification of mechanism types [17]. 
Many of these ideas form the basis of modern kinematic theory today. Kinematic 
synthesis, however, is still largely a challenge.  

The systematic synthesis of a mechanism for a given purpose is a long-standing 
problem, and perhaps one of the earliest general synthesis problems to be posed. 
Robert Willis, a professor of natural and experimental philosophy at Cambridge, 
wrote in his 1841 book The Principles of Mechanisms [20]: 

 
[A rational approach to synthesis is needed] to obtain, by direct and certain 
methods, all the forms and arrangements that are applicable to the desired 
purpose. At present, questions of this kind can only be solved by that species 
of intuition that which long familiarity with the subject usually confers upon 



experienced persons, but which they are totally unable to communicate to 
others. When the mind of a mechanician is occupied with the contrivance of a 
machine, he must wait until, in the midst of his meditations, some happy 
combination presents itself to his mind which may answer his purpose.” 

Robert Willis, The Principles of Mechanisms [20] 
 

Almost two centuries later, a rational method for the synthesis of mechanisms is still 
not clear. Despite great advances in analysis of mechanisms and classification of 
elementary components, founders of modern kinematic theory wrote “While we may 
talk about kinematic synthesis, … we really are talking about a hope for the future 
than a great reality of the present” [6]. Analytical methods do exist for some special 
cases of mechanisms (such as serial articulated joints, or certain parallel mecha-
nisms), but not for the general case. Mathematical proofs of existence show that 
mechanisms can be found to trace any algebraic curve, but their construction is usu-
ally impractical. The question of rational synthesis of mechanisms is today of increas-
ing importance with the quest for design automation; when seeking computational 
synthesis methods, no longer can we cloak the design process with the term ‘creativ-
ity’.  

A number of recent works have used evolutionary computation techniques to auto-
mate mechanism design, typically in conjunction with designing a controller. The 
mechanisms designed were usually serial or tree-like [18,9,7,2], though some of our 
prior work focused on design of compound mechanisms containing multiple, entan-
gled kinematic loops [12]. Nevertheless, the capabilities of kinematic synthesis auto-
mation and suitable representations remain largely unexplored. 

The goal of this paper is twofold: To explore some representations for kinematic 
synthesis using genetic programming (GP), and to benchmark the performance of 
these algorithms against a well established kinematic design problem that has baffled 
some of the world’s greatest inventors for nearly a century: The straight line problem. 

2 Mechanism Representations 

A kinematic mechanism can be represented as a graph, embedded in two or three 
dimensions. Edges of the graph represent links, and nodes of the graph represent 
joints. There are a number of different types of joints (e.g. prismatic or rotary in 2D, 
ball, prismatic, cylindrical, or screw, in 3D), and a number of different types of links 
(with different geometries and numbers of attachment points). Here we focus on pla-
nar mechanisms with free joints. A 2D mechanism composed of straight links and 
free joints is directly represented by a graph embedded in the plane. 

An important concept in the description of a mechanism is its number of degrees 
of freedom (DoF). Some of the mechanisms’ nodes may be grounded, and therefore 
immobile, while other nodes are free to move while being constrained by links attach-
ing them to other nodes. The overall number of independent parameters needed to 
fully specify the state of the entire mechanism is its number of DoF.  
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ig. 1. Degrees of freedom of a mechanism: (a) A four-bar mechanism has 1 DoF and some 
f its nodes trace curves, (b) A five-bar mechanism has two DoF and some of its node can 
race over an area, but (c) some structures are overlapping constraints or have degeneracies that 
ead to miscalculation of their number of DoF; this structure should be locked, but is free. 
The number of degrees of freedom of a mechanism can be calculated directly by 
onsidering the fact that each node of the mechanism has two DoF of motion in the 
lane, and each link eliminates one of these DoF by providing one constraint on the 
istance between two nodes. The entire mechanism also has three rigid-body DoF 
hat can be eliminated by grounding any one of the links. The total DoF of a 
rounded mechanism with n nodes and m links is thus 2n–m–3. A grounded four-bar 
inkage (Figure 1a) for example, has exactly one degree of freedom, and its nodes 
ill therefore trace curves. A five-bar mechanism  (Figure 1b) has two degrees of 

reedom, and some of its nodes will trace (fill) areas. There may, however, be mecha-
isms that are over-constrained in some part and under-constrained in another, lead-
ng to misleading total DoF count  (Figure 1c). Other mechanisms may have geomet-
ical singularities and degeneracies in their configurations that cause locking or unac-
ounted free motions. It is therefore impossible to predict the DoF that a general 
echanism may have based solely on topological counting arguments. 
Evolutionary algorithms progress by modifying the mechanism’s graph directly, or 

ay use an indirect encoding (genotype) from which the graph (phenotype) is con-
tructed. Luke and Spector [13] survey a number of different representations used to 
escribe or ‘grow’ computational graphs, such as neural networks. Some methods use 
ontext free grammars, L-systems, and parse trees operating on nodes and edges [e.g. 
,1].  

