
Evolving Graphs and Networks with Edge Encoding:
Preliminary Report

Sean Luke*
seanl@cs.umd.edu

http://www.cs.umd.edu/˜seanl/

*Department of Computer Science
University of Maryland

College Park, MD 20742

Lee Spector*y
lspector@hampshire.edu
http://hampshire.edu/˜lasCCS/

ySchool of Cognitive Science and Cultural Studies
Hampshire College

Amherst, MA 01002

ABSTRACT
We present an alternative to the cellular encoding tech-

nique [Gruau 1992] for evolving graph and network struc-
tures via genetic programming. The new technique, called
edge encoding, uses edge operators rather than the node
operators of cellular encoding. While both cellular encod-
ing and edge encoding can produce all possible graphs, the
two encodings bias the genetic search process in different
ways; each may therefore be most useful for a different
set of problems. The problems for which these techniques
may be used, and for which we think edge encoding may
be particularly useful, include the evolution of recurrent
neural networks, finite automata, and graph-based queries
to symbolic knowledge bases. In this preliminary report
we present a technical description of edge encoding and an
initial comparison to cellular encoding. Experimental in-
vestigation of the relative merits of these encoding schemes
is currently in progress.

1 Introduction
Several previous studies have examined the use of genetic al-
gorithms to produce graph-based and network-based compu-
tational mechanisms. A major thrust in this area has involved
using genetic and evolutionary algorithms to evolve the struc-
ture and weights of neural networks. One approach is to fix
the network topology and evolve the weights as values in the
chromosome [Collins and Jefferson 1991]. Other approaches
seek to vary the number of nodes while explicitly describ-
ing the entire network within the chromosome [Fullmer and
Miikkulainen 1991] [Angeline, Saunders, and Pollack 1994]
[Lindgren et al.]. A third approach tries to evolve a network
not as a set of explicit connections but as a set of rules which
“grow” into a network. [Kitano 1990] evolved networks us-
ing context-free grammars which operated on network matri-
ces. [Boers et al. 1993] “grew” networks using L-grammars
operating on nodes and edges.

1To appear in the Late-breaking Papers of the Genetic Programming 96
(GP96) conference, Stanford, July 1996

Genetic programming (GP) techniques have also been used
to evolve a variety of graph structures, including push-down
automata [Zomorodian 1995] and novel graph-based pro-
grams [Teller 1996]. [Koza and Rice 1991] used GP to
directly encode the edges and nodes of a neural network.
Gruau’s rule-based cellular encoding technique [Gruau 1992]
uses tree-like chromosomes and other elements of GP tech-
nique to evolve neural networks.

2 Cellular Encoding

Cellular encoding [Gruau 1992] uses chromosomes consist-
ing of trees of node operators to evolve a graph, commonly
for use as a neural network. Each operator accepts from its
parent a node in the graph, and modifies that node, possibly
creating new nodes and edges. Operators are executed in a
breadth-first, left-to-right traversal of the tree. Operators can
be nonterminals, meaning that they have children in the tree,
or terminals, which have no children. When finished modi-
fying the graph node they were given, nonterminal operators
pass this node on to one of their children for future modi-
fication. In the process of modifying a graph node, some
nonterminals create additional nodes in the graph; each ad-
ditional graph node is passed to an additional child of the
operator. For example, if an operator modifies a graph node
and in the process creates two new nodes, it will pass the
original node to a child and the other nodes to its other two
children. Terminal operators have no children, and repre-
sent the end of modification for a graph node — it becomes
a permanent fixture in the graph. Typically, a graph begins
with a single node, which is passed to the root operator in the
encoding tree to start the graph-building process.

Cellular encoding is particularly interesting for several rea-
sons. First, cellular encoding can describe all possible neural
networks — in fact, Gruau presents a compiler which trans-
forms Pascal functions (with a few limitations) into neural
networks which compute the same functions. Second, cel-
lular encoding is modular in the sense that it has special



operators which attempt to reuse groups of rules, thereby
generating very large networks from reasonably small chro-
mosomes. Additionally, cellular encoding takes advantage
of GP-like tree genotypes to permit network phenotypes of
any size, and to provide a straightforward mechanism for
crossover between networks of widely differing topology.

