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ABSTRACT

We have used genetic programming
to develop efficient image processing
software. The ultimate goal of our work
is to detect certain signs of breast can-
cer that cannot be detected with current
segmentation and classification meth-
ods. Traditional techniques do a rela-
tively good job of segmenting and clas-
sifying small-scale features of mammo-
grams, such as micro-calcification clus-
ters. Our strongly-typed genetic pro-
grams work on a multi-resolution rep-
resentation of the mammogram, and
they are aimed at handling features at
medium and large scales, such as stel-
lated lesions and architectural distor-
tions. The main problem is efficiency.
We employ program optimizations that
speed up the evolution process by more
than a factor of ten. In this paper we
present our genetic programming sys-
tem, and we describe our optimization
techniques.

1 Introduction
Genetic programming [14] has been applied widely in im-
age processing [20, 16, 6, 5]. For example, Harris and Bux-
ton [11] applied genetic programming techniques to derive
high performance edge detectors for one-dimensional signals.
The resulting programs often compared favorably with hand-
written edge detectors.

The ultimate goal of our work is to detect certain signs of
breast cancer that cannot be detected with current methods.
Traditional techniques do a relatively good job of segmenting
and classifying small-scale features of mammograms, such as
micro-calcification clusters [8]. We want to handle features at
�
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medium and large scales, such as stellated lesions and archi-
tectural distortions [19].

Poli [17] discussed genetic programming for image anal-
ysis, and he noted that without restrictions on which pixels
can be accessed, the search space becomes huge. His paper
presents a particular set of restrictions together with some ex-
perimental data. Still, his paper does not evaluate whether the
chosen restrictions actually give an advantage over working
in an unrestricted setting.

In this paper we study edge detection in
�������	�
���

images
with a multi-resolution representation [3]. Edge detection is
a long-studied problem with many classical solutions [10].
We use strongly-typed genetic programs with (1) unbounded
size, (2) unbounded integers, and (3) unrestricted access to all
pixels. We show that a good edge detector can be evolved in a
reasonable amount of time provided that aggressive program
optimizations are employed.

In our setting, a genetic program maps a pixel index to a
boolean value, indicating whether the pixel is an edge pixel or
not. We use four well-known source-to-source optimizations
[1] that together speed up the evolution process by at least a
factor of ten. The optimizations are: 1) checks for out-of-
boundary conditions; 2) variable bindings of the needed pixel
values before evaluating the expressions; 3) use of fixnum
(small integer) arithmetic wherever possible; and 4) flattening
of and/or subtrees of expressions. The use of fixnum arith-
metic seems to be the most effective optimization, while flat-
tening and-or subtrees is the least effective. We represent the
genetic programs as LISP-lists, and after the optimizations,
we use off-the-shelf tools to compile the programs to C, and
to compile and execute the generated C programs. Our exper-
iments show that the optimizing C compiler alone is far from
matching the speed-ups we get from the source-to-source op-
timizations. This confirms that powerful program optimiza-
tions are easier to do for high-level programs. We conclude
that program optimization is a viable way to reduce the time
needed for the massive computations for image-processing
genetic programming.

In the following section we describe the language of ge-
netic programs and the evolution process, in Section 3 we dis-
cuss our optimization techniques, and in Section 4 we present
our experimental results.



2 The Genetic Programs
Our genetic programs are represented as LISP-lists generated
from the grammar:

Exp ::= point�
Constant�
( UnaryOp Exp )�
( BinaryOp Exp Exp )

Constant ::= ��� � ��� � � � � � � ����� � � � � � � �
UnaryOp ::= abs

�
divide-by-2

�
not

�
value�

left
�
right

�
up

�
down�

deeper
�
shallower

BinaryOp ::= +
�
-
�
*
�
<
�
and

�
or

There are three types of data: indices, integers, and booleans.
An index is defined by a triplet of integers, representing the
row, column, and depth. Depth 0 corresponds to the pixels of
the original image. A depth of 1 is obtained by aggregating
� �	�

squares of pixels as showed in Figure 1. Assuming the
figure represents a matrix, the value of the (

� � �
) pixel at

row 1 and column 1 at depth 1 is obtained by averaging the
values of the pixel at row 1, column 1; one-half the values of
pixels adjacent to the four edges of the pixel at row 1, column
1; and one-fourth the values of the four pixels adjoining the
corners of the pixel at row 1, column 1. Similarly a image at
depth 2 is obtained by averaging the original image over � � �
squares, each centered at one of the original pixels. Thus, one
can view the original pixel data as being transformed into a
pyramid.

