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Abstract—Genetic programming isan evolutionary optimization method
that produces functional programs to solve a given task. These programs
commonly taketheform of treesrepresenting L1 SP s-expressions, and atyp-
ical evolutionary run produces a great many of thesetrees. For thisreason,
a good tree-generation algorithm is very important to genetic program-
ming. This paper presents two new tree-generation algorithms for genetic
programming and for “strongly-typed” genetic programming, a common
variant. These algorithms are fast, allow the user to request specific tree
sizes, and guarantee probabilities of certain nodes appearing in trees. The
paper analyzes these two algorithms and compares them with traditional
and recently proposed approaches.
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|. INTRODUCTION

ENETIC programming (GP) is a variant of the genetic al-

gorithm which uses simulated evolution to discover func-
tional programs to solve some task. The most common form
of genetic programming (and the one considered in this pa-
per) evolvesprogramsas LI SP-like“ program-trees’ of function-
nodes[11]. Thesetrees serve both as the genetic material and as
the resultant program individual; there is no intermediate repre-
sentation.

GP needs a good random tree-creation algorithm to create
treesthat formtheinitial population, and to create subtrees used
in subtree mutation, aGP operator used for modifyingtreesin the
population. For the fast-increasing number of GP experiments
that use variousformsof subtree mutation astheir primary means
of modifying individuals, tree creation is critical because the
generation of 100,000 trees or more is not uncommon.

Tree-creation also plays an important role in the current de-
bate over tree bloat, the tendency of GP treesto grow during the
evolutionary process independent of any increasein fitness[19],
[171,[2],[21],[12]. Bloat isblamed for slowing down the evolu-
tionary process by making individuals more resistant to change,
by slowing the overall speed of evaluation and breeding, and by
increasing memory requirements. Much of this debate centers
around specific tree-modification operators. Some have argued
that subtree crossover (another traditional GP tree-modification
operator) is the chief culprit of bloat, especialy in comparison
to subtree mutation [1]. Others instead indict subtree mutation
[13], going so far asto argue that in such cases fitness-selection
pressure al so causes bloat. However, as shown later in this paper,
there are exampleswhere subtree mutation can provably increase
average tree size, even without any selection pressure at all.

Thetraditional GP tree-creation algorithm, GRow in[11], has
serious weaknesses. Most significantly, GRow offers no user
control over expected tree size, except through an absolute max-
imum depth bound. As discussed later, left to its own devices,

GROW will often generate infinite trees on average, depending
on the function set. Also, most versions of GRoOw typically do
not offer fine-grained control over the expected probability that
aparticular functionwill appear in atree. Given the considerable
interest in introns, internode dependencies and semantics, and
other issues of node interactions [6], [18], [8], [14], the ability
to rigoroudly control specific node appearanceistimely.

This paper discusses GROw, its variants, and recent proposed
aternatives. It then offers two new algorithms that attempt to
address the deficiencies in previous algorithms. These two new
algorithms let the user request either an average tree size or
specify adistribution of tree sizes from which to generate trees.
Unlike recent aternatives, these two agorithms do not promise
uniformly random tree structures. Instead they guarantee user-
specified probabilities of occurrence for specific terminal and
nonterminal functions within the generated trees. Lastly, unlike
recent aternatives, these two algorithms are fast, running in
near-linear time, or in linear time under reasonable constraints.
The paper analyzes the new algorithms, then gives additional
versions of the algorithms tailored for “strongly-typed” genetic
programming [16].

II. DEFINITIONS

This paper uses certain critical symbolsin the description and
analysis of various constructive tree-generation algorithms.

T denotes a newly generated genetic program tree. S'is the
maximal number of nodes in a tree permitted by a given tree-
generation algorithm, and D is the maximal depth of a tree
permitted by the algorithm. E,... isthe expected tree size of T.
T is created by choosing nodes from a function set F', divided
two digoint sets, terminals T' (leaf nodes), and nonterminals N
(interior nodes).

p is the probability that, in the process of choosing nodes to
form T, a given tree-creation algorithm will pick a nonterminal
from the function set (as opposed to a terminal). b is the ex-
pected number of children to nonterminal nodes picked fromthe
function set. g isthe expected number of childrento anewly gen-
erated nodein T. It isimportant to note that since the expected
number of children of aterminal is 0, and the expected number
of childrento anonterminal is p, then g = pb+ (1—p)(0) = pb.

