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Abstract—Genetic programming is an evolutionary optimization method
that produces functional programs to solve a given task. These programs
commonly take the form of trees representing LISP s-expressions, and a typ-
ical evolutionary run produces a great many of these trees. For this reason,
a good tree-generation algorithm is very important to genetic program-
ming. This paper presents two new tree-generation algorithms for genetic
programming and for “strongly-typed” genetic programming, a common
variant. These algorithms are fast, allow the user to request specific tree
sizes, and guarantee probabilities of certain nodes appearing in trees. The
paper analyzes these two algorithms and compares them with traditional
and recently proposed approaches.
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I. INTRODUCTION

GENETIC programming (GP) is a variant of the genetic al-
gorithm which uses simulated evolution to discover func-

tional programs to solve some task. The most common form
of genetic programming (and the one considered in this pa-
per) evolves programs as LISP-like “program-trees” of function-
nodes [11]. These trees serve both as the genetic material and as
the resultant program individual; there is no intermediate repre-
sentation.

GP needs a good random tree-creation algorithm to create
trees that form the initial population, and to create subtrees used
in subtree mutation, a GP operator used for modifying trees in the
population. For the fast-increasing number of GP experiments
that use various forms of subtree mutation as their primary means
of modifying individuals, tree creation is critical because the
generation of 100,000 trees or more is not uncommon.

Tree-creation also plays an important role in the current de-
bate over tree bloat, the tendency of GP trees to grow during the
evolutionary process independent of any increase in fitness [19],
[17], [2], [21], [12]. Bloat is blamed for slowing down the evolu-
tionary process by making individuals more resistant to change,
by slowing the overall speed of evaluation and breeding, and by
increasing memory requirements. Much of this debate centers
around specific tree-modification operators. Some have argued
that subtree crossover (another traditional GP tree-modification
operator) is the chief culprit of bloat, especially in comparison
to subtree mutation [1]. Others instead indict subtree mutation
[13], going so far as to argue that in such cases fitness-selection
pressure also causes bloat. However, as shown later in this paper,
there are examples where subtree mutation can provably increase
average tree size, even without any selection pressure at all.

The traditional GP tree-creation algorithm, GROW in [11], has
serious weaknesses. Most significantly, GROW offers no user
control over expected tree size, except through an absolute max-
imum depth bound. As discussed later, left to its own devices,
 
 
 

GROW will often generate infinite trees on average, depending
on the function set. Also, most versions of GROW typically do
not offer fine-grained control over the expected probability that
a particular function will appear in a tree. Given the considerable
interest in introns, internode dependencies and semantics, and
other issues of node interactions [6], [18], [8], [14], the ability
to rigorously control specific node appearance is timely.

This paper discusses GROW, its variants, and recent proposed
alternatives. It then offers two new algorithms that attempt to
address the deficiencies in previous algorithms. These two new
algorithms let the user request either an average tree size or
specify a distribution of tree sizes from which to generate trees.
Unlike recent alternatives, these two algorithms do not promise
uniformly random tree structures. Instead they guarantee user-
specified probabilities of occurrence for specific terminal and
nonterminal functions within the generated trees. Lastly, unlike
recent alternatives, these two algorithms are fast, running in
near-linear time, or in linear time under reasonable constraints.
The paper analyzes the new algorithms, then gives additional
versions of the algorithms tailored for “strongly-typed” genetic
programming [16].

II. DEFINITIONS

This paper uses certain critical symbols in the description and
analysis of various constructive tree-generation algorithms.

T denotes a newly generated genetic program tree. S is the
maximal number of nodes in a tree permitted by a given tree-
generation algorithm, and D is the maximal depth of a tree
permitted by the algorithm.Etree is the expected tree size of T.
T is created by choosing nodes from a function set F , divided
two disjoint sets, terminals T (leaf nodes), and nonterminals N
(interior nodes).
p is the probability that, in the process of choosing nodes to

form T, a given tree-creation algorithm will pick a nonterminal
from the function set (as opposed to a terminal). b is the ex-
pected number of children to nonterminal nodes picked from the
function set. g is the expected number of children to a newly gen-
erated node in T. It is important to note that since the expected
number of children of a terminal is 0, and the expected number
of children to a nonterminal is p, then g = pb+(1−p)(0) = pb.

III. THE TRADITIONAL TREE-CREATION ALGORITHM

By far the most common mechanism for creating trees and
subtrees in GP is the GROW tree-creation algorithm [11]. GROW

and a full-tree variant (FULL) are used to generate trees for the
initial population at the beginning of the evolutionary process.
GROW is also used almost universally to generate new subtrees
for “point” subtree mutation and is very popular for other special
kinds of subtree mutation. For some examples of point mutation
and other mutation approaches, see [11], [1], [4], [5], [14], [15],
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Domain b p Etree

Cart Centering 11
6

3
4 ∞

Ant 7
3

1
2 ∞

Regression 3
2

8
9 ∞

11-Multiplexer 2 4
15

15
7

6-Multiplexer 2 2
5 5

3-Multiplexer 5
3

1
2 6

Table 1. Algorithmic results for the introductory domains from
[11] chapter 7, using the GROW algorithm. b is the expected
number of children of a nonterminal picked from the function
set. p is the probability of choosing a nonterminal at tree-creation
time. Etree is the expected size of a tree. From Theorem 1, this
is 1

1−pb if pb < 1,∞ otherwise.

[13]. Though little studied, GROW and FULL appear in the lion’s
share of existent GP literature and are the chief or only tree-
creation algorithms for nearly all popular GP libraries (including
lil-gp, GPSys, GPQuick/GPData, GPC++, DGPC, SGPC, and
Koza’s Simple-LISP code [11]).