There are six operations that map an index 	�
��������� to an
index:

1. left returns the index of the location
���

pixels left of
the present position. For example if the current index
has row 10, column 10 and depth 2, then left returns
an index with row 10, column 6 and depth 2. If part of
the

��� � ���
-pixel subsquare associated with this index

lies outside the image, left returns an “out of bounds”
condition.

2. right, up, and down return the index obtained by
moving right, up, or down, respectively, with respect
to the current location. Again, if this operation leads
to moving out of the image then “out of bounds” is re-
turned.

3. shallower increases the depth by one (in effect dou-
bling the size of the data square), and deeper decreases
it by one. If the operation results in moving out the the
image, an “out of bounds” condition is returned. For ex-
ample, deeper does not make sense at depth 0, since
in our interpretation of the data, negative depth would
imply sub-pixel resolution.

These six operations are potentially slow because of the
checks for “out of bounds.” In Section 3.1 we show how they,
in many cases, can be executed efficiently.
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Figure 1: Depths of an Image

Our language of genetic programs is sufficient to generate
any one of the family of biorthogonal wavelets [7, p.272].
These wavelets have arbitrarily high approximation power
even though they are constructed using knowledge only of
the averages of pixels on dyadic squares; thus, they can form
a general framework for multi-resolution data representation.
It is possible that an evolving genetic programming system
will choose the order of representation that is best for a par-
ticular problem (e.g., first order for edge detection, second
order for curvature analysis, etc.).

We only work with genetic programs that type check [2].
For example, the initialization process and the genetic oper-
ators generate only programs that type check. This approach
to genetic programming was pioneered by Montana [15], see
also [12]. Early genetic programming systems worked with
the simplifying assumption, known as closure, that all vari-
ables, constants, arguments for functions, and values returned
from these functions must be of the same data type.

A genetic program in our language takes a row and a col-
umn as input and return true or false indicating if that cor-
responding pixel in the image is an edge or not. The index
of that pixel will look like 	�
����� � � , and it is denoted by the
constant point. The function value returns for each index
	�
�������� the average value of the pixels on a subsquare of the
image consisting of

� � � � �
pixels centered at the pixel at row


 and column � .
For each input image, we have created a companion im-

age which contains just the edges. The goal of the genetic
programming process is to evolve a program which for each
image produces the corresponding edge image.

Each generation is composed of 2000 programs. Initially,
programs are randomly generated (generation 0) and are ap-
plied to every pixel in the image. The thereby computed im-
ages are then compared to the “true” edge image. The number
of discrepancies between the “true” and computed images are
noted for both the set of edge pixels and the set of non-edge
pixels of the true image; the penalty is the sum of the squares
of the errors on these two sets. Based on this penalty the tradi-
tional genetic programming methods like cross over, mutation
etc. are applied and the programs are successively refined in
succeeding generations in order to achieve a target penalty.
In this case, the target penalty is determined as follows. First



a program is generated which detects no edges at all. The
penalty of this program with respect to the true edge program
is calculated and then the target penalty is set to

���
� � th of
this value. After each generation the penalty is calculated for
each of the programs. If in a particular generation a program
achieves the target penalty then the evolution is terminated,
otherwise the evolution stops after 100 generations.

We do not copy programs from one generation to the next.
After the initial generation, all programs are created by cross
over (thus, the cross over probability is 1.) For each training
set, we do just one evolution. All mutation happens during
cross over, with a probability of 5%. Intuitively, the cross
over takes place with a 5% chance of a copy error. There
are four different mutations which all insert some code: (1)
“rotate 90 degrees,” (2) “reflect in the x-axis,” (3) “reflect in
the y-axis,” and (4) “make shallower.” They happen with the
probabilities (1) 1/3, (2) 1/6, (3) 1/6, and (4) 1/3 out of the 5%
chance that a mutation will happen.