I11. THE TRADITIONAL TREE-CREATION ALGORITHM

By far the most common mechanism for creating trees and
subtreesin GP is the GROW tree-creation algorithm [11]. GROW
and a full-tree variant (FULL) are used to generate trees for the
initial population at the beginning of the evolutionary process.
GROW is also used almost universally to generate new subtrees
for “point” subtree mutation and isvery popular for other special
kinds of subtree mutation. For some examples of point mutation
and other mutation approaches, see [11], [1], [4], [5], [14], [15],



Domain b p  Eiree
CatCentering % 2
Ant % % 00
Regression 38
11-Multiplexer 2 £ 2
6-Multiplexer 2 2 5
3-Multiplexer 2 2 6

Table 1. Algorithmic results for the introductory domains from
[11] chapter 7, using the GRoOw algorithm. b is the expected
number of children of a nonterminal picked from the function
set. p isthe probability of choosinganonterminal at tree-creation
time. Ey... isthe expected size of atree. From Theorem 1, this
is = if pb < 1, oo otherwise.

[13]. Though little studied, GROw and FULL appear in thelion's
share of existent GP literature and are the chief or only tree-
creation algorithmsfor nearly all popular GP libraries (including
lil-gp, GPSys, GPQuick/GPData, GPC++, DGPC, SGPC, and
Koza's Simple-L ISP code [11]).

GROW begins with a set of functions F' to place as nodes in
the tree. Each nonterminal function in the set has a specific ar-
ity. This algorithm randomly selects a root from the full set of
functions (both terminals and nonterminals), then fills the root’s
argumentswith randomfunctions, thentheir argumentswithran-
dom functions, and so on. A common variant is shown below:

Given:

maximum depth bound D

function set F' consisting of nonterminal set N and terminal set 7'
Do:

New tree T = GROW(0)

GROW(depth d)
Returns: a tree of depth <D — d

If d = D, return a random terminal from T'
Else
Choose a random function f from F' o
If fis aterminal, return f
Else
For each argument a of f,
Fill @ with GROW(d + 1)
Return f with filled arguments

GROW’scompanion algorithm (FULL) isused to forcethe genera-
tion of full trees. It differsfrom GRow only in the line marked o,
where f ischosen at randomfrom N, not F'. Thatis, f isalways
anonterminal. If NV is nonempty, then FULL always produces a
full tree “trimmed’ to depth D, and so produces a very narrow
range of tree structures, with relatively less applicability than
GROW. This paper focuses primarily on the dynamics of GRow.
Some variants of GROW permit the user to specify amaximum
treesize S. They enforcethiseither by producing treesrepeatedly
until one of size less than S is created, or by keeping track of
the number of created nodes (so far) plus the number of unfilled
arguments; when this total exceeds S, only terminals may fill
arguments from then on (see [5] for an interesting example).

While GROW is easy to implement and runs in linear time,
it has three weaknesses. First, the algorithm picks all functions
with equal likelihood; thereis no way to fine tune the preference
of certain functions over others. Second, the algorithm does not
give the user much control over the tree structures generated.
Third, and most significant, while D (or S) is used as an upper
bound on maximal tree depth, there is no appropriate way to
create trees with either afixed or average tree size or depth.

Thelack of arigorousway to specify treesizeisvery problem-
atic: inmost GP literature, the sets of nonterminal sand terminals
are picked based on domain need, with little consideration given
to their effect on tree generation. The expected tree size E; ...
under the traditional algorithm is determined solely by g, the
expected number of children of a newly generated node. In par-
ticular, if g < 1, then Eypee = ﬁ, dse By .. is infinite, as
shown in Theorem 1.

Lemma 1: Assume an algorithm that “grows’ a tree from a
randomly chosen root node by attaching randomly generated
child nodes into unfilled argument positions of nodes currently
in the tree. Thisis done for examplein GRow. Let ¢>0 be the
expected number of children of anewly generated node. Then at
depth d in the tree, the expected number of nodesis E; = ¢°.

Proof: The expected number of nodes E; at depth d is

1
EBa= { Eq-19

From thisit followsthat £; = ¢°. [ |

Theorem1: As in Lemma 1, assume an agorithm which
“grows’ atree from a randomly chosen root node by attaching
randomly generated child nodesinto unfilled argument positions
of nodescurrently inthetree. Thisisdonefor examplein GRow.
Let ;... be the expected size of a tree built with the assumed
algorithm. Let ¢>0 be the expected number of children of a
node newly generated by the algorithm. If and only if ¢ < 1,
then By isfinite (Fyree = rlg), dseitisinfinite.