GROW begins with a set of functions F to place as nodes in
the tree. Each nonterminal function in the set has a specific ar-
ity. This algorithm randomly selects a root from the full set of
functions (both terminals and nonterminals), then fills the root’s
arguments with random functions, then their arguments with ran-
dom functions, and so on. A common variant is shown below:

Given:
maximum depth bound D
function set F consisting of nonterminal set N and terminal set T

Do:
New tree T = GROW(0)

GROW(depth d)
Returns: a tree of depth ≤D − d

If d = D, return a random terminal from T
Else

Choose a random function f from F ◦
If f is a terminal, return f
Else

For each argument a of f ,
Fill a with GROW(d+ 1)

Return f with filled arguments

GROW’s companion algorithm (FULL) is used to force the genera-
tion of full trees. It differs from GROW only in the line marked ◦,
where f is chosen at random fromN , not F . That is, f is always
a nonterminal. If N is nonempty, then FULL always produces a
full tree “trimmed’ to depth D, and so produces a very narrow
range of tree structures, with relatively less applicability than
GROW. This paper focuses primarily on the dynamics of GROW.

Some variants of GROW permit the user to specify a maximum
tree sizeS. They enforce this either by producing trees repeatedly
until one of size less than S is created, or by keeping track of
the number of created nodes (so far) plus the number of unfilled
arguments; when this total exceeds S, only terminals may fill
arguments from then on (see [5] for an interesting example).

While GROW is easy to implement and runs in linear time,
it has three weaknesses. First, the algorithm picks all functions
with equal likelihood; there is no way to fine tune the preference
of certain functions over others. Second, the algorithm does not
give the user much control over the tree structures generated.
Third, and most significant, while D (or S) is used as an upper
bound on maximal tree depth, there is no appropriate way to
create trees with either a fixed or average tree size or depth.

The lack of a rigorous way to specify tree size is very problem-
atic: in most GP literature, the sets of nonterminals and terminals
are picked based on domain need, with little consideration given
to their effect on tree generation. The expected tree size Etree
under the traditional algorithm is determined solely by g, the
expected number of children of a newly generated node. In par-
ticular, if g < 1, then Etree = 1

1−g , else Etree is infinite, as
shown in Theorem 1.

Lemma 1: Assume an algorithm that “grows” a tree from a
randomly chosen root node by attaching randomly generated
child nodes into unfilled argument positions of nodes currently
in the tree. This is done for example in GROW. Let g≥0 be the
expected number of children of a newly generated node. Then at
depth d in the tree, the expected number of nodes is Ed = gd.

Proof: The expected number of nodes Ed at depth d is

Ed =
{

1 if d = 0
Ed−1g if d > 0

From this it follows that Ed = gd.
Theorem 1: As in Lemma 1, assume an algorithm which

“grows” a tree from a randomly chosen root node by attaching
randomly generated child nodes into unfilled argument positions
of nodes currently in the tree. This is done for example in GROW.
Let Etree be the expected size of a tree built with the assumed
algorithm. Let g≥0 be the expected number of children of a
node newly generated by the algorithm. If and only if g < 1,
then Etree is finite (Etree = 1

1−g ), else it is infinite.
Proof: The expected size of a tree is the sum of the expected

number of nodes at all levels, that is, Etree =
∑∞
d=0 Ed. From

Lemma 1, Etree =
∑∞
d=0 g

d. From the geometric series, for
g≥0,

∞∑
d=0

gd =
{ 1

1−g if g < 1
∞ if g ≥ 1

For this reason, poor function set choices can have a dramatic
unforeseen effect on tree creation. Consider the following ex-
ample: imagine a typical domain that has 5 terminals and 5
nonterminals, where the average number of children of a non-
terminal is 2. In this case, g = 1, and so the expected tree size
is infinite! Although the complexity of GROW is linear in the
size of the tree, this doesn’t say much in the face of infinite tree
sizes. As such, the worst-case time bound for GROW is in fact
dependent entirely on the choice of functions in the function set.

Tweaking the function set to come up with a combination of
terminals and nonterminals that give a reasonableEtree is often
difficult; very slight modifications in a function set can result in
an Etree that is either very small (say, less than 2) or infinite.
As a result, many common published function sets inadvertently
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have either very small or very large, possibly infinite, expected
tree sizes. For example, Table 1 shows that three of the four
introductory examples in [11] have an infinite expected tree size
(cart centering, regression, ant). The fourth (11-multiplexer) has
an average tree size of about 2.

The classic genetic programming code described in [11] uses
several ad-hoc methods to compensate for the tree size resulting
from GROW. First, it imposes a small maximal depth D (from 2
to 6) on generated trees. Oddly, the maximal depth is not chosen
at random from this range, but in a round-robin fashion. Be-
cause GROW so often creates infinite-sized trees, this maximal
depth limit “shaves” function trees to keep the initial population
size reasonable, resulting in an excessive number of full or near-
full trees. Second, it rejects all trees of depth 1, and eliminates
duplicate trees, which increases average tree size. Third, when
creating initial trees, a mixture of GROW and FULL is used, but
when creating subtrees for modifying trees through “point” mu-
tation, only GROW is used. Newly mutated trees are rejected if
they exceed an absolute depth limit (typically 17).

IV. PREVIOUS GP TREE-CREATION ALGORITHMS

Previous improvements to GROW and FULL have focused on
generating uniformly random tree structures of predetermined
sizes.

