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Abstract. Genetic programming (GP) is a variant of evolutionary algorithm
where the entities undergoing simulated evolution are computer programs. A fitness
function in GP is usually based on a set of tests, each of which defines the desired
output a correct program should return for an exemplary input. The outcomes of
interactions between programs and tests in GP can be represented as an interaction
matrix, with rows corresponding to programs in the current population and columns
corresponding to tests. In previous work, we proposed SFIMX, a method that per-
forms only a fraction of interactions and employs non-negative matrix factorization
to estimate the outcomes of remaining ones, shortening GP’s runtime. In this paper,
we build upon that work and propose three extensions of SFIMX, in which the sub-
set of tests drawn to perform interactions is selected with respect to test difficulty.
The conducted experiment indicates that the proposed extensions surpass the original
SFIMX on a suite of discrete GP benchmarks.

Keywords: genetic programming, matrix factorization, surrogate fitness, test-
based problems, recommender systems.

1. Introduction

Computational intelligence abounds in test-based problems, i.e. problems that feature
tests, entities that embody pieces of knowledge about the problem. Training examples
in machine learning, opponents in games, and environments in reinforcement learning
and robotics are all examples of tests. In these settings, an intelligent agent interacts
with tests and learns according to the outcomes of those interactions: a machine
learning inducer builds an appropriate hypothesis, a game-playing algorithm adjusts
its strategy, and a virtual or physical robot updates its policy. The common features of
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these scenarios are that the number of tests may be large (or even infinite), interactions
with them are largely independent, and each of them produces an outcome that may
provide the agent with useful feedback.

Test-based problems attracted much attention in coevolutionary algorithms, a
branch of evolutionary computation. Competitive coevolution devised there assumes
iterative co-adaptation of candidate solutions (entities intended to solve a given prob-
lem) with tests. In the simplest case, the candidate solutions and tests dwell in
separate populations, and the former are rewarded for the number of passed tests,
while the latter for the number of solutions they fail. More sophisticated algorithms
that prove better in practice may reward tests for their ability to discern the solu-
tions, i.e. elicit diversified outcomes from them, as this helps providing gradient for
a search process. Competitive coevolution is particularly appropriate when the num-
ber of tests is large, in which case it becomes difficult or impossible to let candidate
solutions interact with all of them. Past work proved this search paradigm useful for
learning game strategies [4], intelligent agents [33] and machine learners [2].

In competitive coevolution, the working population of tests changes with time.
However, the conceptual framework of test-based problems comes in handy also in
the more general setting of an evolutionary algorithm, where the set of tests T is
fixed and given as a part of problem formulation, like the training set of examples in
machine learning. This is the default setting for genetic programming (GP) that is the
focus of this paper, where candidate solutions are symbolically represented executable
structures like programs or expressions. In that case, a test is a pair t = (in, out) of
a program input in and the associated desired (expected) output out. An interaction
of a candidate program p with t involves applying p to in and verifying whether
the actual output produced by p is out, or otherwise how much it diverges from it.
In the simplest case, the interaction outcome is just [p(in) = out], where [ ] is the
Iverson bracket, i.e. 0 or 1 for p failing or passing t, respectively. This definition
of interaction outcome is used in domains where programs return discrete values; in
continuous domains, absolute or square error may be more appropriate.

In this paper, we are interested in the methods that employ the formalism of
non-negative matrix factorization (NMF) to interpret and process the interaction
matrix G that arises from confronting the programs in population with the tests in
T . One of them, Surrogate Fitness via Factorization of Interaction Matrix (SFIMX)
[23] heuristically estimates the fitness from G using NMF. Crucially, that estimation
requires only some elements of G to be known, which implies that only some program-
test interactions have to be conducted. This allows substantial reduction of required
computational effort, because running programs on tests is usually the main cost
component in GP.

The original SFIMX samples uniformly the interactions to be conducted in each
generation of a GP run (see Section 2). In this work, we present three novel extensions
of SFIMX (Section 3), where the sampling process is being adaptively biased to take
into account the difficulty of individual tests. Experimental evaluation presented
in Section 5 and summarized in Section 6 demonstrates that at least one of those
variants systematically outperforms the original SFIMX in terms of success rate, i.e.
the likelihood of producing a correct program, while imposing only a small computing
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Algorithm 1 Surrogate Fitness via Factorization of Interaction Matrix (SFIMX).

Require: factorization rank k.

1: function SFIMX(P, T, α)
2: for p ∈ P do
3: T ′ ← Sample(T, α)
4: for t ∈ T ′ do
5: g(p, t)← interact(p, t) . apply program p to test t
6: W,H ← NMF(G, k)
7: Ĝ←WH . predict missing gijs
8: for pi ∈ P do
9: f(pi)←

∑n
j=1 ĝij

10: return F

overhead.