Proof: Theexpected sizeof atreeisthe sum of theexpected
number of nodes at all levels, that is, Ejyee = Y Eq. From
Lemmal, Eipee = fo:o g®. From the geometric series, for
g>0,

ifd=0
ifd>0

igd: o<l
oo ifg>1
d=0

|

For thisreason, poor function set choices can have adramatic
unforeseen effect on tree creation. Consider the following ex-
ample: imagine a typical domain that has 5 terminals and 5
nonterminals, where the average number of children of a non-
terminal is 2. In this case, g = 1, and so the expected tree size
is infinite! Although the complexity of GRoOw is linear in the
size of thetree, this doesn’t say much in the face of infinite tree
sizes. As such, the worst-case time bound for GROw is in fact
dependent entirely on the choice of functionsin the function set.
Tweaking the function set to come up with a combination of
terminals and nonterminalsthat give areasonable Ey,... isoften
difficult; very dlight modificationsin a function set can result in
an FEy... that is either very small (say, less than 2) or infinite.
Asaresult, many common published function setsinadvertently



have either very small or very large, possibly infinite, expected
tree sizes. For example, Table 1 shows that three of the four
introductory examplesin [11] have an infinite expected tree size
(cart centering, regression, ant). The fourth (11-multiplexer) has
an average tree size of about 2.

The classic genetic programming code described in [11] uses
severa ad-hoc methodsto compensate for the tree size resulting
from GRow. First, it imposes a small maximal depth D (from 2
to 6) on generated trees. Oddly, the maximal depth is not chosen
at random from this range, but in a round-robin fashion. Be-
cause GROW so often creates infinite-sized trees, this maximal
depth limit “ shaves’ function treesto keep theinitial population
size reasonable, resulting in an excessive number of full or near-
full trees. Second, it rgjects all trees of depth 1, and eliminates
duplicate trees, which increases average tree size. Third, when
creating initial trees, a mixture of GROW and FULL is used, but
when creating subtrees for modifying trees through “ point” mu-
tation, only GROw is used. Newly mutated trees are rejected if
they exceed an absolute depth limit (typically 17).

IV. PREVIOUS GP TREE-CREATION ALGORITHMS

Previous improvements to GRow and FULL have focused on
generating uniformly random tree structures of predetermined
sizes.

Iba’'s RAND_tree algorithm [10] generates uniform tree struc-
tures by using Dyck words to build trees bottom-up. RAND _tree
builds trees from a fixed-size pool of tree nodes, joining nodes
together to form subtrees, and ultimately joining subtrees to-
gether to form the final tree. RAND_tree makes certain that each
node in the tree has an arity selected from a user-supplied arity
set (for example, al nonterminals might have either 2, 3, or 5
children). This arity constraint puts RAND_tree in conflict with
more restrictive forms of GP (such as “ strongly-typed” GP[16],
where each function has a specific return type and distinct argu-
ment types). To use strongly-typed GP with RAND_tree, the user
must create afunction set with all permutations of both the arity
set and return types, else the algorithm will generateinvalid tree
structures.

Other approaches have tried production grammars [20], [7].
Bohm and Geyer-Schulz [3] extend this approach by selecting
treeswith exact uniform probability from atree-derivation gram-
mar. Given the absolute maximum bound on tree size S, their
approachfirst compiles(off-line) atable II(W, s) of probabilities
of producing trees of size s<S derived from some symbol .
Once this table has been compiled, their tree-generation algo-
rithm first picks a statistically random tree size and start symbol.
It then expandsthis symbol with some random production, using
the table to recursively compute appropriate sizes for each sub-
tree that will be derived from the symbolsin the expansion. This
elegant approach can generate traditional GP or strongly-typed
GPtreesof any size (upto S) from acompletely uniformrandom
distribution of tree structures.

The strength of all these approaches is that they permit
user control over the size of the trees generated, and generate
uniformly-distributed random tree structures. But there are two
drawbacks to these approaches. they are combinatorically very
dow, and they cannot guarantee user-defined probabilities of ap-
pearance of functions within their trees (because this conflicts

with generating uniformly-distributed structures).

Iba notes that RAND_tree has very high (in some cases infi-
nite) computational complexity because the tree-structure deter-
mination includes producing large Catalan numbers. Bohm and
Geyer-Schulz'salgorithm haslinear complexity oncethetableIT
has been compiled, but compiling this table includes effectively
enumerating all possible appropriatetreesof size <.S. Evenwith
the help of dynamic programming, the complexity of this gener-
ation can be very high, though possibly polynomial. Bohm and
Geyer-Schulz do not give aworst-case bound for generating this
table. The authorsnote that combinatoricsand other issues could
make the practical application of the algorithm difficult.

