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ABSTRACT
Some problems can be solved only by multi–agent

teams. In using genetic programming to produce such
teams, one faces several design decisions. First, there
are questions of team diversity and of breeding strat-
egy. In one commonly used scheme, teams consist of
clones of single individuals; these individuals breed in
the normal way and are cloned to form teams during
fitness evaluation. In contrast, teams could also con-
sist of distinct individuals. In this case one can either
allow free interbreeding between members of differ-
ent teams, or one can restrict interbreeding in various
ways. A second design decision concerns the types
of coordination–facilitating mechanisms provided to
individual team members; these range from sensors
of various sorts to complex communication systems.
This paper examines three breeding strategies (clones,
free, and restricted) and three coordination mecha-
nisms (none, deictic sensing, and name–based sens-
ing) for evolving teams of agents in the Serengeti
world, a simple predator/prey environment. Among
the conclusions are the fact that a simple form of re-
stricted interbreeding outperforms free interbreeding
in all teams with distinct individuals, and the fact that
name–based sensing consistently outperforms deictic
sensing.

1 Teamwork and Specialization
The most common kind of task found in multi–agent problems
is one in which the task can be done faster or more easily by
dividing it up among many simultaneous agents. The more
agents working on the problem, the larger the speedup. But
some tasks may not only be solved better by using multiple
agents, but can only be solved, or only effectively solved,
by using teams of agents working together. For example,
consider the problem faced by Pac Man monsters, which are
slower than Pac Man on all but long straightaways. If there
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was only one monster then the monster would rarely catch
even poor players, and the game would be trivial.

Many such problems are solvable by multiple agents each
of which uses essentially the same algorithm. These homoge-
neous tasks are common candidates for the study of emergent
behavior because one (often simple) set of rules can give rise
to complex patterns of behavior. An example of a homo-
geneous task is self–replication of cellular automata. Lohn
and Reggia [1995] used genetic algorithms to breed cellular
automata that spontaneously emit identical copies of them-
selves. Each cell in the automata grid can be thought of as
an individual helping to create these duplicate patterns: the
problem is homogenous because all cells follow the same
cellular automata rule set. An example in the genetic pro-
gramming (GP) literature is the evolution of herding behav-
iors [Reynolds 1993]. Reynolds used GP to evolve “critters”
which reacted with a herd instinct to outside predators. He
evolved a single controller which moved each critter based
on its position and information about its neighbors and preda-
tors. Each critter used this same controller algorithm to make
movement decisions.

In contrast, heterogeneous tasks can only be solved (or
solved easily or effectively) with multiple individuals each
of which uses a distinct specialized algorithm. For example,
Haynes et al chose a simple grid–based predator/prey game
to test a variety of breeding strategies on a team of (typically)
distinct GP individuals [Haynes et al 1995]. And Andre’s
MAPMAKER system required two specialized agents (one with
the sensors, the other able to pick up objects) to gather gold
strewn in a 2-dimensional grid [Andre 1995]. Without the
interaction of two unique algorithms, this task would be much
more difficult, perhaps impossible.

The distinction between homogeneous and heterogeneous
approaches can be recast as an issue of breeding policy. In
the homogeneous approach, individuals breed as in ordinary
genetic programming, and the individuals are then cloned for
fitness evaluation. In the heterogeneous approach, individual
team members breed separately, which makes possible addi-
tional strategies for interbreeding within and between teams.

In many multi–agent domains, agents must coordinate their



Table 1: Basic Lion Operators

Name # Args Description

last 0 One unit in the direction the lion went last. On the first move, return a random normal vector.
rand-dir 0 A random normal vector.
gazelle 0 The smallest vector from the lion to the gazelle.
+ 2 Add two vectors.
- 1 Negate a vector.
*2 1 Multiply the magnitude of a vector by 2.
/2 1 Divide the magnitude of a vector by 2.
->90 1 Rotate a vector clockwise 90 degrees.
rand 1 Given a vector, return a vector in the same direction, whose magnitude varies randomly between

0 and the magnitude of the original vector.
inv 1 “Invert” a vector’s magnitude, so that small vectors are “more significant” than large vectors.