Most of the existing representations for encoding networks generate highly con-
ected architectures that are suitable for computational networks, but which are less 
uitable for kinematic networks because they over-constrain the motion and create 
eadlocked mechanisms. Using these representations, the likelihood of generating a 
echanism with exactly one degree of freedom is vanishingly small. In order to allow 

n evolutionary algorithm to explore the space of one-DoF mechanisms more effi-
iently, a more suitable representation is required. This representation must have a 
ree-like architecture to be used by a GP. 

A second consideration in the choice of representation is that of evolvability. 
any of the representations cited above result in context-sensitive and order-sensitive 

escription of a network. For example, the structure generated by a branch in Gruau’s 
ellular encoding depends on whether it is parsed before or after its sibling branch. If 
hat branch is transplanted by crossover into another tree it may produce an entirely 
ifferent structure. Such behavior hampers the effectiveness of recombinative opera-
ors by precluding the formation of modular components that are discovered by the 
earch in one place and then reused elsewhere. A representation where the structure 



produced by a branch of the tree is minimally affected by its context may thus be 
more evolvable. 
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Fig. 2. Top-down and bottom-up parse-tree constructions: (a) Top-down construction of a 
circuit (b) bottom-up construction of a symbolic expression. 
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Top-down and bottom-up tree representations of mechanisms 

Tree-based representations can describe a set of operations to construct a phenotype 
in a top-down or bottom-up manner. A top-down representation starts with an initial 
structure (an embryo) and specifies a sequence of operations that progressively mod-
ify it into its final form. Figure 2a shows a top-down tree that specifies the construc-
tion of an electric circuit, starting with an initial circuit and recursively replacing 
circuit segments with serial and parallel arrangements of electrical components [10]. 
Each node of the tree is either an operator that modified the circuit and passes seg-
ments to its child nodes, or a terminal electrical component. The specific parallel and 
serial operators cannot be used for construction of mechanisms as they will immedi-
ately create over- and under-constrained kinematic chains. Because of the physics of 
electric circuits, ordering of children under a parent does not matter. This tree is thus 
both order independent and context independent. In a top-down tree, parent nodes 
must be constructed before their children. 

Figure 2b shows a bottom-up construction of a symbolic expression. Here terminal 
nodes represent constants or variables, and parent nodes represent mathematical op-
erators. Because of the nature of mathematical expressions, parsing order is impor-
tant, and swapping order of some child nodes would result in a mathematically differ-
ent expression. The terms are unchanged, however, by the content of their siblings. 
This tree is thus order dependent but context independent. In a bottom-up tree, child 
nodes must be constructed before their parents. 

Two tree-based representations for describing kinematic mechanisms are proposed 
here. Top-down construction of a mechanism starts with an embryonic one-DoF ki-
nematic basis such as the four-bar mechanism shown in Figure 3a. A tree of operators 
then recursively modifies that mechanism by replacing single links (DoF = -1) with 
assemblies of links with an equivalent DoF, so that the total number of DoF remains 
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ig. 3. Top-down construction of a one-DoF mechanism: (a) An embryonic four-bar mecha-
ism; (b) two operators that change local topology but do not change the number of degrees of 
reedom; (c) operators applied in some sequence will create new mechanism, such as transform 
 dyad into a tryad; (d) operators can be applied in a tree to transform the embryonic mecha-
ism into an arbitrary mechanisms while retaining the original number of DoF. 
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nchanged. Two such transformations are shown in Figure 3b: The D and T opera-
ors. 

The D operator creates a new node and connects it to both the endpoints of a given 
ink, essentially creating a rigid triangular component. The T operator replaces a 
iven link with two links that pass through a newly created node. The new node is 
lso connected to some other existing node. In both operators, the position of the new 
odes is specified in coordinates local to link being modified. The T operator speci-
ied the external connecting node by providing coordinates relative to link being 
odified; the closest available node from the parent structure is used. This form of 

pecification helps assure the operators remain as context and order independent as 
ossible. Figure 3c shows how a certain sequence of operators will transform a dyad 
nto a tryad. Figure 3d shows how application of a tree of operators to the embryonic 
echanism, will transform it into an arbitrary compound mechanism with exactly one 
oF. Terminals of the tree are the actual links of the mechanism. 
Alternatively, bottom-up construction of a one-DoF mechanism begins at the 