Although cellular encoding is a powerful technique, it
nonetheless has weaknesses. First, cellular encoding’s chro-
mosome traversal (breadth-first) and highly execution-order-
dependent operators can result in subtrees within the indi-
vidual which, if crossed over to other individuals, would
result in very different phenotypes than they expressed in
the original individual. For many domains it may be more
appropriate to use an encoding mechanism which better pre-
serves phenotypes through crossover. Other disadvantages
come from cellular encoding’s use of graph nodes as the tar-
get of its operations: as cellular encoding modifies nodes, the
edges multiply rapidly, but cellular encoding provides only a
very limited mechanism, link registers, to label and modify
individual edges. Additionally, the graphs cellular encod-
ing produces tend to consist of highly interconnected nodes.
This is useful for cellular encoding’s primary focus, namely
fully-connected graphs such as those found in feedforward
networks or Hopfield networks. However, it may be less
desirable in other domains.

In this preliminary report we present edge encoding, an
alternative to cellular encoding that addresses many of these
concerns. Our technique uses edge operators rather than the
node operators of cellular encoding. We believe that the result
is a more elegant formalism with improved recombinative
dynamics. Further, we believe edge operators may be more
successful than node operators in certain domains. Because
both cellular encoding and edge encoding are “complete”
in the sense that they can produce all possible graphs, it is
not clear how claims about the ultimate superiority of one
technique over the other could be supported; still, it may
be the case that one technique is clearly superior over some
range of practical problems.

We are currently conducting experiments on a range of
problems to assess the relative merits of cellular encoding
and edge encoding. In this preliminary report, however, we
confine ourselves to a technical description of edge encod-
ing and an initial comparison between the two. Our current
experiments include problems in which evolved graphs are in-
terpreted as recurrent neural networks, as finite automata, and
as graph-based queries to large symbolic knowledge bases.
We will present the results of these experiments in subsequent
reports as they are completed.

3 Edge Encodings

Edge encodings were originally developed to examine new
recurrent neural network structures, but are equally applica-
ble to developing a wide range of graph domains. Like a
cellular encoding, an edge encoding is a tree-structured chro-

mosome whose phenotype is a directed graph, optionally with
labels or functions associated with its edges and nodes. Edge
encodings differ from cellular encoding in several ways:

� Cellular encoding grows a graph by modifying the nodes
in the graph. An edge encoding grows a graph by modi-
fying the edges in the graph.

� Both encodings typically traverse their respective trees
in preorder, leftmost-children-first. But while cellular
encoding traverses its chromosome tree breadth-first, an
edge encoding usually traverses trees depth-first. Further,
simple edge encodings are independent of execution order
as long as parents in the tree are executed before their
children.

� Because an edge encoding operates on edges, the leaf
nodes in an edge encoding chromosome represent unique
edges in the resultant graph. In cellular encoding, leaf-
nodes represent nodes in the resultant graph.

3.1 Building an edge encoding

Edge encodings are stored as forests of trees, similar to Ge-
netic Programming’s chromosomes. The nodes of each tree
are operators which act on edges in the graph phenotype. An
edge operator accepts from its parent operator a single edge
in the graph, occasionally with some optional data (often a
stack of nodes). It modifies or deletes the edge and its head
and tail nodes as it pleases. In the process it may create zero
or more new edges and nodes. The operator then passes the
original edge (unless it has been deleted) and any new edges
and optional data to its children in the encoding tree, one edge
per child.

This is different from Genetic Programming in that edge
encoding operators are executed in preorder, that is, a parent
is executed before its children. As a result, child operators
are in no sense “arguments” of the parents as they are in the
symbolic expression trees commonly used in GP. In fact, just
the reverse is true. Each operator modifies a graph edge and
passes that edge (and any newly created edges) to its children
for future modification.

For example, consider the Double operator shown in Fig-
ure 1. This operator has two children in the encoding tree.
It receives from its parent a single edge E(a,b) in the graph
(where a is the tail of the edge E, and b is E’s head). From
E(a,b), Double “grows” an additional edge F(a,b). These
two edges are each passed to child operators for additional
modifications; E is passed to the Double’s left child, and F
is passed to its right child.

Edge encoding’s graph-generation process begins with a
graph consisting of a single edge. This edge is passed to the
root-node operator in the edge encoding tree, which modifies
the edge and passes resultant edges to its children, and so
on. Terminal (leaf) nodes in the edge encoding tree have no
children, and so stop the modification process for a particular



1a

Double

left
child

1b
Eparent

1c

E

F

right
child

Figure 1. The Double operator. 1a shows the operator
relative to its parent and children operators in the encoding
tree. 1b shows the initial edge E passed to Double from its
parent. 1c shows the edges E and F after Double’s execution.
E and F are then passed to Double’s left and right children,
respectively.

edge. After all nodes in the tree have made their modifi-
cations, the resultant graph is returned as the chromosome’s
phenotype.