This is done similarly to the method used in the gazelle algorithm: Let v be the vector, and
kmaxk=

p
(w=2)2 +(h=2)2, where w is the width of the world (15 units), and h is the height of

the world (also 15 units). Then inv returns v

kvk(kmaxk � kvk).
ifdot 4 Evaluate the first and second arguments. If their dot product is greater than or equal to 0, then

evaluate and return the third argument, else evaluate and return the fourth argument.
if>= 4 Evaluate the first and second arguments. If the magnitude of the first argument is greater than or

equal to the magnitude of the second argument, then evaluate and return the third argument, else
evaluate and return the fourth argument.

actions with one another. Various mechanisms may facilitate
the evolution of such coordinated behavior. In some cases it
is sufficient for agents to be able to sense one another in some
way, though in other cases it may be necessary for agents
to have more elaborate communication mechanisms. Even
in the case of simple sensing, there are many possibilities.
For example, one can allow each agent direct access to the
positions of each distinct fellow agent, referenced by agent
name; we call this name–based sensing. Another approach,
used for example in evolving herding behaviors, allows only
sensing relative to the agent— for example, “nearest neighbor
agent,” or “front of the pack.” We call this deictic sensing.
It may also be possible that team members can evolve to
coordinate with one another in a hard–coded way with no
sensing of neighboring agents.

This paper examines three breeding strategies (clones, free,
and restricted) and three coordination mechanisms (none, de-
ictic sensing, and name–based sensing) for evolving teams of
agents in the Serengeti world, a simple predator/prey environ-
ment. We show that a simple form of restricted interbreeding
outperforms free interbreeding in all teams with distinct in-
dividuals, that name–based sensing consistently outperforms
deictic sensing, and that as the sensing becomes increasingly
direct (more name–based), heterogeneous approaches work
better than homogeneous approaches. In the paper we de-
scribe the breeding strategies, followed by descriptions of
Serengeti world, of our runs, and of our results. We conclude
with a brief discussion of directions for further research.

2 Breeding Distributed Agents with
Genetic Programming

Heterogeneous agents may be difficult to evolve with GP
because existing GP methods are designed primarily to evolve
one single algorithm. There are two common ways to tackle
this problem. The first is to use co–evolution [Koza 1992] to
select individuals from a population to form a team at trial–
time. Co–evolving specialized cooperation might be made
more effective if the population is divided into subpopulation
demes [Tackett and Carmi 1994]; each subpopulation could
provide a specialized member to join each team. However,
selecting team members from the population complicates the
evolution process with the credit assignment problem: when
a trial is complete, which individuals get more credit for its
success or failure [Haynes et al 1995]?

Haynes et al note that another way to generate a team
is to consider the whole team as one GP individual. This
eliminates the credit assignment problem, since there is only
one individual per trial. An easy way do this is to take
advantage of GP facilities for Automatically Defined Func-
tions (ADFs) [Koza 1994] or Automatically Defined Macros
(ADMs) [Spector 1996]. For teamwork purposes, ADFs and
ADMs can be thought of as subindividuals within a main
individual, each of which may serve a distinct specialized
purpose. By modifying existing ADF systems, it’s possible
to treat each ADF as a separate agent; GP systems like lil-gp
[Zongker and Punch 1995] allow the evaluation of each ADF
in an individual as if the ADF was an individual entity. We
implemented our heterogeneous breeding strategies this way,



Table 2: Deictic Sensing Lion Operators

Name # Args Description

nearest 0 The vector from the lion nearest the gazelle, to the gazelle.
lion 0 A vector from the lion to its nearest neighbor lion.
rlion 0 A vector from the lion to the first neighbor lion encountered in a clockwise sweep. The sweep

begins in the direction the lion moved last. All the minimal vectors to each lion are gathered, and
the first one found in the sweep is returned.

llion 0 A vector from the lion to the first neighbor lion encountered in a counterclockwise sweep. The
sweep begins in the direction the lion moved last. All the minimal vectors to each lion are
gathered, and the first one found in the sweep is returned.

Table 3: Name–Based Sensing Lion Operators

Name # Args Description

lion-1 0 A vector from the lion to lion #1.
lion-2 0 A vector from the lion to lion #2.
lion-3 0 A vector from the lion to lion #3.
lion-4 0 A vector from the lion to lion #4.

since it is functionally very similar to the clear method of
producing homogeneous individuals. In both cases we grow
standard GP individuals, and only one “individual” is tested
at a given time. For homogenous teams, individuals are tested
by cloning them to form teams, and the resulting teams are
tested in the environment. Heterogeneous teams, however,
are formed from the individual’s collection of ADFs.

We allowed for two different kinds of breeding strategies
for heterogeneous teams. Free Breeding allows any member
of a team to freely breed with any other member of another
team. Restricted Breeding allows team member 1 to breed
only with other team member 1’s, and team member 2 to
breed only with other team member 2’s, etc. This restriction
further promotes specialization since it breaks team members
up into separate breeding pools.