Iba’s RAND tree algorithm [10] generates uniform tree struc-
tures by using Dyck words to build trees bottom-up. RAND tree

builds trees from a fixed-size pool of tree nodes, joining nodes
together to form subtrees, and ultimately joining subtrees to-
gether to form the final tree. RAND tree makes certain that each
node in the tree has an arity selected from a user-supplied arity
set (for example, all nonterminals might have either 2, 3, or 5
children). This arity constraint puts RAND tree in conflict with
more restrictive forms of GP (such as “strongly-typed” GP [16],
where each function has a specific return type and distinct argu-
ment types). To use strongly-typed GP with RAND tree, the user
must create a function set with all permutations of both the arity
set and return types, else the algorithm will generate invalid tree
structures.

Other approaches have tried production grammars [20], [7].
Böhm and Geyer-Schulz [3] extend this approach by selecting
trees with exact uniform probability from a tree-derivation gram-
mar. Given the absolute maximum bound on tree size S, their
approach first compiles (off-line) a table Π(W, s) of probabilities
of producing trees of size s≤S derived from some symbol W .
Once this table has been compiled, their tree-generation algo-
rithm first picks a statistically random tree size and start symbol.
It then expands this symbol with some random production, using
the table to recursively compute appropriate sizes for each sub-
tree that will be derived from the symbols in the expansion. This
elegant approach can generate traditional GP or strongly-typed
GP trees of any size (up to S) from a completely uniform random
distribution of tree structures.

The strength of all these approaches is that they permit
user control over the size of the trees generated, and generate
uniformly-distributed random tree structures. But there are two
drawbacks to these approaches: they are combinatorically very
slow, and they cannot guarantee user-defined probabilities of ap-
pearance of functions within their trees (because this conflicts

with generating uniformly-distributed structures).
Iba notes that RAND tree has very high (in some cases infi-

nite) computational complexity because the tree-structure deter-
mination includes producing large Catalan numbers. Böhm and
Geyer-Schulz’s algorithm has linear complexity once the table Π
has been compiled, but compiling this table includes effectively
enumerating all possible appropriate trees of size≤S. Even with
the help of dynamic programming, the complexity of this gener-
ation can be very high, though possibly polynomial. Böhm and
Geyer-Schulz do not give a worst-case bound for generating this
table. The authors note that combinatorics and other issues could
make the practical application of the algorithm difficult.

V. PTC1 AND PTC2

This paper offers two alternative tree-creation algorithms,
Probabilistic Tree-Creation (PTC) 1 and 2, which take a different
approach from past algorithms. Like past algorithms, PTC1 and
PTC2 give the user control over generated tree size. However,
these new algorithms do not attempt to generate completely
uniformly distributed tree structures. Instead, they guarantee
what previous approaches cannot: user-defined probabilities of
appearance of functions within the tree. But most importantly,
PTC1 and PTC2 have very low computational complexity (linear,
under reasonable constraints).

PTC1 is a modification of GROW that allows the user to provide
probabilities of appearance of functions in the tree, plus a desired
expected tree size, and guarantees that, on average, trees will be
of that size. PTC1 has formal results that have applicability to
GROW. However, PTC1 does not give the user any control over
the variance in tree sizes generated, which limits its usefulness.

With PTC2, the user provides a probability distribution of
requested tree sizes. PTC2 guarantees that, once it has picked
a random tree size from this distribution, it will generate and
return a tree of that size or slightly larger. This approximation is
less precise than PTC1, and PTC2 does not yield the same elegant
theoretical results. However, it gives the user real control over
tree size variance, a critical advantage.

The remainder of this paper discusses PTC1 and PTC2, giving
an analysis and complexity results. It then gives similar algo-
rithms for strongly-typed genetic programming.

VI. THE PTC1 ALGORITHM

The PTC1 algorithm is as follows: the set of functions F is
divided into two disjoint subsets: nonterminalsN and terminals
T . During tree-generation time, the algorithm will alternately
choose new child nodes from either the nonterminals or from
the terminals. For each nonterminal n in N the user provides a
probability qn that n will be chosen fromN when the algorithm
needs a nonterminal. Similarly, for each terminal t in T the user
provides a probability qt that t will be chosen from T when the
algorithm needs a terminal. The user also provides a maximum
depth bound D as before, though this bound is used only to
enforce an absolute, and preferably large, memory restriction.
Lastly, the user indicates an expected tree size Etree.

Before generating any trees, the algorithm computes p, the
probability of choosing a nonterminal over a terminal in order to
produce a tree with an expected tree size Etree, as
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p =
1− 1

Etree∑
n∈N

qnbn

where bn is the arity of nonterminal n. This computation need
be done only once offline. Then the algorithm proceeds to create
the tree:

Given:
maximum depth bound D
function set F consisting of nonterminal set N and terminal set T
computed probability of choosing a nonterminal p
probabilities qt and qn for each t∈T and n∈N

Do:
new tree T = PTC1(0)

PTC1(depth d)
Returns: a tree of depth ≤D − d

If d = D, return a terminal from T (by qt probabilities)
Else if, with probability p a nonterminal must be picked,

Choose a nonterminal n from N (by qn probabilities)
For each argument a of n,

Fill a with PTC1(d+ 1)
Return n with filled arguments

Else return a terminal from T (by qt probabilities)

This algorithm guarantees an expected tree size of Etree for
trees and subtrees by determining the appropriate nonterminal-
selection probability p. In the trivial case where there are only
terminals in the function set, the algorithm of course cannot pro-
vide anyEtree other than 1. Additionally, by adjusting nontermi-
nals with large fan-outs to have a lower (or higher) probability of
occurrence than nonterminals with small fan-outs, the user can
bias the typical “bushiness” of a tree, yet keep Etree the same.