2. SFIMX

As most other variants of evolutionary algorithms, GP performs iterative parallel
search in the space of candidate programs, maintaining a working population P of m
programs. Each iteration of that process, deemed generation, involves evaluation of
programs in P , selecting the well-performing of them (parents), and their modification
with search operators, which in turn leads to creation of offspring that form the
subsequent population. This study focuses on the evaluation phase. Therein, each
candidate program p ∈ P interacts will all n tests from T , and the outcomes of those
interactions are aggregated into a scalar fitness value that reflects the overall quality
of a program. For instance in discrete domains, one often assumes that the fitness
function f(p) counts the number of tests passed by p, i.e.:

f(p) =
∑
t∈T

[p(in) = out]. (1)

Surrogate Fitness via Factorization of Interaction Matrix (SFIMX) [23] approximates
f while reducing the number of required interactions between programs and tests. In
each generation, SFIMX first calculates a sparse interaction matrix G between the
programs in P and the tests in T . To this end, for every program p ∈ P , it randomly
draws (without replacement) a subset of tests T ′ ⊂ T to interact with of size bαnc,
where α ∈ (0, 1] is the parameter that controls the fraction of interactions to be
calculated. Next, it performs interactions by applying p to the tests in T ′ and storing
the resulting interaction outcomes in the appropriate cells of G. The remaining cells
are treated as unknown. Then, G is factorized into non-negative components W and
H that are used to reconstruct the missing interaction outcomes in G as:
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Ĝ =WH,

where W ∈ Rm×k is a weight matrix and H ∈ Rk×n is a feature matrix. Each
program p ∈ P is associated with a row in W (a vector wp ∈ Rk), and each test t ∈ T
corresponds to a column in H (a vector ht ∈ Rk).

To perform factorization, NMF solves the following optimization problem:

min
W,H

f(W,H) ≡ 1

2
||G−WH||2F s.t. W,H ≥ 0, (2)

where || · ||F is the Frobenius norm. Once W and H are known, an estimate of the
interaction outcome of p with t is given by the dot product of the two corresponding
vectors:

ĝ(p, t) = wTp ht =

k∑
j=1

wpjhjt. (3)

We will refer to the elements of G by gij and of Ĝ by ĝij , or alternatively g(p, t) and
ĝ(p, t) (so that ps are assumed to correspond to is and matrix rows, and ts to js and
matrix columns).

Finally, SFIMX calculates the fitness of a program p ∈ P as:

f(p) =

n∑
j=1

ĝij , (4)

i.e. in the same way as in the conventional GP, the difference being that the basis of
fitness calculation is here the partially estimated Ĝ matrix, rather than a complete G
matrix. These steps are summarized in Algorithm 1.

The factorization model is optimized using only the known elements of G, and ig-
noring any missing (unknown) interaction outcomes. Implementations of NMF based
on stochastic gradient descent are well suited for this task, as they allow training
the model using only a sample of interaction outcomes. Furthermore, gradient-based
NMF algorithms [19] usually converge in at most a few dozens of steps, even when
G is relatively large. They also guarantee finding an optimal factorization, because
the functional being optimized is convex w.r.t. W and H (though not with respect
to both of them simultaneously).

To comply with NMF’s requirement of G’s elements being strictly positive, in line
5 of Algorithm 1, we set g(p, t) = 1 if p fails t and g(p, t) = 2 otherwise.

Note that α ≥ 1
|T | must hold for T ′ to be nonempty. Apart from α, SFIMX’s main

parameter is k, which controls the sizes of W and H, and the role of which should
become more clear in the example that follows.

Example

Consider the population of programs P = {p1, p2, p3, p4} and the population of tests
T = {t1, t2, t3, t4, t5}. Assume that SFIMX is run with α = 3

5 and yields the following
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sparse interaction matrix G:

G =


t1 t2 t3 t4 t5

p1 2 1 2
p2 2 1 1
p3 1 2 2
p4 2 1 1


Let k = 3. , The application of NMF to G (line 6 of Algorithm 1) returns the following
decomposition into W and H:

W =


f1 f2 f3

p1 0.46 1.96 0.6
p2 1.27 0.1 0.95
p3 1.37 0.02 2.83
p4 0.4 1.86 1.60

, H =


t1 t2 t3 t4 t5

f1 0.48 1.50 0.01 0.41 0.41
f2 0.87 0.14 0.19 0.77 0.01
f3 0.11 0.09 1.02 0.50 0.51

.
When multiplied (line 7), W and H lead to the following reconstructed interaction
matrix:

Ĝ =WH =


t1 t2 t3 t4 t5

p1 2 1.02 1 2 0.52
p2 0.8 2 1 1.07 1
p3 1 2.31 2.1 2 2
p4 2 1 2.01 2.4 1


Finally, in line 10, we calculate the fitness of particular programs by summing the cor-
responding rows of the reconstructed interaction matrix, which results in f(p1) = 6.54,
f(p2) = 5.87, f(p3) = 9.41, and f(p4) = 8.41. Overall, SFIMX enabled calculating
these values using αnm = 12 known interaction outcomes, compared to nm = 20
interactions required by the conventional GP. �

In the above example, the reconstructed matrix Ĝ perfectly reproduces the known
interaction outcomes, so the square approximation error minimized by NMF (Eq.
2) attains zero. This is guaranteed to happen when k ≥ rank(G). In general, the
approximation error tends to be greater for smaller k and greater α. It should be
noted however that, regardless how well NMF reconstructs the known interaction
outcomes, the unknown ones are only extrapolated, so the value of SFIMX’s fitness
will in general diverge from the true fitness (Eq. 1).