eaves of the tree with atomic building blocks and hierarchically assembles them into 
omponents. The atomic building block is a dyad as shown in Figure 4a, and has 
xactly one DoF when grounded. The composition operator ensures that the total 
umber of DoF is not changed when two subcomponents are combined, and thus the 
otal product of the tree will also be a mechanism with exactly one DoF. When com-



bining two components each of one DoF, the resulting assembly will have five DoF 
(one DoF from each, plus three DoF released by ungrounding one of the compo-
nents). The total DoF is restored to one by eliminating four DoF through the merging 
of two point pairs. An example of this process is shown in Figure 4b. Note that points 
must be merged in a way that avoids overlapping constraints, such as causing two 
links to merge. The components may need to be scaled and oriented for the merger to 
work. The ground link of the entire structure is specified at the root of the tree. 

 

(a) 

(b) 
 

 

(c)
 

Fig. 4. Bottom up construction of a one-DoF mechanism: (a) An atomic building block of a 
mechanism has one DoF when grounded; (b) examples of composition of atomic and higher-
level building blocks. The composition operator eliminates two vertices, thereby ensuring that 
the total number of DoF of the compound structure remains exactly one; (c) composition op-
erators can be applied hierarchically in a tree to aggregate atomic building blocks into increas-
ingly complex kinematic mechanisms, each with exactly one DoF.  

3 Test Case: The Straight Line Problem 

In selecting a test problem to evaluate the performance of a GP using the above repre-
sentations, we sought a kinematic synthesis challenge that is on par with human in-
ventive capacity. There are numerous ingenious kinematic mechanisms in many eve-
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echanisms to trace exact curves. (a) Tracing an exact circle is simple, but (b) trac-
act straight line without reference to an existing straight line is a challenge that has
 inventors for nearly a century. The mechanism shown is “The Peaucellier” (1876).
are shown as crooked sticks to emphasize that the links themselves do not need to be
hey merely constrain the distance between two nodes. 
oducts around us, from cars to DVD players and electric toothbrushes [14]. 
here was a single design challenge so clearly states and persistent as the 
line problem.  
traight-line problem seeks a kinematic mechanism that traces a straight line 
reference to an existing straight line. It is easy to imagine a kinematic mecha-
t traces an exact circle, for example, without having a circle pre-built in to it: 
e link, constrained at one endpoint and tracing at the other endpoint would 
 exact circle. Figure 5a shows such a device: A compass. Tracing an exact 

line without reference to an existing straight line is, however, much more 
. It is a challenge that has occupied inventors for nearly a century. One solu-
wn as “The Peaucellier” (1873), is shown in Figure 5b. 
traight-line problem was of great practical importance in the 18th and 19th 

s. The invention of the steam engine marked a new era of technological ad-
ut its early development was plagued with problems of reliability and ma-
accuracy, leading to both steam leakage around the piston heads and over-
g friction. One of the big challenges was how to convert the reciprocating 
otion of the double-acting (push-pull) piston into a continuous rotary motion 
el. Though the use of a crank and a connecting rod seems trivial today, it was 
eans apparent at the time, because machining accuracy was such that the 

ead could not sustain side loads well and needed a straight guide to keep it 
bbling and leaking steam. Conventional designs at the time used the recipro-
otion to pump water into a reservoir and turn a waterwheel, or complex ar-
nts of gears and chains. James Watts’ first patent (1782) used a rack and 
igures 6a, 6b).  
eal breakthrough in steam engine technology came with the invention of a 
ystem to guide the piston in a straight line. In 1784, Watt wrote to his partner 

: “I have got a glimpse of a method of causing the piston rod to move up and 
rpendicularly, by only fixing it to a piece of iron upon the beam, without 
r perpendicular guides, or untowardly frictions, arch-heads, or other pieces of 
ess… I think it a very probable thing to succeed” [15]. The design is shown in 
c. Years later, Watt told his son: “Though I am not over anxious after fame, 
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 key straight-line mechanisms: (a) Watt’s original rack and sector solution, 
att improvement, 1784, (c) Watt’s first straight-line linkage mechanism [15], (d)

age, 1841 (e) Chebyshev’s linkage, 1867 (f) Peaucellier’s linkage, 1873, (g)
mpe’s linkage, 1877, (h) Chebyshev’s combination, 1867 (i) Chebyshev-Evans 
 1907. From [8]. 
re proud of the parallel motion than of any other mechanical invention I 
ade” [15]. 
 initial inception of the straight-line mechanism, many inventors engaged 
g and creating alternative designs. Figures 6d-i show a number of addi-
cal designs. The obsession with the straight-line mechanism continued 
 what its practical usefulness merited, to become a mathematical puzzle 
right. The challenge continued even after the invention of the perfect 
by Peaucellier in 1873 – a century after Watt’s initial invention. Numer-
t-line mechanisms were proposed, as evident from the 39 different 
 mechanisms shown in the Voigt catalog [19] of educational models (Fig-
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Fig. 7. Evaluation of an evolved straight-line mechanism: The mechanism is actuated at an 
arbitrary handle and the aspect ratios of bounding boxes of node trajectories are measured. 
One node of the evolved machine on the left traces a curve that is linear to 1:5300 accuracy. 
The machine uses the principle of Willis (1841), as seen in Figure 6d. The evolved mechanism 
on the right traces a curve that is linear to 1:28340 accuracy 