PTC1 attempts to fix the expected tree size Etree yet still
provide the user with as much freedom as possible in defining
probabilities of appearance for each function. Recognize that
Etree can be controlled by fixing g, the expected number of
children of a newly generated node, shown in Theorem 2 below.
Note that since g =

∑
f∈F qfbf , to fix g over some user-defined

set F of functions with known arities (bf ), the algorithm must
somehow adjust the relative appearance (qf ) of functions within
the set. PTC1 accomplishes this simply by picking the right p,
the probability that, at node-creation time, a node will be picked
from the nonterminal set (as opposed to the terminal set), as
shown in Theorem 3 below. Within the respective nonterminal
or terminal sets, the user is still free to set his own qt and qn.

Theorem 2: For PTC1, assume that N , the set of nonterminal
functions, is nonempty. Let p be the probability that a newly gen-
erated node will be a nonterminal. Let b be the expected number
of children of a nonterminal node picked from the function set.
Let g be the expected number of children of a newly generated
node. Then a p can be predetermined to guarantee any specific
Etree≥0.

Proof: Since N is nonempty, therefore b > 0. Since
g = pb, given a constant, nonzero b, a p can clearly be picked to
produce any desired g. From Theorem 1, a g (and hence a p) can
thus be picked to determine any finite or infinite Etree≥0.

Theorem 3: For PTC1, assume that N , the set of nonterminal
functions, is nonempty. For each n∈N , let bn be the arity of n,
and let qn be the probability that a newly generated nonterminal

will be n. Let p be the probability that a newly generated node
will be a nonterminal. Let b be the expected number of children
of a nonterminal node picked from the function set, that is,
b =

∑
n∈N qnbn. Then the nonterminal-choice probability p

necessary to guarantee that a tree T will be of expected finite

size Etree > 0 is p =
1− 1

Etree∑
n∈N

qnbn
.

Proof: As a consequence of Theorems 1 and 2, Etree =
1

1−pb . Since N is nonempty, b > 0, hence p may be deter-

mined as p =
1− 1

Etree

b . Replacing b with
∑
n∈N qnbn yields

p =
1− 1

Etree∑
n∈N

qnbn
.

VII. COMPLEXITY OF PTC1

The time bound for PTC1 is determined by the complexity
cT of choosing a random terminal from some probability distri-
bution of terminals, and the complexity cN of choosing a ran-
dom nonterminal from a probability distribution of nonterminals.
From Theorem 4 below, the number of nonterminals in a tree is
pEtree and the expected number of terminals is (1 − p)Etree,
hence the complexity of generating a full tree of terminals and
nonterminals is O(cNpEtree + cT (1− p)Etree).

Theorem 4: For PTC1, let Etree be the expected tree size,
and p be the precomputed nonterminal-selection probability to
generate a tree of expected sizeEtree. Then the expected number
of nonterminals in a tree is En,tree = pEtree and the expected
number of terminals is Et,tree = (1− p)Etree.

Proof: Let g be the expected number of children of a
newly generated node under PTC1. Then the expected number of
nonterminalsEn,d at depth d is

En,d =
{
p if d = 0
En,d−1bp if d > 0

That is, En,d is equal to the expected number of nonterminals
En,d−1 at depth d− 1, times the expected number of children b
to each of these nonterminals, times the probability p that these
children are nonterminals themselves.

From this it follows that En,d = p(bp)d = pgd. Since by
Lemma 1, the expected number of nodesEd = gd, then the num-
ber of terminals is Et,d = Ed −En,d = gd − pgd = (1− p)gd.
Hence for the whole tree, the expected number of nontermi-
nals in a tree is then En,tree =

∑∞
d=0 En,d = p

∑∞
d=0 g

d and
the expected number of terminals is Et,tree =

∑∞
d=0Et,d =

(1−p)
∑∞
d=0 g

d. From Theorem 1 we getEn,tree = pEtree and
Et,tree = (1− p)Etree.

Note that cN or cT is at most the complexity of a binary
search through some probability distribution. To achieve this for
the nonterminal probabilities, for example, arrange all the qn
into disjoint intervals from 0 to 1 corresponding to each n∈N :

n1 : [0 , qn1)
n2 : [qn1 , qn1 + qn2 )
n3 : [qn1 + qn2 , qn1 + qn2 + qn3)
... ...
n|N | : [1− qn|N| , 1]

A random event points somewhere into this set of intervals; an
O(lg(‖N‖)) binary search through this set finds which n cor-
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Natural # Size 1 Trees when Etree is...

Domain Etree Natural 4 16 256

Cart Centering ∞ 1
4

13
22

43
88

643
1408

Ant ∞ 1
2

19
28

67
112

1027
1792

Regression ∞ 1
9

1
2

3
8

43
128

11-Multiplexer 15
7

11
15

5
8

17
32

257
512

6-Multiplexer 5 3
5

5
8

17
32

257
512

3-Multiplexer 6 1
2

11
20

7
16

103
256

Table 2. Expected number of size-1 trees generated, as a percent-
age of the whole population. “Natural” indicates numbers if tree
generation is made without restrictions on tree size (as in GROW).
Other columns give numbers when PTC1 restricts the expected
tree size Etree to various values. The probability of generating a
size-1 tree is the probability of generating a terminal (e.g., 1−p).

responds to the random event. This can be done similarly for
terminal probabilities (qt), hence averaged over several itera-
tions, an upper complexity bound on PTC1 is

O(lg(‖N‖)pEtree + lg(‖T‖)(1− p)Etree)

≤ O(lg(‖F‖)Etree)

If cT and cN were constant, then the complexity would re-
duce to O(Etree). This might happen if all the terminals and
nonterminals had equal q probabilities, in which case selecting
a random terminal or nonterminal can be done with a simple
O(1) random event as in GROW. An O(Etree) complexity can
also be achieved if the qt and qn probabilities are discrete val-
ues. For example, imagine that there were three nonterminals
with probabilities {q1 = .2, q2 = .3, q3 = .5}. One can create
an array [n1, n1, n2, n2, n2, n3, n3, n3, n3, n3]. At nonterminal-
selection time, picking randomly from this array isO(1).