The operators in a particular edge encoding are commonly
of two forms. First, there are operators which change the
topology of the graph, by adding or deleting edges or nodes.
Second, there are operators which add semantics to the edges
or nodes: labelling edges, assigning transfer functions to
nodes, etc.

4 A Simple Edge Encoding
To demonstrate an edge encoding, we begin with a simple set
of basic operators which cannot describe all directed graphs,
but are sufficient to build all nondeterministic finite-state au-
tomata (NFA). These operators each take an edge and no
optional data from their parents, and pass on to children at
most two resultant edges. A nice property of these operators
is that they can be executed in any order, so long as parent
operators are executed prior to child operators.

In this simple encoding, each individual consists of a single
tree of operators. Assume that each operator is passed some
edge E(a,b), which after processing is passed to the left child.
The operators which describe the topology of the graph are:

Table 1. Simple topological operators.

Operator Children Description

Double 2 Create an edge F(a,b).
Bud 2 Create a node c. Create an edge

F(b,c).
Split 2 Create a node c. Modify E to be

E(a,c). Create an edge F(c,b).
Loop 2 Create a self-loop edge F(b,b).
Reverse 1 Reverse E to be E(b,a).

These operators are sufficient to develop the topology of
an NFA which recognizes any regular expression. To develop
the full NFA, some custom semantic operators are necessary

Double

Bud

SplitLoop

Reverse

S A

0 1

ε

1

0

Figure 2. An edge encoding chromosome which describes
an NFA that reads the regular expression ((0|1)*101).

to define the starting and accepting states of the NFA and
label the edges with tokens. For example, suppose one were
trying to develop an NFA that matched the regular expression
((0|1)*101), from a language consisting only of 1’s and 0’s.
Using edge encoding, five more operators are necessary:

Table 2. NFA semantic operators.

Operator Children Description

S 1 Assign the head of E(a,b) (node
b) to be a starting state.

A 1 Assign the head of E(a,b) (node
b) to be an accepting state. It’s
valid for a state to be a starting
state and an accepting state at the
same time.

1 0 Label an edge with a “1”, that is,
define it to be an edge which can
be traversed only on reading a 1.

0 0 Label an edge with a “0”, that is,
define it to be an edge which can
be traversed only on reading a 0.

� 0 Label an edge with an “�”, that is,
define it to be an edge which may
be traversed without reading any
token.

Figure 2 shows an edge encoding chromosome using these
operators whose phenotype is an NFA that reads the regular
expression ((0|1)*101). Using a Lisp-like syntax, Figure 2
can be written as (Double (Reverse (Loop � (S 0))) (Bud
1 (Split 0 (A 1)))). Figure 3 shows the development of the
NFA from this chromosome.

4.1 An Informal Proof

Here we informally demonstrate that the above operators (in
fact, just Reverse, Split, and Double) are sufficient to build
NFAs which parse all regular expressions. To do this we
will in effect perform the inverse of Thompson’s construction



0

ε

0

ε

1

0

ε

1

0 1

1.

2.

3.

4.

5.

6.

Figure 3. The growth of the NFA from the encoding in Figure 2. The steps are: 1. The initial edge. 2. After applying Double.
3. After applying Reverse. 4. After applying Loop, S, �, and 0. The white circle is a starting state. 5. After applying Bud
and 1. 6. After applying Split, 0, A, and 1. The black circle is an accepting state.

as described in [Aho, Sethi, and Ullman 1986], [Thompson
1968]. Our NFA will have exactly one starting and one ac-
cepting state. We begin the edge encoding with a single edge
whose tail is a starting state and whose head is an accepting
state. To do this we begin with an edge encoding of the form
(S (Reverse (A (Reverse E)))), where E is the terminal
position in the encoding that defines our initial edge in the
NFA. We associate edge E with our initial regular expression
e. The NFA is created by using edge operators to expand
E into NFA constructions equivalent to subexpressions of e.
This process continues until e has been broken down into
nothing but atomic subexpression tokens, at which time all
that remains to do is to label the equivalent edges with those
tokens.