3 The Serengeti World

To test the effectiveness of homogeneous and heterogeneous
team algorithms under a variety of sensing capabilities, we
chose a predator/prey domain nicknamed the Serengeti. The
Serengeti world is a toroidal, continuous 2-dimensional land-
scape, 15 units on a side. In this world roam a gazelle and
a group of lions, initially placed in random positions. The
gazelle moves 3 units in one bound, but each lion may only
move one unit at a time. The gazelle and lions take turns
moving until the maximum number of turns is used up, or
a lion has moved to within 1 unit of the gazelle (the gazelle
is “killed” and the simulation stops). The programs for the
animals return 2-dimensional vectors which determine the di-
rection they move. Animals may move in any direction; they

are not limited to, say, the cardinal directions. The goal is to
generate a lion “pack” that regularly gets as close as possible
to the gazelle.

Predator/prey pursuit domains like the Serengeti have been
used often to test both evolved and non–evolved agent coor-
dination with genetic programming or distributed AI [Korf
1992, Haynes et al 1995, Benda et al 1986]. Commonly,
predator/prey domains exist in a simple grid world with lim-
ited movement abilities (up, down, right, and left), and preda-
tors often move faster than the prey (though sometimes the
object is not just to “catch” the prey but to surround it with all
four predators). In contrast, the Serengeti allows for contin-
uous positions and a much more difficult–to–catch prey. We
feel the Serengeti is a useful domain to test heterogeneous
versus homogeneous team strategies for two important rea-
sons. First, it presents a problem that is impossible for a single
agent (one lion) to solve. Since the gazelle moves faster than
a lion, the only way to effectively bring down the gazelle is for
a group of lions to hunt together. Second, the Serengeti does
not clearly lend itself to heterogeneous teams of specialized
members: the Serengeti is symmetric and has no obstacles or
hill slopes, etc. that give clear niche opportunities for team
members. On the other hand, Serengeti world does not clearly
promote homogeneous teams either: group members start in
random positions, and obvious homogeneous algorithms like
“head directly at the gazelle” or “circle the gazelle” turn out
to be suboptimal solutions [Korf 1992]. This is especially
true for the Serengeti because, unlike earlier domains, in this
domain the prey moves much faster than the predators.



Table 4: Trial Results

Restricted Breeding Free Breeding Clones
Sensing Average Best Average Best Average Best

Deictic 1.65 0.13 2.03 0.23 1.52 0.20
Name–Based 1.33 0.03 1.79 0.07 1.93 0.22

None 2.20 0.49 2.23 0.50 2.18 0.45

Table 5: Control Results

One Lion One Random Four Random
Average Best Average Best Average Best

Controls 7.39 5.43 7.87 6.74 4.41 2.57

3.1 The Gazelle

The difficulty of the domain is directly affected by the intel-
ligence of the gazelle. We chose an avoidance algorithm that
runs quickly, but still makes it surprisingly difficult for the
lions to corner the gazelle.

The gazelle’s heuristic is as follows: Let kmaxk=p
(w=2)2 +(h=2)2, where w is the width of the world (15

units), and h is the height of the world (also 15 units). This
is the largest possible distance from one object to another in
the Serengeti. Then the gazelle moves 3 units in the direction
of the vector given by

�
X

v2V

v

kvk
(kmaxk � kvk)

where V is the set of smallest vectors from the gazelle to the
lions. In other words, the gazelle modifies the magnitude of
vectors to lions so that closer lions are more significant than
far-away lions, and then moves away from the sum of the
vectors.

3.2 Lions

For genetic programming breeding purposes, each lion group
was treated as a single individual, since the group stays to-
gether and is graded together based on its combined success.
We tested groups with either one lion or four lions (labeled
lion numbers 1, 2, 3, or 4); within a group, a lion was a single
GP function tree using 2-element vectors as its data type. All
lions used at least the basic function set shown in Table 1.

The lions were tested with either deictic sensing ability,
name–based sensing, or no sensing ability. Lion groups
with deictic sensing were given the four additional op-
erators nearest, lion, rlion, llion (Table 2).
Lion groups with name–based sensing were given the
four additional operators lion-1, lion-2, lion-3,

lion-4 (Table 3). Lion groups with no sensing were given
no additional operators. We implemented the three breed-
ing strategies as follows: Clones really consisted of a single
function tree, alternately given four different sets of environ-
ment variables to simulate four identical lions. Restricted
and Free Breeding groups had four separate function trees,
one per lion. In addition to combinations of breeding strat-
egy and sensing operators, we performed control runs for one
lion using the basic operators, one lion moving completely
randomly, and four lions moving completely randomly.