VIII. PTC2

PTC1 generates trees expected around a specific user-defined
tree size. A serious problem with PTC1 is that it does not give
the user control over variance in tree size. PTC1, like GROW,
produces a large number of small trees; there is little the user can
do about it. For example, consider the large number of trees of
size 1 (equal to 1−p) generated under the previous example (five
nonterminals and five terminals, and an average nonterminal ar-
ity of 2). Using PTC1 enforcing an expected tree size of 10, about
11/20 of all new trees would be of size 1. Similarly, under GROW

(no enforcement), exactly half of the trees generated would be
of size 1, even though the expected tree size is infinity!

In general, when Etree is restricted to be less than GROW’s
expected tree size, then PTC1 generates more trees of size 1 than
GROW would. If the enforced expected tree size is larger GROW’s
expected tree size, PTC1 will generate fewer small (or size 1)
trees than GROW. Table 2 illustrates this for the introductory
domains from [11].

PTC2 avoids this problem by allowing the user to provide be-
forehand a probability distribution of requested tree sizes. Like
PTC1, PTC2 also guarantees user-provided distributions of non-
terminals and terminals appearing in each tree. And like PTC1,
PTC2 is very fast. However, PTC2 is not as elegant as PTC1: when
it picks a tree size from the distribution, it may produce a tree of
that size or slightly larger. In effect, while PTC2 guarantees the
user-provided nonterminal and terminal probabilities of appear-
ance, it approximates the user-provided tree-size distribution.

PTC2 is as follows: the set of functions F is divided into
two disjoint subsets: nonterminalsN and terminals T . For each
nonterminal n in N the user provides a probability qn that n
will be chosen fromN when the algorithm needs a nonterminal.
Similarly, for each terminal t in T the user provides a probabil-
ity qt that t will be chosen from T when the algorithm needs a
terminal. The user also provides a maximum depth bound D, a
maximum size bound S, and a probability distribution of desired
tree sizes w1, ..., wS for each tree size from 1 to S.

Given:
maximum depth bound D
maximum size bound S
function set F consisting of nonterminal set N and terminal set T
probabilities qt and qn for each t∈T and n∈N
probabilities w1, ...,wS of generating a tree of size {1, ..., S}

Do:
new tree T = PTC2()

PTC2()
Returns: a tree of depth ≤D and a size between 1 and S + bmax

inclusive, where bmax is the largest number of arguments to any
nonterminal in N

Let r be a random tree size from the probability distribution w1, ...,wS
If r = 1 return a random terminal from T (by qt probabilities)
Else

Choose a nonterminal n from N (by qn probabilities)
Tree root root←n
Node depth d←1
For each argument position a of n, Enqueue({a, d})
Current tree size s←1
Until Size()+s≥r or Size()= 0,
{argument position a, depth d}←RandomDequeue()
If d = D, Fill a with a terminal t from T (by qt probabilities)
Else

Choose a nonterminal n from N (by qn probabilities)
Fill a with n
For each argument position a of n, Enqueue({a, d+ 1})

s←s+ 1
Until Size()= 0,
{argument position a, depth d}←RandomDequeue()
Choose a terminal t from T (by qt probabilities)
Fill a with t

Return root

The algorithm begins by picking a random tree size from the the
user-provided tree-size probability distribution. It then attempts
to build a tree of that size or slightly greater. The algorithm
builds the tree by starting with a single node, root, extending the
tree with nonterminals at random places along the current tree
boundary. It continues this until the size of the unfilled positions
along the boundary plus the number of nonterminals currently
in the tree is greater than or equal to the requested size. Then the
algorithm fills the remaining boundary positions with terminals,
and returns the result.

Whenever the boundary extends beyond depth D, the offend-
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ing boundary positions are automatically filled with terminals;
this means that if D is so small that a full tree of S nodes might
be greater than depth D, then PTC2 may return a tree smaller
than expected.

To maintain the tree boundary, the algorithm stores in a global
random queue the position and depth of each unfilled argument
along the boundary, picking random items from this queue as
needed. To do this, the algorithm relies on three random-queue
functions: Size, which returns the size of the queue, Enqueue,
which enqueues an item, and RandomDequeue, which dequeues
and returns a random item. As shown below, the random queue
can be implemented so that all three functions run in O(1) time.

Given:
array of slots U = {u0, ..., uS+bmax−1}
array-fill value h← 0

Size()
Returns: the size of the queue

return h

Enqueue(item i)
Returns: nothing

uh←i
h← h+ 1

RandomDequeue()
Returns: the value of a random slot in U , or nil if U is empty

If h = 0, return nil
Else
h←h− 1
Let r be a random integer, 0≤r≤h
Swap the values of uh and ur
Return ur

The random-queue implementation relies in this case on a
maximum queue value of S + bmax, the largest returnable tree
size. It can be instead implemented with a small initial queue
array, extended when needed by doubling its size. This also
yields an amortized complexity of O(1) for all three operations.

IX. COMPLEXITY OF PTC2

Because random-queue operations can be done in O(1) time,
and either a nonterminal or terminal is chosen at each iteration,
the complexity of building a tree of requested size r is the time
it takes to pick a random terminal or nonterminal (from the qt
and qn distributions) multiplied by the number of iterations.

The first until-loop in PTC2 runs until Size()+s≥r or Size()= 0.
In the first case, consider the last iteration of the first until-
loop. As this iteration starts, Size()+s < r. The iteration may
perform one last Enqueue before the iteration ends. Since the
largest number of arguments to a nonterminal inN is bmax, this
last enqueing operation will increase Size()+s to no more than
r+ bmax. At the point between the two until-loops, the first loop
has run for exactly s− 1 iterations, and the second loop will run
for exactly Size() iterations. Hence the total number of iterations
is O(r + bmax).