Thompson’s construction first parses a regular expression
into its subexpressions, then builds an NFA bottom-up by
grouping smaller NFAs that represent those subexpressions.
We form the NFA in reverse (top-down) by splicing the subex-
pressions into the main NFA, “growing” it into its full form.
Each growth step is equivalent to one step of breaking an
expression into one or two subexpressions; each of those
subexpressions is associated with a new edge created in the
growth step.

To begin, recognize that given any regular expression r
over an alphabet Σ, there exist regular expressions s and t
such that at least one of the following is true:

� r is �.

� r is a single token in Σ.

� r can be broken down into st.

� r can be broken down into s|t.

� r can be broken down into s*.

� r can be broken down into (s).

Let R be the edge in the NFA associated with the regular
expression r, as shown in Figure 4. We want to break r down
into s and t, and at the same time build from R a sub-NFA
structure which contains the edges S and T associated with
s and t. If r is �, or a token in Σ, then we can label R as
appropriate, and we are finished with it. If r is of the form st,
we replace R with the construction in Figure 4a by replacing
R’s terminal node with (Split S T). If r is of the form s|t, we
replace R’s terminal node with (Double (Split (Split � T) �)
(Split (Split � S) �)), resulting in Figure 4b. If r is of the form
s*, we replace R’s terminal node with (Double (Split (Split
� (Double S (Reverse �))) �) �), resulting in Figure 4c. If r
is of the form (s), we replace R’s terminal node with S.

Assuming that S and T will later expand into the appropriate
NFA’s to recognize s and t, then clearly the above construc-
tions will compute st, s|t, s*, and (s) respectively — these are
exactly the constructions given in [Aho, Sethi, and Ullman
1986].

Once we’ve broken r down and built sub-NFA structures
out of R, we associate the edges S and T with s and t as
appropriate, and repeat this process on S and T. Since the
regular expressions are finite, we are guaranteed that at some
point all expressions will break down to � or a token in Σ, at
which time we’re done expanding the NFA.

5 Additional Operators

The operators presented above develop enough planar graphs
to describe all NFAs, among other things. They do not de-
scribe more sophisticated planar graphs, however: for ex-
ample, the complete graph of four nodes (K4) cannot be
generated using the above operators. One way to generate
additional planar graphs is to use an operator borrowed from
cellular encoding: SplitNode. This operator acts on the node
b at the head of E(a,b). First, SplitNode creates a new node
n. Then for each edge F(b,c) for some node c, this opera-



a

4a

S

b

T

ε

a

4b

bT

Sε

ε ε

4c

a bSε ε

ε

ε

a

Initial Edge

R

b

Figure 4. Edge encoding NFA constructions after break-
ing down the regular expression r into subexpressions. 4a
shows the construction for the subexpression st. 4b shows
the construction for s|t. 4c shows the construction for s*.

tor modifies F to be F(n,c). Lastly, the operator adds a new
edge G(b,n). In essence, SplitNode splits node b into two
nodes b and n, moving to n all formerly outgoing edges of b,
and adding single edge between b and n. Using this power-
ful operator comes at a price, however. Because SplitNode
modifies nodes associated with edges other than the opera-
tor’s official edge E, we must now ensure a total execution
order throughout the chromosome, or else the interpretation
of the chromosome is ambiguous. One way to do this is to
always traverse the tree in depth-first, left-to-right order.

An important feature of edge encoding is its use of modular
operators. Modular operators in edge encoding are similar to
Automatically Defined Functions found in GP [Koza 1994]:
the chromosome is no longer a tree but a forest of n trees,
each of which can be “called” by operators in other trees.
For each tree M, we add to our collection of operators a
special operator fm, which has a single child. Additionally,
we define a maximum recursion depth of r modular operator
calls. When fm is executed, it passes the edge it was provided
to the root operator of M, which begins execution for that
tree. Hence, when fm is executed, it is as if M was grafted in
at fm’s position. The recursion depth is incremented by one
until all operators in the tree M have completed execution. If
and only if the recursion depth exceeded r at the time that fm
was executed, fm does not pass the edge to M’s root operator
but instead passes it to fm’s sole child. Initially, execution
begins with the first tree in the forest.