Our genetic programming system is implemented in
Scheme [4] (a dialect of LISP) using Gambit-C [9], a ver-
sion of the Gambit system that generates portable C code,
and Meroon [18], which implements an object system on top
of Scheme. Gambit-C is used to convert the generated pro-
grams into C. We use gcc with compiler optimization setting
-O1 to compile the generated C code. The setting -O2 turns
out be an inferior choice because the compile time increases
more than the decrease in cumulative run time of the com-
piled code. Notice that although gcc attempts to do the same
style of optimizations as we do at the source level, it does a
much poorer job because much of the program structure is
lost when reaching the C level.

3 Optimizations
3.1 Check for “Out of Bounds” Conditions
If an index-to-index operation moves an index out of the
boundary of the image during the execution of a program with
the argument point, then the program should immediately
return ”don’t know” instead of ”true” or ”false” as to whether
point is an edge pixel. A naive implementation performs
a boundary check before each index-to-index operation. In
contrast, our implementation performs a static analysis to de-
termine a condition for when a given program never moves
out of the boundary, and this condition is checked before each
boolean clause of the program is calculated. If the check
succeeds, then we can use index-to-index operations without
boundary checks, and if it fails, then an error can immedi-
ately be reported. Being able to omit the boundary checks
significantly speeds up execution. For example, if the current
position has a column greater than four, then four left oper-
ations will never result in a position out of the image. Before
execution we therefore check that the column is greater than
four. In effect, we place a compact representation of all the
boundary checks at the beginning of the execution instead at
each individual index-to-index operation. Intuitively, this op-

timization transforms a program exp into

if condition then exp else error

where exp can be executed faster.

3.2 Variable Bindings
The value operation may be applied many times dur-
ing a computation. A naive implementation performs
value exactly when specified in the program text. In
contrast, our implementation performs a static analysis to
determine how the argument to value is offset from
from the current index. Intuitively, we then replace
the call (value arg) by (value (make-index row
column depth))where there row, column, and depth
have been determined from arg, and make-index is an
auxiliary function which creates an index. For example, we
can optimize the program

(< 1 (value (down (down (down point)))))

into

(< 1 (value (make-index (+ r 3) c d)))

where r, c, d are the current row, column, and depth. This
optimization allows us to eliminate all index-to-index opera-
tions.

Sometimes the same value is needed in more than one
place. Consider the following program:

(< (value point) (+ (value point) 1))

A naive implementation looks up twice the pixel at index
point. In contrast, our implementation does common
subexpression elimination, and transforms, intuitively, the
program into:

(let ((g (value point))) (< g (+ g 1)))

Thus, the value operation is only executed once instead of
twice.

Together, the two optimizations in this subsection trans-
forms a program exp into

(let ((g1 (value ...))
...
(gn (value ...)))

compact-exp)

where compact-exp does not use index-to-index opera-
tions, or the value operation.

3.3 Fixnum Arithmetic
Our programs compute with unbounded integers. A naive im-
plementation performs all integers operations on a represen-
tation which supports unbounded integers. In contrast, our
implementation performs a static analysis to eliminate some
expressions entirely, for example, a comparison of two con-
stants, and otherwise to insert fixnum, or small integer, oper-
ations wherever possible. Particularly useful is the property



that the value operation always returns an integer between
0 and 255. In essence, this optimization is a restricted form
of partial evaluation [13]. Our static analysis is based on in-
teger interval arithmetic. An alternative would be to use a
more precise analysis based on Tarski’s theorem, but this has
a time complexity which is doubly exponential in the size of
the program.

3.4 Flattening and/or
Consider the following expression:

(and (or A B)
(and C D))

One can assume that the boundary checks and variable bind-
ings for A must be computed before those for C and D, so
we can use them in computing C and D. However, B may not
be computed, so we cannot rely on B’s boundary checks or
variable bindings in C and D. On the other hand, in:

(and (and A B)
(and C D))

we do know that B must be computed before C and D. To
make this clear to our optimizer, we rewrite subtrees consist-
ing solely of and expressions or solely of or expressions as,
for example:

(and A
(and B

(and C D)))

In this case C and D are evaluated in the environment of B, so
some boundary checks and variable bindings can be avoided.
We call this “flattening” of and/or trees. We apply this opti-
mization before the others.

4 Experimental Results
It takes time to carry out an optimization. We are interested in
optimizations for which the time to carry them out is smaller
than the reduction in run-time of the programs. Our experi-
ments show how much time each optimization gains or loses.
Our approach is to add one optimization at a time.