In the exceptional second case (which will only occur when
D is inappropriately small relative to S), the first until-loop runs
for no more than r iterations, else the first case would have been
triggered. The second until-loop will then run for 0 iterations,

hence the total number of iterations is O(r)≤O(r + bmax).
As discussed, the complexity of choosing a nonterminal from

N or a terminal from T isO(lg(||N ||)) andO(lg(||T ||)) respec-
tively, or both O(1) under reasonable constraints. Since at each
iteration either a nonterminal or a terminal is chosen, a loose
complexity bound for choosing nonterminals and terminals in
the algorithm is O((r + bmax) × max(lg(||N ||), lg(||T ||))), or
O(r + bmax) under reasonable constraints.

Likewise, picking randomly from the tree-size probability dis-
tribution takes at most O(lg(||S||)) time, or O(1) under reason-
able constraints. Let rmean be the mean tree size given the pro-
vided probability distribution. Then PTC2 has an average com-
plexity of

O((rmean + bmax)×max(lg(||N ||), lg(||T ||)

Under reasonable constraints as discussed earlier, this reduces
to O(rmean + bmax). Since the largest possible tree is of size
S + bmax, the worst-case complexity is therefore

O((S + bmax)×max(lg(||N ||), lg(||T ||)))

which under reasonable constraints reduces toO(S+ bmax), ef-
fectively linear. IfD is too small relative toS and the exceptional
second case is triggered, then the complexity may be even lower.

X. A STRONGLY-TYPED PTC1 ALGORITHM

Under relaxed constraints, PTC1 can be extended easily to
handle the “basic” form of strongly-typed genetic programming
(STGP) [16]. Under STGP, types are associated with each argu-
ment and the return value of each function; at tree-creation time,
a parent function may have a particular child in an argument
position only if the parent’s argument type (for that argument
position) and the child’s return type match. StronglyTypedPTC1

assumes that for each type, there exists at least one nonterminal
and at least one terminal whose return values are of that type.

The algorithm presented is for the more common “basic”
STGP without generic functions, as detailed in [16]. In order
to accommodate STGP, StronglyTypedPTC1 must place further
constraints on user-specified probabilities, by dividing the set of
functions F into not just terminals and nonterminals, but also
further subdividing these subsets by the functions’ return types.

The algorithm is as follows: Let Y be the set of types. The
set of functions F is divided into two disjoint subsets nonter-
minals N and terminals T . These subsets are further divided
by their return types into subsets Ny1, Ny2, . . . Nyz, one for
each y∈Y , and Ty1, T y2, . . . T yz, one for each y∈Y . During
tree-generation time, the algorithm will, for some y, alternately
choose new child nodes from either that Ny or Ty. For each
nonterminal ny∈Ny the user provides a probability qn,y that ny
will be chosen when the algorithm needs a nonterminal with
return type y. Similarly, for each terminal ty∈Ty the user pro-
vides a probability qt,y that ty will be chosen from Ty when the
algorithm needs a terminal with return type y. The user also pro-
vides a return type yr for the tree, and a maximum depth bound
D, though this bound is used only to enforce an absolute, and
preferably large, memory restriction. Lastly, the user indicates
an expected tree size Etree.
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Before generating any trees, the algorithm computes py for
each y∈Y . py is the probability of choosing a nonterminal over
a terminal of return type y in order to produce a tree with an
expected tree size Etree:

py =
1− 1

Etree∑
ny∈Ny

qn,ybn,y

where bn,y is the number of arguments for nonterminal ny. This
computation need be done only once at function-creation time.

Then the algorithm proceeds to create the tree:

Given:
maximum depth bound D
disjoint nonterminal subsets Ny of nonterminal set N for each y∈Y
disjoint terminal subsets Ty of terminal set T for each y∈Y
computed nonterminal-choice-probabilities py for each y∈Y
for each Ty and Ny,

probabilities qn,y and qt,y for each ty∈Ty and ny∈Ny
return type for the tree yr∈Y

Do:
new tree T = StronglyTypedPTC1(0,yr)

StronglyTypedPTC1(depth d, return type y∈Y )
Returns: a tree of depth ≤D − d and of return type y

If d = D, return a terminal from Ty (by qt,y probabilities)
Else if, with probability py a nonterminal must be picked,

Choose a nonterminal ny from Ny (by qn,y probabilities)
For each argument a of ny of argument type ya

Fill a with StronglyTypedPTC1(d+ 1,ya)
Return the completed nonterminal ny with filled arguments

Else return a terminal from Ty (by qt,y probabilities)

Because of the user-provided type constraints of strongly-typed
genetic programming, this version of PTC1 cannot guarantee that
each terminal t will appear in the tree with some probability qt
relative to other terminals (or likewise a nonterminal n appear-
ing with probability qn relative to other nonterminals). Instead,
it makes sure that each terminal ty of a type y∈Y will appear
with probability qt,y relative to other terminals of type y, and
similarly that each nonterminalny of type y∈Y will appear with
qt,y relative to other nonterminals of type y.

This algorithm guarantees an expected tree size of Etree for
all STGP trees by determining the necessary probability py for
each return type y such that subtrees returning that return type
will each be ofEtree size. Theorem 5 shows that the algorithm’s
method of picking of each py is correct and invariant over of y.