This scheme makes it possible for a tree in the chromo-
some to repeatedly call other trees or recursively call itself
to develop many repetitive sections of a graph. This can
grow large, sophisticated graphs from relatively small chro-
mosomes. As an example, Figure 5 shows a small two-tree
chromosome which, even with a low recursion depth (2) still
manages to grow a complex graph by using SplitNode and

LoopDouble

ReverseSplitNodef 2

f 1

X

X X

X

X

Tree 1 Tree 2

Recursion
Max Depth = 2

Figure 5. A chromosome using recursion with two trees
and a maximum recursion depth of two. The X operator is a
boring terminal operator which does nothing at all to its edge.
Execution begins with tree 1.

recursive operators. Figure 6 shows the growth pattern of the
phenotype graph.

There are many other possible operators. For example,
Cut is a useful terminal operator which simply eliminates its
edge from the graph. Export is a two-child operator which
creates a new edge separated from the graph entirely, thereby
making possible disconnected graphs. When passed edge
E(a,b), MergeNode could merge a and b into a single node,
eliminating E. In addition to other uses, this operator can
create K1 with optional self-loops. And of course, there are
many variants of existing operators. For example, LoopTail
might add a self loop to the tail of the edge rather than its head,
an abbreviation for (Reverse (Loop (Reverse ... ) ... )).

6 Creating All Graphs

Although edge encodings using the operators above can
describe many interesting graphs, they cannot describe all
graphs, particularly ones that have a large number of non-
planar interconnections. It appears that to create all possible
graphs one must either impose an unusual traversal order (like
cellular encoding’s breadth-first traversal with “Wait” opera-
tors), or allow operators to pass additional information to one
another, aside from a single edge. Because we feel that it
will better help to preserve the semantics of building blocks
after crossover, we have been experimenting with the second
of these options.

In our scheme, operators pass to their children not only
an edge but a (possibly empty) stack of graph nodes. This
permits earlier operators to create new nodes to which later
operators may attach edges. An operator may modify this
stack by making a copy of it, modifying the copy, and passing
the copy to its children. Operators which do not modify the
stack (including all operators discussed so far) simply pass it
through to their children. The initial stack passed to the root
operator is empty.

Assume that each operator is passed an edge E(a,b), which
after processing is passed to its left child. The following op-



8.

B

C

DA

EF G
H

9.

B

C

DA

EF G
H

I

1.

A

2.

A

B 3.

A

B

C

4.

A

B

C

D

5.

A

B

C

D

E

6.

A

B

C

D
E

F

7.

B

C

D
A

E
F G

Figure 6. The growth of the graph structure defined in Figure 4. Edges are labeled to make it easier to keep track of them in
this example. 1. The initial edge. 2. After Double. 3. After tree 2 is called, which performs Loop and Reverse. 4. After
SplitNode. 5. After tree 1 is recursively called, performing Double. 6. After tree 2 is called a second time, which performs
Loop and Reverse. 7. After Splitnode. 8. After tree 1 is recursively called a second time, performing Double. Tree 2
cannot be called any more (the recursion depth is at maximum). 9. After Splitnode. Tree 1 can no longer be recursively
called (maximum recursion depth), so the graph is finished.

erators are sufficient to describe the topology of all connected
graphs of two or more nodes:

Table 3. Operators for creating general graphs.

Operator Children Effect

Double 2 Create an additional edge F(a,b).
Loop 2 Create an additional edge F(b,b).
Reverse 1 Modify E to be E(b,a).
Cut 0 Eliminate edge E.
Push 1 Create a new node c. Make a copy

of the stack. Push c onto the copy,
and give the copy to Push’s child.

Attach 3 Make a copy of the stack. If the
stack is empty, create and push
a new node onto the copy. Let
the top node on the stack copy be
c. Create two new edges F(a,c)
and G(b,c). Pop c off the stack
copy, then pass the copy to At-
tach’s children. This in effect
“attaches” edges to the top node
on the stack, forming a triangle
EFG.

We will not present our proof here that these operators are
sufficient to create all connected graphs of two or more nodes.
Instead, we present only the following outline: to create an
arbitrary connected graph of n nodes, first push n-2 nodes
onto the stack in a series of Push operations. Then create
the complete graph Kn of n nodes, with some multi-edges,
by performing Attaches from the original edge to nodes, and
from these newly attached edges to other nodes. Add multi-
edges and self-loops as necessary using Loop and Double.
Reverse edges into their proper direction. Then Cut out
unwanted edges to form the resultant graph. Presumably
there are more efficient ways to construct any particular graph,
but this construction shows that the encodings can describe
all possible graphs. Figures 7 and 8 give an example of an
edge encoding which uses Push and Attach to produce a
non-planar graph (K5).