We used three images, of a bank, Lenna, and an F16, see
Figures 2.1, 3.1 and 4.1. The true edge pictures for each of
these are given in Figures 2.2, 3.2 and 4.2. Genetic program-
ming was applied to derive programs which could determine
the edges successfully. The target penalties used were 1/10th

the penalty of the program which could not determine any
of the edges for Lenna and Bank, while it was chosen to be
1/12th for the F16 image since using 1/10th the value did not
give satisfactory results for this image. Figures 2.3, 3.3 and
4.3 give the results obtained; by comparison with the actual
edge figures the programs seem to be successful in determin-
ing most of the edges. Table 1 summarizes the penalties and
the number of generations that were necessary to obtain the
results for each of these images. The Lenna image, being

the most complicated, took 52 generations to attain the tar-
get penalty while F16 took only 20 generations. In order to
test the robustness of the generated program, the edge detec-
tion program of Lenna was applied to both Bank and F16 and
the images are given in Figures 5.1 and 5.2. Both are close
to the actual edge images, which gives us confidence on the
robustness of the generated program. The penalties obtained
with application of the program generated for Lenna on F16
was

��� � � � ���
, which is less than

� � � � � ���
, the minimum

penalty obtained for F16 at generation 20 (Table 1). How-
ever, the penalty obtained when applied to the Bank image is
� � � � � ���

, slightly higher than
� � � � � ���

that was obtained
when the program generated using the Bank image itself was
used.

The time taken with no optimization, and with each of the
four optimizations incrementally applied is given in Table 1.
The time taken is the sum of user and system times necessary
to obtain the target penalty. This time includes the source-to-
source optimizations (where applied), the Scheme � C trans-
lation, the compilation of the C code, and running the result-
ing programs.

Table 1 shows that the optimizations speed up the evolution
process by more than a factor of ten. The optimizations are
not equally effective. Flattening and/or’s do not help much.
The savings is hardly one hour but still the runtime decreased
(and the optimization takes only about 10 lines of code to im-
plement.) Use of fixnum arithmetic resulted in big savings.
For example, for the Bank image with fixnum arithmetic, the
runtime was 19.8 hours while without it was 136 hours. Also
adding variable bindings and boundary checks caused a sig-
nificant decrease in runtime. Boundary checks and variable
bindings together decreased further the runtime by 2.5 times
(from 350 hours to 136 hours for the Bank image) with the
boundary checks responsible for most of it (boundary checks
cut down the run time by more than a factor of two.) The same
trend can be observed in all the images and the results indicate
that using fixnum arithmetic caused the maximum difference
while out-of-line boundary checks were the next most effec-
tive optimization strategy. Variable bindings also provided
substantial savings while flattening and/or hardly made much
of a difference.

In order to determine further the savings obtained due to
optimization, penalties and run times at the end of 0, 9, 19
and 31 generations are given in Table 1 for both optimized
and unoptimized cases for the bank image. The run time per
generation increases for later generations since the programs
are much more complex than in initial generations. For the
same reason, the effect of optimization is more profound dur-
ing these later generations. For example at generation 0, the
runtime for the unoptimized version was about 8 times the
runtime for the optimized version, while at the end of 31 gen-
erations the runtime for the unoptimized case was more than
17 times of the runtime of the optimized case, indicating great
savings during later generations.



Figure 2: 1) A bank, 2) the edges, 3) the edges determined by the program generated based on the bank.

Figure 3: 1) Lenna, 2) the edges, 3) the edges determined by the program generated based on Lenna.

Figure 4: 1) An F16, 2) the edges, 3) the edges determined by the program generated based on the F16.

Figure 5: 1) The bank and F16 edges determined by the program generated based on Lenna.

Number of Final Optimizations
Image Generations Penalty None 1 1–2 1–3 1–4
Bank 31 1.8

� � � �
350 150 136 19.8 19.8

Lenna 52 1.9
� � ���

583 250 228 36.0 35.2
F16 20 1.0

� � ���
230 99 86 10.7 10.6

Bank Image, Penalty Optimizations
Generation None 1–4

0 6.8
� � ���

3.9 0.5
9 4.5

� � ���
40.8 4.4

19 2.3
� � ���

139.0 10.3
31 1.8

� � � �
350.0 19.8

Table 1: Total runtime in hours; optimizations: (1) boundary checks, (2) variable bindings, (3) fixnum, (4) flatten and/or.
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