Theorem 5: Let Y be is the set of STGP return types. Let
the set of nonterminals N be divided into nonempty subsets
Ny1 , Ny2 , . . . Nyz , one for each y∈Y . At tree-building time, let
py be the probability that a nonterminal will be chosen as a
new child node for a particular type y∈Y . Given some y, for
each ny∈Ny, let qn,y be the probability that ny will be cho-
sen given that a nonterminal is to be chosen, and bn,y be the
number of arguments to ny. Let by be the expected number of
children of a nonterminal node of return type y in the tree, that
is, by =

∑
ny∈Ny qn,ybn,y. Then under StronglyTypedPTC1, the

nonterminal-choice probability py necessary to guarantee that a
tree or subtree T of return type y∈Y will be of expected finite

size Etree > 0 is:py =
1− 1

Etree∑
ny∈Ny

qn,ybn,y

Proof: Let g≥0 be the expected number of children of
a node newly generated by the algorithm. From Theorem 1,
Etree = 1

1−g if and only if g < 1. Thus g may be determined

from Etree as g = 1− 1
Etree

.
For any y∈Y , since py denotes the likelihood that the newly

generated node function will be a nonterminal, and the expected
number of children to a terminal is 0, then the expected number of
children of the newly generated node is g= pyby+(1−py)(0) =

pyby. Therefore py =
1− 1

Etree

by
.

Since Ny is nonempty, by > 0, so for any given by and re-
questedEtree, an appropriate py may always be determined. Re-

placing by with
∑
ny∈Ny qn,ybn,y yields py =

1− 1
Etree∑

ny∈Ny
qn,ybn,y

The algorithm can be modified to permit types for which there
exists no nonterminal with a return value for that type; for each
such type y, simply set py to 0. However, this does not guarantee
that the expected size of the tree will remain Etree, only that it
will be no larger than Etree.

The complexity of this algorithm is dependent largely on the
size of each set of functions by type, and the combinations of
types of arguments to each function. However, the complexity
is no worse than the complexity for PTC1 under ordinary GP
(that is, ignoring the types to the functions in question). This is
because the number of nonterminals that must be searched is no
more than ‖N‖, and the number of terminals is no more than
‖T‖.

The algorithm can also be modified to accommodate a more
advanced STGP with “general functions” (functions with more
than one valid return type) [16], [9]. In this case the various sets
Nyx are not required to be disjoint, nor are the various sets Tyx .
Choosing a nonterminal from someNyx is still no more difficult
than O(‖N‖) and choosing a nonterminal from some Tyx is no
more difficult than O(‖T‖). However, since ‖Y ‖ may now be
greater than ‖N‖ and ‖T‖; the complexity of PTC1 with general
functions is bounded by the maximum of the PTC1 complexity
bound and ‖Y ‖. Of course ‖Y ‖ may be any size the designer
likes, but it is rarely larger than ‖F‖; at any rate, ‖Y ‖≤2‖F‖,
else Y will contain duplicate types.

XI. A STRONGLY-TYPED PTC2 ALGORITHM

PTC2 can also be extended to handle strongly-typed genetic
programming, assuming relaxed constraints similar to Strongly-

TypedPTC1. And just like StronglyTypedPTC1, StronglyTypedPTC2

assumes that for each user-provided type, there exists at least
one nonterminal and at least one terminal whose return values
are of that type.

The algorithm works as follows: the set of functions F is
divided into two disjoint subsets: nonterminals N and ter-
minals T . These subsets are further divided by their return
types into subsets Ny1, Ny2, . . .Nyz, one for each y∈Y , and
Ty1, T y2, . . . T yz, one for each y∈Y . During tree-generation
time, the algorithm will, for some y, alternately choose new
child nodes from either that Ny or Ty. For each nonterminal
ny∈Ny the user provides a probability qn,y that that function
will be chosen when the algorithm needs a nonterminal with re-
turn type y. Similarly, for each terminal ty∈Ty the user provides
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a probability qt,y that ty will be chosen from Ty when the algo-
rithm needs a terminal with return type y. The user also provides
a maximum depth bound D, a maximum size bound S, a re-
quested return type for the tree yr, and a probability distribution
of desired tree sizes w1, ..., wS for each tree size from 1 to S.

Given:
maximum depth bound D
maximum size bound S
disjoint nonterminal subsets Ny of nonterminal set N for each y∈Y
disjoint terminal subsets Ty of terminal set T for each y∈Y
for each Ty and Ny,

probabilities qn,y and qt,y for each ty∈Ty and ny∈Ny
return type for the tree yr∈Y
probabilities w1, ...,wS of generating a tree of size {1,...,S}

Do:
new tree T = StronglyTypedPTC2(yr)

StronglyTypedPTC2(return type y∈Y )
Returns: a tree of depth ≤D, of return type y, and of size between 1

and S + bmax inclusive, where bmax is the largest number of
arguments to any nonterminal in N

Let r be a random tree size from the probability distribution w1, ...,wS
If r = 1 return a random terminal from Ty (by qt,y probabilities)
Else

Choose a nonterminal ny from Ny (by qn,y probabilities)
Tree root root←ny
Node depth d←1
For each argument position a of ny, Enqueue({a, d})
Current tree size s←1
Until Size()+s≥r or Size()= 0,
{argument position a, depth d}←RandomDequeue()
y←argument type of a
If d = D, Fill a with a terminal ty from Ty (by qt,y probabilities)
Else

Choose a nonterminal ny from Ny (by qn,y probabilities)
Fill a with ny
For each argument position a of ny, Enqueue({a, d+ 1})

s←s+ 1
Until Size()= 0,
{argument position a, depth d}←RandomDequeue()
y←argument type of a
Choose a terminal ty from Ty (by qt,y probabilities)
Fill a with ty

Return root

This algorithm works identically to PTC2, except that like Strong-

lyTypedPTC1 it too must loosen the guarantees on probability of
occurrence of nonterminals and terminals. Namely, each termi-
nal ty of a type y∈Y will appear with qt,y probability relative to
other terminals of type y, and each nonterminalny of type y∈Y
will appear with qt,y relative to other nonterminals of type y.