3. Extending SFIMX with adaptive test selection

In this work, we question the way in which SFIMX draws the tests to interact with
in line 3 of Algorithm 1. Our aim is to improve its performance by replacing the
uniform probability distribution that is used there and changing it adaptively as a
run progresses. The motivation is that the outcomes of interactions with certain tests
are likely to be more difficult to predict than others. Should that be true, then it
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might be particularly beneficial to compute these interactions (i.e., run the candidate
programs on them) rather than use SFIMX to estimate them from the remaining
elements of G. And conversely: if there are grounds to claim that, for some programs
and tests, the outcomes of their interactions are easy to predict, then it may be worth
to not perform them and let them be estimated by NMF.

Obviously, whether a test (in, out) is difficult for a given program p cannot be
known for certain without actually running p on in. Nevertheless, various measures
of difficulty (e.g., the odds for t being passed by a random program) may be estimated
based on the historical interaction outcomes, gathered throughout a GP run. This
is the key idea behind the extensions we describe in the following: the interaction
matrix is inspected in each generation, certain statistics are updated and used to
parameterize the probability distribution employed by the Sample function in line 3
of Algorithm 1. Crucially, only the actual (computed) interactions from the historical
Gs are used for this purpose – the estimated ones in Ĝs are ignored. Therefore, the
prediction of test difficulty is based on the interaction outcomes that were computed in
the past, so no extra interactions are required. By inspecting the interaction matrix
in every generation, the methods adapt the probability distribution to the current
state of population, shifting sample’s attention towards the tests that were the most
challenging in the recent generations.

We propose three methods of controlling Sample. The first one, dubbed Diff , is
based on test difficulty r(t), which we define as the number of programs that did not
pass t up to the current point of evolutionary run (i.e., up to the previous generation).
For successive populations P , we update this number in a vector r (initially zeroed)
for every test in T :

r(t)← r(t) + |p ∈ P : g(p, t) = 1|. (5)

In evaluation with SFIMX, r is L1-normalized (i.e., divided by
∑
t r(t)) and used as

the probability distribution by Sample. As a consequence, the more difficult tests
have a higher chance of being included in T ′. We expect this probability distribution
to improve the estimation of interaction outcomes, as the outcomes of interactions
with easier tests should be in principle also easier to predict. More difficult tests, on
the other hand, are typically characterized by greater variability in the interaction
outcomes, thus we expect SFIMX to commit greater errors in their estimation.

In the second variant, Dist , we employ the concept of distinctions, borrowed from
competitive coevolution [8]. A test t is said to make a distinction between programs
p1 and p2 if g(p1, t) 6= g(p2, t). By analogy to r above, we use the current population
to update the total number of distinctions q(t) made so far by t in the following way:

q(t)← q(t) + |{(p1, p2) ∈ P × P : g(p1, t) 6= g(p2, t)}|, (6)

where q is initially all-zeroes. Large values of q indicate the tests that inform search
algorithm about the differences between programs, rather than about their absolute
performance. Otherwise, Dist works as Diff, i.e. q is normalized and used by Sample.
Interestingly, there seems to be a link between the concept of distinctions and the
concept of error variance used in works that combine GP with coevolution [30].

While the above two methods use ad-hoc measures of tests difficulty to infer which
interaction outcomes are more difficult to predict, there exists a more direct alterna-
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tive: measuring the difficulty of prediction using the difference between the known
elements of G and the corresponding estimated elements of Ĝ. The resulting method,
referred to as Err in the following, accumulates those errors e(t) throughout the run
similarly to Dist and Diff,:

e(t)← e(t) +
∑
p∈P
|g(p, t)− ĝ(p, t)|, (7)

where e is then normalized and used in Sample. In contrast to r (Eq. 5) and q (Eq.
6) that depend solely on the performance of candidate programs, e depends also on
the quality of factorization, and so reflects the inherent estimation difficulty (which
depends, among others, on the factorization rank k).

Let us emphasize that, even though the probability distributions defined above
replace the uniform distribution used in the basic SFIMX, drawing of tests is still
performed independently for each program (and with replacement between individ-
ual programs). It is thus possible (though unlikely for the common proportions of
population size and number of tests) for some tests to be not included in T ′ in a
given generation. Also, let us reiterate that all these methods accumulate only the
outcomes of the interactions that have been actually performed in the past, so that
the quantities aggregated by the above formulas are not biased (at least directly) by
the errors committed by NMF when estimating the unknown interaction outcomes.

4. Related Work

The concept of matrix factorization (MF) recently grew in popularity in machine
learning and recommender systems. In collaborative filtering [29], where MF is often
applied, the general idea is to model the user-item interactions with factors represent-
ing the latent characteristics of the users and items in the system, like for instance
a preference class of users and a category of items. This model is trained using the
available data, and later used to predict users’ratings of the previously unseen or
new items. Such systems exploit the similarities in rating behavior among users for
determining their predictions. These principles stood behind the winning solution to
the famous Netflix Challenge, where MF was applied to predict millions of ratings
[16]. MF is an example of model-based approach to recommender systems. Other
approaches to item recommendation and rating prediction include, among others,
Bayesian Clustering [3], Latent Semantic Analysis [12] and Singular Value Decompo-
sition [1].

In SFIMX, the fitness based on reconstructing the matrix of interaction outcomes
with MF can be treated as a surrogate fitness. In evolutionary computation, a surro-
gate fitness function provides a computationally cheaper approximation of the original
objective function. Surrogates are particularly helpful in domains where evaluation is
computationally expensive, e.g., when it involves simulation or engages large volumes
of data (e.g., examples in GP). They usually rely on simplified models of the process
being simulated, hence their alternative name: surrogate models [14]. In continuous
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optimization, such models are typically implemented using low-order polynomials,
Gaussian processes, or artificial neural networks.