4 Test Runs

We performed 1200 random runs under the lil-gp GP system
with the Serengeti problem: 100 runs for each of the nine
combinations of sensing and breeding strategies, plus 100
runs for each of the three control configurations. We assessed
the fitness of groups based on the average of 5 simulation
trials. At the beginning of each simulation, the lions and
gazelle started in random positions. During each turn, the
gazelle moved first, then the lions. This was repeated 15
times, or until the gazelle was “killed” as explained before.
On each turn, lions moved one unit in the direction of the
final vector returned. If a lion returned a 0-length vector, it
moved randomly 1 unit. At the end of each simulation, the
lion group’s fitness was based on the distance from the gazelle
to the lion nearest the gazelle. If this lion finished within 1
unit of the gazelle, the lion group grade was 0. Otherwise,
the group’s grade was the distance of the nearest lion to the
gazelle, minus 1. Lower scores were better.

Each run lasted for 51 generations, with a population of
500, a maximum tree size of 70 and a maximum tree depth
of 17. We used crossover (90% of the time) and reproduction
(10% of the time) to generate new individuals.
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Figure 1: No–Sensing Results
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Figure 2: Deictic Sensing Results

5 Results

The results are summarized in Tables 4 and 5. Average gives
the fitness of the average group in the population at the 51st
generation, and Best gives the fitness of the best group.

When there was no sensing at all, the best algorithm was
typically “go to the gazelle” (in other words, gazelle or
minor variants). This simple algorithm seemed to predomi-
nate in the best lion groups. Given that the better algorithms
were often very simple, the groups of cloned lions (which
only had to evolve one tree) evolved faster and ultimately
slightly better than the heterogeneous groups. Overall, the
no–sensing results were not as good as those obtained with
sensing. No–sensing results are summarized in Figure 1.

This pattern held more or less for deictic sensing; the clone
groups evolved faster and after 51 generations the population
as a whole came out ahead, though restricted breeding usu-
ally generated the best lion groups. This might be because
restricted breeding really was producing the best individuals
even if its average might be worse than the average groups
under other breeding strategies. Or perhaps this was because
restricted–breeding’s diversity helped create unusual groups
that happened to be well–suited for the initial lion and gazelle
positions dealt them that generation. Deictic sensing results
are summarized in Figure 2.

In the case of name–based sensing, however, the heteroge-
neous groups clearly had the upper hand. For both the best
of the population and for the population as a whole, the het-
erogeneous groups produced significantly better results than
the clone groups, which fared only slightly better than when
they had no sensing at all. Name–based sensing results are
summarized in Figure 3.

In all cases, restricted breeding produced as good or better
results than free breeding. Furthermore, name–based sensing
produced better results than deictic sensing, which produced
much better results than no sensing at all. This suggests that
even in this highly symmetric domain, creating and enabling
specialized team members still proved more profitable than
using a uniform multi–agent method.

As expected, the controls did miserably. One lone evolved
lion fared slightly better than one randomly-moving lion.
Four randomly-moving lions predictably did much better still.
But all three did much worse than any evolved four–lion
scheme. It’s clear that the evolved four–lion schemes are
succeeding on their own merit and not just because there are
four lions filling space rather than one. Control results are
summarized in Figure 4.
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Figure 3: Name–Based Sensing Results
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Figure 4: Control Results

6 Conclusions and Future Work

It appears that when given direct information about each
other’s whereabouts, distinct agents fare best in the Serengeti
domain. Uniform agents only do well when coordinating
with deictic sensing. And no agents did particularly well
when denied the ability to sense teammates. It seems that,
although it might require slightly more time for evolution, us-
ing a heterogeneous multi–agent strategy may be worthwhile
even in a domain where it’s unclear that it can help.

Further, restricted breeding consistently evolved faster than
free breeding. While there is no reason that free–bred agent
teams couldn’t eventually develop as well as restricted teams,
restricted breeding evolved so much more rapidly that it
demonstrated a clear advantage. It seems better to try re-
stricted breeding when developing heterogeneous agents.

In this experiment, a more direct form of sensing proved to
be the best method for solving a surprisingly difficult prob-
lem. This suggests that even more sophisticated interactive
strategies might do better still. One natural extension of
this work would be to allow agents to communicate with
one another through more sophisticated methods than simple
directional cues. For example, agents might evolve to com-
municate instructions to specialized follower–agents through
simple memory storage to which both have access, such as

the kind used in MAPMAKER [Andre 1995]. Another open
issue is whether advantages conferred from developing mul-
tiple independent agents are really worth the computational
expense, even if they do perform better than uniform agents.

More domains must be studied to determine if the results
for the Serengeti generalize to other interesting multi–agent
domains. In addition, the conditions that were studied in this
paper represented only a few of the many possible breeding
strategies and coordination mechanisms. Nature provides
other illustrative examples; for example, bee colonies con-
sist of many hundreds of identical individuals from perhaps
a half–dozen specialized classes (queens, drones, workers,
etc.). This sort of hybrid breeding strategy could also be
tested in Serengeti world, and may have more widespread
applicability.
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