Like StronglyTypedPTC1, the complexity of this algorithm is
dependent on the size of each set of functions by type, and the
combinations of types of arguments to each function. However,
the complexity is no worse than the complexity for PTC2. This
is because the number of nonterminals that must be searched at
any time is no more than ‖N‖, and the number of terminals is
no more than ‖T‖. And like StronglyTypedPTC1, this algorithm
can be adapted to STGP generic functions, with a complexity
bounded by the maximum of the PTC2 complexity and ‖Y ‖.

XII. SUBTREE MUTATION AND CODE GROWTH

One important issue is tree creation’s role in subtree mutation
(“point” mutation) as described in p. 105 [11]. Subtree mutation
is an increasingly popular method for modifying GP trees to form

new ones as part of its evolutionary process. In subtree mutation,
a node is chosen randomly within a tree; the subtree rooted at
this node is then replaced by a new, randomly-generated subtree.
Commonly GROW is used to produce this new subtree.

As described below, it appears that even with no selection bias
(trees selected for mutation are picked entirely at random from
the population), repeated subtree mutation can naturally increase
the average size of a GP population. There are provable examples
showing trees growing naturally under subtree mutation using
GROW or PTC1, even with no selection bias. Consider a func-
tion set of one nonterminal of arity 1, and one terminal, both
equally likely to appear. The resultant “lists” have an Etree of
2, but after applying subtree mutation to an initially-generated
population of these “lists”, the expected size of individuals in
the population grows to 2.5 (shown in Theorem 6 below). Addi-
tionally, experimental results indicate that after repeated subtree
mutation using either of these methods, the size of a tree consis-
tently grows asymptotically towards some value. This has been
tested for population sizes ranging from 1 to 100,000, with no
selection bias.

It appears that (in the case of the “lists”) if Etree for newly
mutated subtrees is restricted to 1.5, this will maintainEtree = 2
for the population as a whole. A general solution for function sets
other than the “list” function set described above is desirable; this
could enable us to use PTC1not only to guarantee an expected tree
size for an initial population but maintain that tree size through
subtree mutation. This would eliminate subtree mutation as one
of several candidate culprits behind GP tree growth.

Lemma 2: If −1 < x < 1, then
∑∞
i=1 ix

i = x
(1−x)2 .

Proof:

∞∑
i=1

ixi = x + 2x2 + 3x3 + ...

x
∞∑
i=1

ixi = x2 + 2x3 + ...

Therefore,

(1− x)
∞∑
i=1

ixi = x+ x2 + x3 + ... =
∞∑
i=1

xi

(1− x)
∞∑
i=1

ixi =

( ∞∑
i=0

xi

)
− 1

From the Geometric Series, if −1 < x < 1, then

(1− x)
∞∑
i=1

ixi =
1

1− x − 1 =
x

1− x
∞∑
i=1

ixi =
x

(1− x)2

Theorem 6: Let the set of functions F consist of a single
terminal and a single nonterminal of arity 1 with p = 1

2 (e.g.,
functions which build “lists”). The natural expected tree size of
trees built from this set is Etree = 2; however, after a subjecting
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the individuals in the initial generation to subtree mutation, the
expected tree size rises (to 5

2 ).
Proof: Since there are only two functions (a terminal with

0 children and a nonterminal with 1 child) with equal likelihood
of being generated, then the expected number of children of a
newly generated node is g = 1

2 . From Theorem 1, this means
that Etree = 2. Since p = 1

2 , a “list” of node size 1 should
clearly occur in 1

2 of all cases, node size 2 should occur in 1
4 of

all cases, node size 3 has a probability of occurrence 1
8 , and so

on. In general, the probability that a “list” of node size n will
occur in a population is 1

2n .
The expected new size of an individual of size n undergoing

subtree mutation is the original size minus the expected loss (n+1
2

for a list) plus the expected size of the new subtree. For a list this
comes to n − n+1

2 + 2. Hence the expected size of individuals
in a population after subjecting each to subtree mutation is

∞∑
n=1

1
2n

(n− n+ 1
2

+ 2) =

(
1
2

∞∑
n=1

n

2n

)
+

(
3
2

∞∑
n=1

1
2n

)

From Lemma 2, the first term reduces to 1. From the Geometric
Series, the second term reduces to 3

2 . Therefore the new expected
size of an individual is 5

2 .

XIII. CONCLUSIONS

PTC1 and PTC2 are an advance over GROW and add robustness
to an important part of genetic programming. Unlike other tree-
creation algorithms which provide uniformly distributed tree
structures but have high computational complexity, PTC1 and
PTC2 provide uniform distribution of functions and have very
low computational complexity. Both of these algorithms com-
pare well GROW, which runs inO(Etree) time, but permitsEtree
to be infinite in many common configurations.

PTC1 guarantees trees will be generated around an expected
tree size, but does not provide control over variance in size.
If the function set demands continuous-valued probabilities of
appearance, PTC1 runs in≤ O(lg(‖F‖)Etree) time, where ‖F‖
is the number of total functions, andEtree is the (finite) expected
tree size. With reasonable constraints, PTC1 can run inO(Etree)
time.

PTC2 takes a user-provided probability distribution by tree
size, and approximates generating trees from this distribution.
PTC2 runs in O((r + bmax) × max(lg(||N ||), lg(||T ||))), or
O(r + bmax) with reasonable constraints, where r is the av-
erage tree size in the probability distribution, ||N || is the number
of nonterminals and ||T || the number of terminals in the function
set, and bmax is the largest number of children of any nonterminal
in the function set.
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