There are a large number of other possible stack-
manipulation operators. For example, Pop might pop a graph
node off its stack without making any attachments. Or Push-
Tail might push the tail node of an edge onto the stack. Vari-
ations on Attach might attach only a single edge or attach
edges but not pop the node off the stack afterwards.



Push

Push

Double

Split

Attach

Attach

Attach

Cut Attach

X

X X X

X X X X X X

Figure 7. One of many chromosomes which produce one
version of K5 with no multi-edges or self-loops. The X
operator is a boring terminal operator which does nothing at
all to its edge.

Although these kinds of operators can produce all graphs
in theory, our preliminary results indicate that graphs with a
high number of interconnections demand a convoluted com-
bination of operators. This may make some common graphs
difficult to evolve. We have been experimenting with a num-
ber of ways to flatten the space of possible graphs for genetic
search purposes. One observation is that useful Pushes al-
ways appear earlier in the tree than Attaches. We can take
advantage of this by eliminating Pushes entirely, assuming
instead that the initial stack passed to the root node automat-
ically holds as many graph nodes as will be needed by later
Attaches.

7 Initial Comparison with Cellular
Encoding

Both edge encoding and cellular encoding are strong enough
to describe all graphs with two or more nodes. However, these
encodings differ greatly in the types of graphs their evolution-
ary landscapes favor. Cellular encoding favors graphs with
high numbers of interconnections, that is, those with a high
edge/node ratio. To remove many interconnections, cellular
encodings go through a complicated routine which incre-
ments “node registers” and then performs “Cut” operations.
In contrast, edge encoding favors graphs with low numbers
of interconnections, that is, those with a low edge/node ra-
tio. To create dense edge connections other than multi-edges,
edge encodings likewise require a complicated combination
of operators.

Another interesting comparison is the size of encodings.
When simply evolving network topologies, edge encodings
are often larger than cellular encodings. This is because an

1.

2.

3.

4.

5.

Figure 8. The growth of the graph structure described in
Figure 7. 1. The initial edge. 2. After the two Pushes. 3.
After Double and Split. 4. After the leftmost Attaches and
Cut. 5. After the remaining Attaches.

edge encoding operates on edges, and so there is always at
least one operator per edge in an edge encoding. However,
if edge labels need to be encoded distinctly from each other
(such as continuous-valued weights in a neural network),
the two encodings are often similar in size, because cellular
encoding must use one or more distinct operators to label
each edge. Additionally, it appears that while the encodings
may differ in size, both encodings’ phenotype-creation time
is roughly bounded by the size of the graph, not the encoding
size.

A final but important comparison is the degree to which
each scheme takes advantage of building blocks in its graph
construction. In many domains, a highly fit chromosome
often consists of subparts which in and of themselves are
reasonably fit, or which may serve as useful components for
other individuals. In these domains, the genetic landscape fa-
vors the use of building blocks, so a chromosomal encoding
which promotes the development of building blocks is very
valuable. Cellular encoding attempts to promote building
blocks through modular reuse and a GP-like crossover mech-
anism. However, we are not convinced that this promotes
building blocks as much as one might expect, since crossover
between individuals can often result in dramatic, unexpected,
non-local changes in both individuals. This is because cel-
lular encoding’s breadth-first traversal and execution-order-
dependent operators make it possible for a subtree’s position
in an individual to have significant effects on the meaning of
the subtree and on its effects on the phenotype. The lack of
good building-block promotion may not be so serious given



the primary domain for cellular encoding, namely the evo-
lution of standard feedforward or fully-recurrent neural net-
works with large numbers of connections. [Angeline, Saun-
ders, and Pollack 1994] make a strong argument that not only
do basic blocks not help in designing such neural networks,
but that these domains are GA-deceptive [Goldberg 1989],
meaning that the development of building blocks actively in-
hibits finding a solution. Nonetheless building blocks will
probably prove useful for a great many other graph domains.
In these domains, we think that edge encodings may have an
advantage because the effects of crossover are highly local-
ized, and subnetwork characteristics are mostly preserved.