In addition to SFIMX presented in Section 2 [23], several other studies attempted
to reduce the number of evaluations in evolutionary algorithms (EAs) for test-based
problems. The arguably simplest approach is to draw a subset of tests T ′ ⊂ T and
allow the candidate solutions interact only with them. This approach was studied in
the context of EAs, where it is known as Random Sampling Evolutionary Learning
[5]. Apart from speeding up the evolution, the motivation is that candidate solutions
that perform well on different subsets of tests might have captured the knowledge
about generalizing to all tests in T . Random selection of tests has been shown to
improve the success rate and reduce overfitting [10].

In a similar spirit to SFIMX, matrix factorization has been used as the primary
building block of cevolutionary interaction scheme designed for interactive domains
[20]. The method adaptively decides how much of the interaction matrix to compute
based on the learning speed statistics. The remaining outcomes of interactions be-
tween the pairs of coevolving individuals are then estimated using NMF. The method
maintains the precision of round-robin tournament while, at the same time, consider-
ably improves the learning speed.

Matrix factorization has also been used as a means to ‘multiobjectivize’ GP. Dis-
covery of Objectives via Factorization (DOF) proposed in [22] employs NMF to heuris-
tically derive a low number of search objectives from an interaction matrix, and uses
these objectives to drive the search. The observation that motivates DOF is that NMF
can be used to explain the interaction outcomes in G by characterizing both programs
and tests in terms of factors (the W matrix) inferred from the patterns observed in
their interactions. Each factor (a column inW ) becomes a derived objective, recasting
so the original single-objective GP problem as a multi-objective problem. In every
generation, DOF feeds the factors from W directly into NSGAII, the state-of-the-art
multiobjective selection method [7], in order to select parent programs and generate
candidate solutions for the next generation.

Another method that aims at scrutinizing the individual outcomes of interactions
and leveraging them for better performance is DOC [18]. In every generation, the
algorithm identifies the groups of tests on which the programs in the current popula-
tion behave similarly and clusters them together to give rise to new search objectives.
Typically, a few such objectives emerge from clustering, each supposed to capture a
subset of ‘capabilities’ exhibited by the programs in the context of other individuals in
the population. The derived objectives replace then the conventional fitness function
and are used to drive the selection process. DOC is rooted in the previous work in
coevolutionary algorithms and test-based problems [21, 25].

Regarding other approaches, the SFIMX variants studied here can be likened to
methods that redefine fitness function. The arguably best known approach of this type
is implicit fitness sharing (IFS) introduced by Smith et al. [31] and further explored for
genetic programming by McKay [27]. IFS estimates the difficulty of particular tests
from an interaction matrix and weighs accordingly the rewards granted to programs.
Higher rewards are provided for solving tests that are rarely solved by population
members. The difficulties of tests are calculated from the current population and
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thus change with evolution, which can help escaping local minima and diversifies
the population. Diversification maintenance was also the main motivation for the
recent Lexicase selection algorithm [11], that avoids aggregating interaction outcomes
altogether: in each selection act, a random permutation of tests is generated, and
the program from the current population which passes the longest uninterrupted
sequence of tests is selected. Lexicase proved very effective in a range of contexts and
applications.

Last but not least, certain aspects of the SFIMX variants considered in this paper
link to the adversarial settings of coevolutionary algorithms (cf. the second para-
graph of Introduction). Here, we adjust the probabilities of programs engaging with
individual tests in a predefined manner, motivated by the anticipated benefits of, e.g.,
exposing programs more frequently to the more difficult tests. A competitive coevolu-
tionary algorithm, with a separate population of programs and a separate population
of tests that coevolve with them, can be seen as an emerging way of adjusting those
probabilities. The extent to which this analogy holds depends on several factors, in-
cluding the way in which the tests are evaluated (note the remark in Section 3 on
SFIMX-Dist being inspired by the concept of distinctions, a specific way of evaluat-
ing tests in competitive coevolution [8]). A range of works in GP investigated the
possibility of coevolving tests, starting from the seminal work by Pagie and Hogeweg
[28], to the idea of coevolving fitness predictors along with programs [30]. The simi-
larities notwithstanding, coevolutionary approaches are more suitable for open-ended
settings; in a down-to-earth GP practice, one cares primarily (and in some cases ex-
clusively) about the available tests and assumes that no other knowledge about the
problem is given (and thus no additional tests that are guaranteed to be consistent
with the target concept can be obtained).

5. Experimental evaluation

5.1. Methods

We examine the performance of SFIMX extensions in the domain of tree-based GP,
following the experimental settings and benchmark problems used in [23]. All com-
pared methods implement the generational evolutionary algorithm and share the same
parameter settings, with the initial population filled with the ramped half-and-half
operator, subtree-replacing mutation engaged with probability 0.1, subtree-swapping
crossover engaged with probability 0.9, and tournament of size 7 in the selection
phase. The fitness of each program p ∈ P is computed based on the Ĝ as a sum of
corresponding rows of the matrix (Eq. 4). Search stops when the 200 generations
elapse. To verify whether an ideal program has been found, in the last generation of
an evolutionary run, we evaluate the best program(s) on all tests. This amounts to
computing additional (1−α)n interactions. Runs that find such an ideal program are
considered a success.