V. PTC1 AND PTC2

This paper offers two alternative tree-creation algorithms,
Probabilistic Tree-Creation (PTC) 1 and 2, which take adifferent
approach from past algorithms. Like past algorithms, pTC1 and
PTC2 give the user control over generated tree size. However,
these new algorithms do not attempt to generate completely
uniformly distributed tree structures. Instead, they guarantee
what previous approaches cannot: user-defined probabilities of
appearance of functions within the tree. But most importantly,
pTC1 and PTC2 have very low computational complexity (linear,
under reasonable constraints).

pTC1 isamodification of GROW that allowsthe user to provide
probabilitiesof appearanceof functionsinthetree, plusadesired
expected tree size, and guarantees that, on average, trees will be
of that size. PTC1 has formal results that have applicability to
GROW. However, pTC1 does not give the user any control over
the variance in tree sizes generated, which limitsiits usefulness.

With pTC2, the user provides a probability distribution of
requested tree sizes. PTC2 guarantees that, once it has picked
a random tree size from this distribution, it will generate and
return atree of that size or dightly larger. This approximationis
less precisethan PTC1, and PTC2 does hot yield the same el egant
theoretical results. However, it gives the user real control over
tree size variance, a critical advantage.

The remainder of this paper discusses PTC1 and PTC2, giving
an analysis and complexity results. It then gives similar algo-
rithms for strongly-typed genetic programming.

V1. THE PTC1 ALGORITHM

The ptc1 agorithm is as follows: the set of functions F' is
divided into two digoint subsets: nonterminals NV and terminals
T'. During tree-generation time, the algorithm will alternately
choose new child nodes from either the nonterminals or from
the terminals. For each nonterminal n in IV the user provides a
probability ¢,, that n will be chosen from N when the algorithm
needs a nonterminal. Similarly, for each terminal ¢ in T" the user
provides a probability ¢, that ¢ will be chosen from 7" when the
algorithm needs aterminal. The user also provides a maximum
depth bound D as before, though this bound is used only to
enforce an absolute, and preferably large, memory restriction.
Lastly, the user indicates an expected tree size Ey,...

Before generating any trees, the algorithm computes p, the
probability of choosing a nonterminal over aterminal in order to
produce atree with an expected tree size Fy,c., as
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where b,, is the arity of nonterminal n. This computation need
be done only once offline. Then the algorithm proceedsto creste
thetree:

Given:
maximum depth bound D
function set F' consisting of nonterminal set N and terminal set T'
computed probability of choosing a nonterminal p

probabilities ¢; and q,, for each tcT and ne N

Do:
new tree T = PTC1(0)

PTC1(depth d)
Returns: a tree of depth <D — d

If d = D, return a terminal from 7" (by g: probabilities)
Else if, with probability p a nonterminal must be picked,
Choose a nonterminal n from N (by g,, probabilities)
For each argument a of n,
Fill o with PTC1(d + 1)
Return n with filled arguments
Else return a terminal from T (by q: probabilities)

This algorithm guarantees an expected tree size of FEy... for
trees and subtrees by determining the appropriate nonterminal-
selection probability p. In the trivial case where there are only
terminalsin the function set, the algorithm of course cannot pro-
videany E;.... other than 1. Additionally, by adjusting nontermi-
nalswith largefan-outsto have alower (or higher) probability of
occurrence than nonterminals with small fan-outs, the user can
bias the typical “bushiness’ of atree, yet keep Ey,... the same.

PTC1 attempts to fix the expected tree size Ey,... yet still
provide the user with as much freedom as possible in defining
probabilities of appearance for each function. Recognize that
Ey-¢c can be controlled by fixing g, the expected number of
children of anewly generated node, shown in Theorem 2 below.
Notethat sinceg = ) ;. qrby, tofix g over some user-defined
set F' of functions with known arities (b¢), the algorithm must
somehow adjust the relative appearance (g) of functionswithin
the set. PTC1 accomplishes this smply by picking the right p,
the probability that, at node-creation time, anode will be picked
from the nonterminal set (as opposed to the terminal set), as
shown in Theorem 3 below. Within the respective nonterminal
or termina sets, the user is till free to set hisown ¢; and ¢, .