8 Conclusion

Edge encoding, like cellular encoding, allows one to use stan-
dard S-expression-based Genetic Programming techniques to
evolve arbitrary graph structures. The resulting graphs may
be employed in various ways, for example as neural networks,
as automata, or as knowledge-base queries. Each encoding
scheme biases genetic search in a different way; for example,
cellular encoding favors graphs with high edge/node ratios
while edge encoding favors graphs with low edge/node ra-
tios. For this reason, we believe that certain domains will be
much better served by one scheme than by the other.

We also believe that edge encoding has greater advan-
tages than those conferred by the mere difference of search
bias. For example, we believe that edge encoding allows
for “cleaner,” more intuitive control over edges and nodes
in graphs for many applications. We also believe that edge
encoding allows for better use of genetic building blocks that
maintain their utility after crossover. In this preliminary re-
port, however, we focused on the technical description of edge
encoding, and we therefore presented little evidence for our
beliefs about the advantages of the technique. The evidence
for (or against) these beliefs will result from experiments that
compare the two encoding schemes for a range of problems;
such experiments are currently in progress.

Acknowledgements

This research was supported in part by grants from
ONR (N00014-J-91-1451), AFOSR (F49620-93-1-0065),
and ARPA contract DAST-95-C0037.

Bibliography

Aho, A.V., R. Sethi, J.D. Ullman. 1986. Compilers: Princi-
ples, Techniques, and Tools. Reading: Addison-Wesley.
121–125.

Angeline, P.J., G.M. Saunders, J.B. Pollack. 1994. An
Evolutionary Algorithm that Constructs Recurrent Neural
Networks. In IEEE Transactions on Neural Networks.
54–65. IEEE.

Boers, E.J.W., H. Kuiper, B.L.M. Happel, and I.G.
Sprinkhuizen-Kuyper. 1993. Designing Modular Artifi-
cial Neural Networks. In Proceedings of Computing Sci-
ence in The Netherlands, H.A. Wijshoff , editor. 87–96.
Amsterdam: SION, Stichting Mathematisch Centrum.

Collins, R. and D. Jefferson. 1991. An Artifical Neural
Network Representation for Artificial Organisms. Paral-
lel Problem Solving from Nature. H.P. Schwefel and R.
Männer, editors. 269-263. Berlin: Springer-Verlag.

Fullmer, B. and R. Miikkulainen. 1991. Using Marker-based
Genetic Encoding of Neural Networks to Evolve Finite-
state Behavior. In Proceedings of the First european
Conference on Artificial Life (ECAL-91). Paris.

Goldberg, D. 1989. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Reading: Addison-Weley.
41–54.

Gruau, F. 1992. Genetic Synthesis of Boolean Neural Net-
works with a Cell Rewriting Developmental Process.
In Proceedings of the International Workshop on Com-
binations of Genetic Algorithms and Neural Networks
(COGANN-92), L. Darrell Whitley and J. David Schaf-
fer, editors. 55–74. Los Alamitos: IEEE Press.

Kitano, H. 1990. Designing Neural Networks Using a Ge-
netic Algorithm with a Graph Generation System. In
Complex Systems 4. 461–476.

Koza, J.R. 1994. Genetic Programming II: Automatic Dis-
covery of Reusable Programs. Cambridge, MA: The MIT
Press.

Koza, J.R. and J.P. Rice. 1991. Genetic Generation of Both
the Weights and Architecture for a Neural Network. In
IEEE International Joint Conference on Neural Networks.
II-397–II-404. Seattle: IEEE.

Lindgren, K., A. Nilsson, M.G. Nordahl, I. Råde. 1992.
Regular Language Inference Using Evolving Neural Net-
works. In Proceedings of the International Workshop
on Combinations of Genetic Algorithms and Neural Net-
works (COGANN-92), L. Darrell Whitley and J. David
Schaffer, editors. 55–74, Los Alamitos: IEEE Press.

Teller, A. 1996. Evolving Programmers: The Co-evolution
of Intelligent Recombination Operators. In Advances in
Genetic Programming II, P. Angeline and K. Kinnear,
editors. Cambridge: MIT Press.

Thompson, K. 1968. Regular Expression Search Algorithm.
In Communications of the ACM. 11:6. 419–422.

Zomorodian, A. 1995. Context-free Language Induction by
Evolution of Deterministic Push-down Automata Using
Genetic Programming. In Working Notes of the Genetic
Programming Symposium,AAAI-95. Eric Siegel and John
Koza, chairs. AAAI Press.