We are interested in verifying whether the extensions Diff, Dist, and Err improve
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the performance of a regular SFIMX algorithm in particular variants proposed in [23].
For this reason, we consider as the baselines all SFIMX configurations from [23], i.e.

• SFIMX-full that uses the highest factorization rank k = min(m,n),

• SFIMX-half with k = n/2 that forces the interaction outcomes to be com-
pressed in half the number of weights in matrix W and features in matrix H,
and

• SFIMX-log that uses the smallest rank k = dlog2 ne.

We set the fraction of conducted interactions to α ∈ {0.4, 0.5, 0.6}, as these proved
most effective for the original SFIMX [23].

The population size is |P | = 1000 for the non-SFIMX methods (introduced below),
while for SFIMX it is increased according to the number of spared evaluation cycles.
As SFIMX spares (1 − α)mn interactions per run when running with population of
size m and n tests in T , we increase its population size by the factor of (1 − α), so
that it consists of m + (1 − α)m individuals. As a result, the overall computational
budget is the same for SFIMX and the baseline configurations, and amounts to 1,000n
interactions per generation and thus 200,000n interactions per run.

The non-SFIMX baseline methods include conventional Koza-style GP and Ran-
dom Subset Selection (RSS). The latter calculates fitness using a subset of αn ran-
domly selected tests, drawn anew in every generation. This proceeding is intended to
mimic the evaluation scheme known in coevolutionary algorithms [5]. The computa-
tions were conducted on a cluster of uniform PCs, with 2.6 GHz Intel Xeon E5-2697
processors and 64 GB of memory. Interactions between programs and test were car-
ried out in parallel (typically 8 threads per run). The methods discussed in this paper
were implemented in Python programming language using evolutionary computation
framework called DEAP [9].

5.2. Benchmark problems

The multiplicative update NMF algorithm used by SFIMX can in principle factor an
arbitrary non-negative interaction matrix. However, obtaining good reconstructions
for interaction outcomes that vary strongly in magnitude might be difficult. Un-
constrained interaction outcomes can be expected when applying GP to continuous
domains (so-called symbolic regression), where programs can commit arbitrarily large
errors. Also, raw interaction outcomes in symbolic regression problems are signed
(the difference between the real-valued actual and desired output) and as such would
require a well-justified mapping to positive numbers to meet the non-negativity re-
quirement of NMF. For these reasons, in this study we consider only problems with
discrete interaction outcomes.

The first group are Boolean benchmarks, which employ the instruction set {and,
nand, or, nor} and are defined as follows. For an v-bit comparator Cmp v, a program
is required to return true if the v

2 least significant input bits encode a number that is
smaller than the number represented by the v

2 most significant bits. For the majority
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Maj v problems, true should be returned if more that half of input variables are true.
For the multiplexer Mul v, the state of the addressed input should be returned (6-bit
multiplexer uses two inputs to address the remaining four inputs). In the parity Par v
problems, true should be returned only for an odd number of true inputs.

The second group of benchmarks are the algebra problems from Spector et al.’s
work on evolving algebraic terms [32]. These problems dwell in a ternary domain (the
admissible inputs and outputs are {0, 1, 2}) and use only one binary instruction in
the programming language, which defines the underlying algebra. For instance, for
the a1 algebra, the semantics of that instruction is defined as follows:

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

We consider five algebras (the above a1 and four others defined in [32]) and two tasks
that are of interest to mathematicians [6]. In the discriminator term tasks (Dsc in
the following), the goal is to synthesize an expression that accepts three inputs x, y, z
and is semantically equivalent to the one shown below:

tA(x, y, z) =

{
x if x 6= y

z if x = y
(8)

There are thus 33 = 27 fitness cases in these benchmarks. The second tasks (Mal),
consists in evolving a so-called Mal’cev term, i.e., a ternary term that satisfies the
equation:

m(x, x, y) = m(y, x, x) = y (9)

This condition specifies the desired program output only for some combinations of
inputs: the desired value is undefined for m(x, y, z), where x, y, and z are all distinct.
As a result, there are only 15 fitness cases in theMal tasks, the lowest of all considered
benchmarks.

In total, the five algebras and two tasks give rise to 10 benchmarks in out algebra
domain (e.g., Mal3 means the task of evolving the Mal’cev term using algebra a3).

5.3. Discussion

Figure 1 shows the average best-of-generation fitness graphs for particular methods
and benchmark problems, with 95% confidence intervals marked as semi-transparent
bands. For brevity, we present only the best performing configurations, which hap-
pen to be those that used α = 0.4 and Diff extension. By comparing the extended
SFIMX variants with the corresponding baseline SFIMX configurations (marked by
the same color on the graph), we observe significant improvements in learning speed
and best-of-generation fitness in the methods that employ Diff. For certain problems,
including Dsc1, Dsc2, Dsc5 and Mal4, the differences between the methods are partic-
ularly prominent, showing clear superiority of Diff to the original SFIMX. The best
performance is achieved either by Diff-Full or Diff-Half, depending on the problem.
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Figure 1. Average and .95-confidence interval of the best-of-generation fitness.
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Table 1. Success rate (×100) of best-of-run individuals, averaged over 50 evolutionary
runs.

