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Computer science owes a huge debt to biological systems. The field itself came
about largely as an attempt to understand and replicate the function and abilities of the
brain, a complex biological creation. From this early lineage has sprung many subfields
derived largely from biological metaphors: computer vision, neural networks, evolu-
tionary computation, robotics, multi-agent studies, and much of artificial intelligence.
In some areas, the computer has bested its biological counterparts in efficiency and
simplicity. But for many domains, even after decades of hard work, the biological “real
thing” is still superior to the artificial algorithms inspired by it.

Much of our failure to fully grasp (much less improve on) biological systems has
been their sheer size and complexity. Gathering the data necessary to understand such
systems on a global level demands tedious decades of experiment, often requiring tech-
nology that has only recently come into existence. Even if we had the data, visualizing
and modelling it has historically required computing power beyond our means. Be-
cause our comprehension of these systems has been limited, many of computer science’s
bio-inspired fields have had to guess which salient elements of biological systems to
abstract, with mixed results.

For example, in the field of applied neural networks the rich complexities of neurons,
global chemical interactions, and the brain-body interface have been mostly abstracted
out, leaving behind simple equations describing the flow of discrete information between
nodes in graphs. The result produced interesting and useful mechanisms for pattern
recognition and associative memory. But (excepting cortical map development) such
simple models have not given us as much understanding of the brain or of cognition as
we’d like to admit.
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They’ve done what?

While computer science has by necessity been simplifying its inspirations from biology
and other fields, biologists have been quietly catching up behind the scenes. It may soon
be possible to model entire neurosystems, gene regulation mechanisms and evolutionary
processes, even whole organisms inside a computer. These advances are due to a huge
influx of data in recent years, coupled with new sophisticated computer technology.

The advances have been remarkable. Consider Caenorhabditis elegans, a mi-
croscopic earthworm and a popular test organism. Unbeknownst to much of the AI
community, biologists a decade ago mapped out the entire C. elegans brain, neuron by
neuron, synapse by synapse. Scientists have also identified many of C. elegans’ neural
subprocesses, worked out the entire cell lineage, sequenced much of the genome, and
determined the spatial position and movement of all of C. elegans’ embryonic cells.
Biologists may soon be able to model the entire C. elegans brain, cell structure and
development, significant chemical pathways, and physical dynamics. In many respects,
this animal may become the first multicellular organism to be realistically simulated in
its entirety.

This modelling can do more than just help biologists comprehend complex data
and make useful experimental predictions. These sophisticated models bring new
information and previously infeasible approaches to computer science fields whose early
biological inspirations had been based on sparse understanding. For cognitive robotics,
for example, a complete understanding of the C. elegans nervous and musculature
system can demonstrate how little wiring is actually required (under 400 neurons!)
to develop highly successful autonomous agents with simple learning and a host of
complex foraging, avoidance, and mating behaviors.

Our work to date has been in two primary areas: in modelling and visualizing the
cellular and neural structure of C. elegans, and in modelling, visualizing, and drawing
evolutionary computation inspiration from the complex developmental gene regulation
systems in Drosophila melanogaster.

C. elegans

The rich collection of available cellular and neural data on C. elegans makes this
organism a natural subject for our research. We have begun by designing a Java-
based visualization system which displays much of the non-genetic data available
on C. elegans in a coherent manner (see Figure 1). This includes cell position and
movement through time, cell lineage, cell type and expression, and neural and synaptic
relationships. This allows us to see, for example, the development and movement of
cells that would later become the skin, muscles, and neurons in the organism.

But visualization is only the beginning. The available spatial position data is sparse:
as such we have developed a kinematic model which moves cells to proper positions,
enabling us to better predict where certain cells will be at a given time. We have
also begun modelling the neural system of the animal; for example its thermotaxis
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Figure 1: The Java C. elegans visualization system, showing volume and neural inter-
connection data.

circuit, which learns the temperatures at which food has been found in the past. Our
immediate goal is to model the entire circuitry of the C. elegans brain, sensory organs,
and musculature.

Drosophila melanogaster

Drosophila melanogaster (the housefly) is popular for genetic experimentation because
many of its high-level mutations are so visually obvious. Like C. elegans, Drosophila
too has a large amount of online data.

We have for some time been designing predictive models of the high-level genes
involved in various aspects of Drosophila development. One such project describes
the interaction of regulatory genes in the Drosophila zygote. Like humans, flies
develop different body parts through gene regulation, a process whereby high-level
genes produce proteins which control the production of lower-level genes responsible
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Figure 2: Simegg, the Drosophila zygote gene-regulation model.

for the development of specific organs and tissues. These high-level genes also regulate
each other, resulting in a complex graph of interrelationships. This, plus the initial
spatial distribution of specific regulatory protein concentrations in the zygote, results
in a complex mosaic of protein concentrations throughout the embryo, which then give
rise to different parts of the organism.

Our model successfully describes the concentration of regulatory proteins in the
Drosophila zygote. We can mutate genes or regulatory interactions, predict the new
concentration mosaics, and then compare those predictions with experimental data
(Figure 2). We have gone on to create models of Drosophila leg growth and eye disc
formation based on gene regulation and cell-to-cell chemical interaction (Figures 3 and
4).

How We Benefit

We think that a lot of ideas coming out of computer biology stand to benefit AI a great
deal. Certainly working out the global mechanism behind the C. elegans brain can
lead to better insights into neural cognition, and modelling insect eye development and
circuitry might lend a hand to vision-based reactive robotics. We have investigated
these and other possible avenues drawn from biology coming into its own.
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Figure 3: Simleg, the Drosophila leg-growth simulator.

One example: gene regulation has given us new insights into better evolutionary
computation techniques. The Genetic Algorithm’s (GA) approach to encoding, selec-
tion, recombination, and mutation is drawn from aging Mendelian genetics, parts of
which have worked well and parts of which have not. In particular, the utility of GA
recombination is now under attack (see for example [Tate and Smith 1993], [Hinterd-
ing, Gielewski and Peachey 1995], [Angeline 1997]). In real biology, recombination
appears to result in mostly smooth, diverse gradations; on the other hand, in many GA
domains (Genetic Programming in particular), recombination is often little more than
randomization [Luke and Spector 1998]. Among other reasons, we suspect much of
this may be due to the huge gap between biological and artificial GA encodings.

The approach we are now studying is directly inspired from gene regulation maps,
and we are using it to evolve grammars of arbitrary symbols, neural networks, state
machines, and especially Genetic Programming-style algorithms. As it turns out, gene
regulation has a surprisingly one-to-one correspondence with such evolutionary do-
mains. Our early results so far have been promising. In evolving for the Tomita
language set (a benchmark for language induction), we have achieved results which
compare well with other unbiased EC approaches in the literature. Using such an
approach also lets us transfer many exciting and possibly useful theories from genet-
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Figure 4: the gene-diffusion-reaction simulation system, modelling Drosophila eye-
disc formation.

ics, including operon and gene family creation, transposons and gene migration, and
supergene clusters.

Given how much of AI and computer science is inspired by biological metaphors,
we have no doubt that biology can in similar ways help reinvigorate many other AI
subfields. And modelling and analysis promise to soon make possible many things
which have long been pipe dreams of autonomous robotics, artificial life, and cognitive
science. It is astonishing how little AI researchers have realized how far computer-aided
biology has come in the last decade. It’s high time we revisited our biological roots.
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