 
(a) (b) (c) 

Fig. 8. Reductions of mechanisms: Complex mechanisms can be reduced to simpler mecha-
nisms with equivalent curve traces by through iterative application of two transformations: (a) 
Elimination of excess dyads, and (b) swapping of diagonals within rigid subcomponents. 
Mechanisms (a) and (c) are thus equivalent in the curve that the lower node traces. 
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ure 7a). At Cornell University we still have most of these 1870 models that were used 
in the early engineering curricula; some are shown in Figure 7b. As precision manu-
facturing improved, the need for straight-line mechanisms diminished, and it is now 
lost knowledge. Ferguson provides a vivid account of that era [4]. 

Simulating and evaluating straight line mechanisms 

The performance of a given mechanism was evaluated using an in-house kinematic 
simulator [11]. This simulator approximates the rigid links with stiff elastic springs, 
and propagates displacements throughout the structure using a relaxational process, 
gradually reducing elasticity to approximate rigid behavior. The process iterates until 
the structure reaches equilibrium; if equilibrium is not reached, then the mechanism is 
deemed to be over-constrained or under-constrained in some way.  



  
Fig. 9. Two typical runs: Each dot represents an evaluated individual. 
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Fig. 10. Two Evolved mechanisms and their tree representations (a) Linearity 
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To measure the extent to which a given mechanism traces a straight line, the 
mechanism is actuated along its single DoF by applying some small force to one of its 
ungrounded nodes, selected arbitrarily. The trajectories of all nodes are recorded, and 
then evaluated for straightness. Straightness is computed as the aspect ratio of a tight 
bounding box of the trajectory. The length over width of the bounding box provides a 
fitness criterion that measures the maximum deviation from a straight line, as seen in 
Figure 7. Comparison of mechanism can be difficult, as apparently different machines 
may be functionally equivalent. Complex mechanisms can be reduced to simpler 
mechanisms with equivalent curve traces by through iterative transformations (Fig 8). 

4 Results 

Straight-line mechanisms were evolved using a GP operating on trees describing 
mechanisms in a top-down representation (Figure 3). We used a population of 100 



individuals and fitness proportional selection using stochastic-universal-sampling. 
The fitness was the linearity of the most linear curve traced by any of the mecha-
nisms’ vertices, when the crank node was turned 45 degrees. The search progressed 
in steps of discovery, as shown in two typical runs plotted in Figure 9. 

A variety of mechanisms were produced, most with linearity exceeding 1000 (i.e., 
deviation of one millimeter over a meter) and some as high as 28000 (35µm over a 
meter) as seen in Figure 7b. Comparing these compound mechanisms to the known 
classical solutions is difficult, but some clearly infringe on earlier principles such as 
that of Willis (1841), as seen in Figure 7a. A number of additional results and their 
trees are shown in Figure 10. 

5 Conclusions 

This paper presented the application of genetic programming to the synthesis of com-
pound 2D kinematic mechanisms. Two tree-based representations were proposed: A 
top-down representations that modified an initial base mechanism, and a bottom-up 
representation that hierarchically composes atomic components. Both these represen-
tations allow for systematically searching the space of mechanisms with a given 
number of degree of freedom. Both representations are order-independent and largely 
context independent, which are desirable properties for evolvability.  

Application of a GP to the straight-line problem yielded a number of mechanisms 
that are competitive with, and in some cases infringe upon, previous known inven-
tions. It is difficult to compare the ‘inventiveness’ of the algorithm to that of James 
Watt: In all fairness, the genius of James Watt was in the very idea to use a linkage 
mechanism to guide the piston in a straight line, and to pursue this idea without 
knowing that a solution existed at all. It is, however, fair to compare the algorithms’ 
performance to that of Watt’s successors who tried to synthesize new and improved 
linkage mechanisms with the same functionality.  

The results shown here are preliminary: Only the top-down representation was 
tested, and there are many aspects of the evolutionary process that could enhance 
these results, including, for example, selection methods, diversity maintenance, bloat 
prevention, and the use of automatically defined functions. Future work will further 
examine these issues and their application to more contemporary kinematic synthesis 
challenges such as the design of mechanisms for robotic locomotion. 
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