α Cmp6 Cmp8 Maj6 Mux6 Par5 Dsc1 Dsc2 Dsc3 Dsc4 Dsc5 Mal1 Mal2 Mal3 Mal4 Mal5 Rank Time
sfimx-full

0.4 74 4 100 100 6 12 18 90 0 20 82 82 98 40 98 15.83 09:52
0.5 88 6 94 100 16 0 18 82 0 12 76 88 98 30 92 19.47 06:49
0.6 82 12 96 100 12 4 2 76 0 14 76 70 100 24 90 22.17 06:17

diff
0.4 96 26 98 100 14 50 54 98 4 50 90 98 100 80 100 4.90 10:52
0.5 92 22 100 100 10 12 24 94 0 32 88 96 100 66 98 10.03 09:18
0.6 96 22 100 100 30 0 10 90 0 20 88 84 100 64 100 10.60 08:18

dist
0.4 80 14 98 100 8 8 2 57 0 8 60 60 88 18 96 26.20 19:38
0.5 94 20 98 100 12 0 12 56 0 6 72 64 90 14 96 23.77 10:19
0.6 85 22 94 100 4 2 12 56 0 6 74 60 88 10 88 27.97 09:12

errs
0.4 86 12 96 100 8 4 10 60 0 20 88 87 96 20 96 19.43 11:32
0.5 92 14 96 100 12 6 6 70 0 22 64 70 96 20 92 20.13 10:51
0.6 86 10 96 100 10 2 4 70 0 24 74 84 96 16 92 22.23 08:36

sfimx-half
0.4 86 4 96 100 4 6 12 70 0 20 80 78 94 36 94 21.77 10:01
0.5 85 12 97 100 16 2 22 78 0 12 82 74 98 36 96 16.13 06:00
0.6 80 12 96 100 8 0 4 64 0 6 96 66 98 36 100 22.03 05:23

diff
0.4 90 36 97 100 6 34 32 98 0 48 90 98 98 88 96 10.17 11:15
0.5 92 36 100 100 10 0 24 84 0 14 94 90 100 60 100 11.43 08:56
0.6 92 14 100 100 10 8 14 82 0 14 84 96 100 46 100 11.40 07:56

dist
0.4 78 22 100 100 0 4 8 66 0 8 82 76 88 24 90 22.13 14:23
0.5 88 8 92 100 8 0 8 64 0 10 80 70 92 20 94 25.47 10:41
0.6 82 10 94 100 8 0 6 54 0 6 80 66 94 18 96 26.57 08:26

errs
0.4 80 4 92 98 4 6 18 90 0 12 80 74 100 42 96 21.27 13:48
0.5 96 12 98 100 14 0 8 74 0 8 76 92 98 28 98 17.50 09:30
0.6 86 16 98 100 6 0 10 86 0 6 80 74 90 28 94 21.30 08:09

sfimx-log
0.4 94 10 98 100 12 4 20 72 0 28 70 66 100 36 96 17.63 09:43
0.5 94 12 98 100 14 4 12 74 0 4 84 68 84 22 96 19.50 07:36
0.6 84 12 96 100 10 0 12 70 0 8 72 54 96 16 92 25.53 06:56

diff
0.4 96 36 100 100 16 10 36 94 2 42 98 98 100 56 100 4.50 09:47
0.5 92 38 98 100 14 12 20 92 0 28 98 82 100 44 98 9.13 07:53
0.6 94 14 100 100 22 2 22 78 0 8 88 72 98 44 100 12.47 08:35

dist
0.4 96 18 90 100 12 2 10 57 0 4 62 64 94 2 94 25.37 15:46
0.5 96 14 98 100 4 0 4 56 0 14 78 48 84 2 84 26.53 11:54
0.6 94 8 96 100 10 0 8 64 0 8 68 36 92 4 82 27.07 10:11

errs
0.4 86 20 100 100 8 2 12 76 0 18 78 64 100 22 98 17.97 12:52
0.5 92 8 98 100 8 0 12 66 0 20 80 48 96 16 96 21.73 09:54
0.6 80 18 89 100 22 2 2 72 0 6 76 52 86 2 96 25.03 09:17

rss
0.4 52 0 55 95 0 0 0 45 0 0 68 48 78 25 85 35.50 06:19
0.5 65 0 45 95 0 0 0 45 0 0 68 48 78 8 85 35.67 05:19
0.6 68 2 52 92 2 0 0 32 0 5 68 65 82 8 88 35.30 05:10

gp
56 6 94 100 6 0 0 30 0 6 88 2 90 0 82 31.17 04:28
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Table 2. Post-hoc analysis of Friedman’s test for Diff. Significant values (0.05) are
in bold.

sfimx α = 0.4
gp rss full diff-full half diff-half log diff-log

gp 0.946
rss

full 0.233 0.009 0.782 1.000
diff-full 0.000 0.000 0.041 0.000 0.911 0.025 1.000

half 0.989 0.467
diff-half 0.002 0.000 0.782 0.042 0.494

log 0.494 0.037 0.955
diff-log 0.000 0.000 0.137 0.001 0.955 0.042

Diff-Log performs slightly worse or falls in between the already mentioned configura-
tions, but most importantly, it still achieves lower fitness than any baseline setups,
including RSS and GP. These observations are confirmed by Table 1 that reports the
success rates of all three extensions and the baselines, resulting from 50 runs of each
configuration on every benchmark.

To provide an aggregated perspective on the performance of the Diff extension
against the other methods, we employ the Friedman’s test for multiple achievements
of multiple subjects [15] on the best-of-run fitness. The p-value 1.41× 10−9 strongly
indicates that at least one method performs significantly different from the remaining
ones. To determine the significantly different pairs, we conduct post-hoc analysis using
symmetry test [13]. Table 2 presents the p-values for the hypothesis that a setup in a
row is better than a setup in a column, with the significant values marked in bold. We
report the results only for α = 0.4 that consistently leads to the highest success rates
(cf. Table 1). The comparison indicates that the improvement of Diff relative to the
regular SFIMX across all configurations is indeed significant. In particular, Diff-Full
is significantly better than Full, Half and Log, as well as the control setups GP and
RSS. Similar observations can be made for Diff-Half and Diff-Log that outperform
their counterparts. For other values of α (0.5 and 0.6), Diff still delivers improvements
and surpasses SFIMX, GP and RSS on most benchmarks (cf. Table 1).

For a more detailed insight, we also rank all 40 configurations on each benchmark
and present the averaged ranks in the last-but-one column of Table 1. The best overall
average rank of 4.50 is achieved by Diff-Log. The second-best method is Diff-Full with
the average rank of 4.90. The ranking reveals also that the methods employing the
Err sampling typically rank better than Dist, which may suggest that in certain
cases the errors from factorization are more useful than distinctions for shaping the
probability distribution of test drawing. GP and RSS occupy the last few places in
the ranking, achieving the lowest success rates of all compared methods. It is also
interesting to see that Log behaves so well, regardless of the choice of parameters. By
using the smallest factorization rank k = dlog2 ne, it is on average computationally
cheaper than the other methods. This advantage is crucial for larger problems that
involve more tests and yield bigger interaction matrices. Indeed, in terms of pure
wall clock time (cf. last column in Table 1), Log takes the least time to run a single
trial compared to other SFIMX variants. Half and Full are more computationally
expensive, which was expected, given that they operate on larger matrices.
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Table 3. Post-hoc analysis of Friedman’s test for Dist. Significant values (0.05) are
in bold.

sfimx α = 0.4
gp rss full dist-full half dist-half log dist-log

gp 0.715
rss

full 0.002 0.000 0.192 0.831 0.439 1.000 0.210
dist-full 0.831 0.039

half 0.192 0.001 0.966 0.999 0.973
dist-half 0.550 0.009 1.000 1.000

log 0.008 0.000 0.387 0.959 0.689 0.413
dist-log 0.810 0.034 1.000

Table 4. Post-hoc analysis of Friedman’s test for Err. Significant values (0.05) are
in bold.

sfimx α = 0.4
gp rss full err-full half err-half log err-log

gp 0.746
rss

full 0.006 0.000 0.952 0.503 0.669 0.998 0.979
err-full 0.166 0.001 0.991 0.999

half 0.669 0.019
err-half 0.503 0.008 1.000

log 0.047 0.000 1.000 0.889 0.960 1.000
err-log 0.112 0.000 1.000 0.974 0.995

The overhead of collecting additional statistics required by SFIMX extensions
typically does not exceed 10% of a trial time (except for Dist, where distinctions
involve pairs of programs and thus imply quadratic complexity). Nevertheless, GP and
RSS tend to complete faster. These differences in run times stem primary from SFIMX
performing NMF in every generation of an evolutionary run. In this study, we used our
own implementation of NMF, for the sake of clarity and to avoid dependency on third-
party libraries. Nevertheless, switching to a more efficient implementation (including,
for instance, a potentially very efficient GPU implementations1) is possible, and would
certainly largely reduce the SFIMX overheads resulting from the use of NMF. We
expect such an implementation diverge only slightly in execution times from GP and
RSS, our baseline methods. Further reduction of SFIMX run time could be easily
achieved by lowering the number of gradient descent steps taken while learning the
NMF model. We used 200 steps in order to guarantee convergence, but typically a
good factorization can be found in at most a few dozen of steps. For this reason,
we argue that it is sufficient to identify the computational effort with the number
of interactions taken place between the individuals in order to reliably compare the
methods discussed in this study.

In contrast to Diff, Dist and Err fail to deliver any performance boost upon the
original SFIMX configuration. The baseline SFIMX setups obtain better success rates
and typically rank higher in Table 1. According to Tables 3 and 4, which present the
post-hoc analysis for α = 0.4, Dist and Err outperform only RSS. We hypothesize
that these methods may fail to differentiate the easy tests from those that are difficult

1https://github.com/ebattenberg/nmf-cuda
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Figure 2. Normalized difficulty of 32 tests in Par5 problem during the first 100
generations as indicated by the three methods: Diff, Dist and Err. The brighter the
color, the more difficult the test.

to pass, and do not bias the sampling distribution towards the difficult tests.
In order to gain a deeper insight into the differences between Diff, Dist and Err,

in Fig. 2 we plot the changes of the normalized difficulty of all 32 tests in the Par5
problem for the first 100 generations. To create the graphs, we first computed the
test difficulty according to Eqs. 5-7 (Section 3). Then, the resulting 32-element
vectors were averaged to form the mean test difficulty across 50 runs. Finally, the
resulting 32 × 100 matrix is normalized and presented as a heatmap, with brighter
colors corresponding to harder tests.

Judging from the graphs in Fig. 2, Diff starts to differentiate tests’ difficulty from
the early stages of evolutionary runs and manages to maintain that differentiation with
time. It also seems to discriminate roughly equal numbers of easy and difficult tests,
as illustrated by the dark and bright stripes in the heatmap. As evolution proceeds,
the brighter stripes fade away, some faster than others, as programs in the population
adapt and solve the more difficult tests. Dist behaves similarly, however the differences
in the difficulty measure seem to be more subtle and, judging from relatively low
performance of this variant, insufficient to shape the probability distribution in a way
that would make an impact on the success rate. Err is characterized by the most
uniform distribution of all three methods. Apparently, NMF’s estimation error turns
out to be roughly uniformly distributed across all tests. All in all, the visualization
provided in Fig. 2 confirms that neither Dist nor Err discern the tests well enough
to guide search more effectively than the corresponding SFIMX baselines, and this is
most likely the reason why they are unable to enhance SFIMX’s performance.

Finally, we verify whether the methods improve the predictive capabilities of
SFIMX. In Table 5 we present the mean absolute estimation error calculated as∑
i |Gi − Ĝi|, where i iterates over generations of a run (i ∈ [1, 200]). To calcu-

late this error, we compute both the complete interaction matrix G alongside with
the estimated one (Ĝ), even though the former is never used by fitness. Bold values
indicate that an extended configuration achieves lower error than its SFIMX counter-
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Table 5. Mean absolute error (×100) when reconstructing G in SFIMX with α = 0.4,
averaged over 50 evolutionary runs. Bold cells indicate configurations with lower error
than the regular SFIMX.

Method Cmp6 Cmp8 Maj6 Mux6 Par5 Dsc1 Dsc2 Dsc3 Dsc4 Dsc5 Mal1 Mal2 Mal3 Mal4 Mal5
sfimx

Full 11.83 9.75 12.73 14.21 19.93 11.39 16.45 17.14 9.77 16.66 26.72 26.05 26.21 26.03 28.52
Half 13.31 10.76 14.13 16.28 22.09 12.23 16.75 18.13 10.48 16.44 30.66 29.49 27.34 28.36 32.69
Log 13.53 13.01 14.63 17.47 21.31 9.80 14.23 17.43 8.69 13.66 28.74 25.97 24.80 24.76 31.61

diff
Full 11.66 9.50 12.53 14.20 20.17 10.74 15.10 15.92 10.35 14.84 26.62 24.95 24.18 23.07 29.32
Half 12.96 10.47 14.05 15.60 21.57 12.41 16.73 17.39 10.36 14.45 29.95 27.49 26.10 25.69 33.49
Log 13.40 12.83 14.38 16.80 20.50 9.22 13.96 15.80 8.90 12.82 27.88 24.71 24.81 23.23 30.66

dist
Full 11.66 9.61 12.82 14.52 20.38 12.06 16.13 16.55 10.09 15.00 27.25 25.94 25.01 24.31 29.96
Half 13.19 10.57 14.16 16.04 21.64 11.33 16.84 17.89 11.33 16.30 30.80 29.76 26.75 27.71 32.76
Log 13.49 12.92 14.34 17.03 21.20 10.19 15.98 16.81 8.53 15.64 29.85 26.20 24.90 24.12 31.69

err
Full 11.79 9.47 12.31 14.33 21.51 19.25 19.15 17.93 15.30 21.86 28.14 28.44 26.35 26.35 30.24
Half 13.22 10.42 14.12 16.24 23.45 20.87 20.87 19.83 13.50 23.66 32.39 32.15 29.01 30.25 34.61
Log 14.07 12.82 14.84 17.62 23.58 14.42 19.42 18.47 10.65 19.40 31.52 31.04 27.02 29.30 33.67

part. Diff and Dist tend to systematically decrease the error on most of problems,
however the reduction typically does not exceed 12%. Err performs noticeably worse,
managing to improve the error on just a handful of problems. By juxtaposing these
results with the success rates from Table 1, we may conclude that the performance
improvement of Diff goes on par with the more accurate predictions.

6. Conclusions

The SFIMX extensions proposed in this paper corroborate our earlier claims [24, 18,
26, 23, 17] that tests not only vary in difficulty, but also that this variability can be
exploited to make search more effective. We used this property of test-based problems
to shape the probability with which the tests are being drawn for interactions. That
proved overall beneficial, though the boosts in success rate with respect to SFIMX
are not always significant, the trend is clear.

It is not unlikely that further improvements could be achieved with introduction of
additional mechanisms. For instance, all methods considered here base their estimates
on the entire history of evolutionary run, i.e. on the interaction outcomes for programs
from the most recent generations, as well as of the not so well-performing programs
from the initial generations. One may argue that some form of aging applied to
the estimates (e.g., exponential smoothing) may make them more up-to-date, better
tuned to the capabilities of the programs in the current population, and thus more
beneficial for success rate.

A natural follow-up of this study could be engagement of Diff, Dist, Err to other
test-based evaluation methods for GP, some of which employ NMF to obtain a multi-
dimensional characterization of candidate programs [22]. As we argued in Introduc-
tion, such multi-faceted evaluation helps maintaining a behaviorally diversified pop-
ulation and so makes search more likely to find the basins of high-quality solutions.
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