Theorem2: For pTC1, assume that IV, the set of nonterminal
functions, isnonempty. L et p bethe probability that anewly gen-
erated nodewill be anonterminal. Let b be the expected number
of children of a nonterminal node picked from the function set.
Let ¢ be the expected number of children of a newly generated
node. Then a p can be predetermined to guarantee any specific
Etree ZO

Proof:  Since N is nonempty, therefore b > 0. Since

g = pb, given aconstant, nonzero b, ap can clearly be picked to
produce any desired g. From Theorem 1, ag (and henceap) can
thus be picked to determine any finite or infinite E;,...>0. N

Theorem 3: For PTC1, assume that N, the set of nonterminal
functions, is nonempty. For each ne N, let b,, be the arity of n,
and let ¢,, be the probability that a newly generated nonterminal

will be n. Let p be the probability that a newly generated node
will be anonterminal. Let b be the expected number of children
of a nonterminal node picked from the function set, that is,
b = >, cn dnbn. Then the nonterminal-choice probability p
necessary to guarantee that ?tree T will be of expected finite
Size Eyree > 0isp = Zl#

nen dnbn

Proof: As aconsequence of Theorems 1 and 2, E,.cc. =

—L_. Since N is nonempty, b > 0, hence p may be deter-

1-pb-

1
mined as p = —Zie, Replacing b with 3, gub, yields
1

p= - Ef,reeb . .

VI1l. COMPLEXITY OF PTC1

The time bound for PTC1 is determined by the complexity
cr of choosing arandom terminal from some probability distri-
bution of terminals, and the complexity ¢y of choosing a ran-
dom nonterminal from aprobability distribution of nonterminals.
From Theorem 4 below, the number of nonterminalsin atreeis
pEire. and the expected number of terminalsis (1 — p) Etree,
hence the complexity of generating a full tree of terminals and
nonterminasis O(ecnpEiree + cr(1 — p)Etree).

Theorem4: For pTC1, let E;... be the expected tree size,
and p be the precomputed nonterminal-selection probability to
generateatree of expected size Ey,.... Then the expected number
of nonterminalsin atreeis E,, tree = pEtree and the expected
number of terminalsis Ey tree = (1 — p)Eiree-

Proof: Let g be the expected number of children of a
newly generated node under PTC1. Then the expected number of
nonterminals £,, q a depth d is

B, = D ?f d=0
v E,q-1bp ifd>0

That is, E, 4 is equal to the expected number of nonterminals
E, q—1 a depth d — 1, times the expected number of children b
to each of these nonterminal s, times the probability p that these
children are nonterminals themselves.

From this it follows that £, 4 = p(bp)? = pg?. Since by
Lemma 1, the expected number of nodes E; = ¢¢, thenthe num-
ber of terminasis E; g = Eq — Enq = g% — pg? = (1 —p)g?.
Hence for the whole tree, the expected number of nontermi-
nasin atreeisthen B, yree = > ge0Bna = P ge09? and
the expected number of terminas is By yree = > g Eta =
(1-p) Y5259 From Theorem Lweget B, trec = pEiree and
Et,tree = (1 - p)Etree- u

Note that ¢y or cr is a most the complexity of a binary
search through some probability distribution. To achievethisfor
the nonterminal probabilities, for example, arrange al the ¢,
into digoint intervalsfrom 0 to 1 corresponding to each ne N:

ny. [0 ) (Jnl)

no . [qnl s Qng + qnz)

n3 . [%zl + Gny s Qg + Gn, + %1,3)
T'L‘Nl . [1—qu‘ s 1]

A random event points somewhere into this set of intervals; an
O(lg(]| V) binary search through this set finds which n cor-



Natural | # Size 1 Treeswhen Ey.c. iS...
Domain Eiree | Naturd 4 16 256
Cart Centering 00 3 L& L
Ant 00 % % % %
Regression 00 % % % %
11-Multiplexer = i s I -
6-Multiplexer 5 3 2 I =1
3-Multiplexer 6 3 L F 103

Table 2. Expected number of size-1 treesgenerated, asapercent-
age of the whole population. “Natural” indicates numbersif tree
generationismadewithout restrictionson treesize (asin GROW).
Other columns give numbers when PTC1 restricts the expected
treesize Fy,... to variousvalues. The probability of generating a
size-1treeistheprobability of generatingaterminal (e.g., 1—p).

responds to the random event. This can be done similarly for
terminal probabilities (¢;), hence averaged over several itera
tions, an upper complexity bound on PTC1 is

O(Ig(HNH)pEtree + Ig(”TH)(l - p)Etree)
S O(Ig(HFH)Eﬂ"ee)

If ¢r and ¢ were constant, then the complexity would re-
duce to O(FEtrc.). This might happen if al the terminals and
nonterminals had equal ¢ probabilities, in which case selecting
a random terminal or nonterminal can be done with a smple
O(1) random event as in GROW. An O(E},...) complexity can
also be achieved if the ¢; and ¢,, probabilities are discrete val-
ues. For example, imagine that there were three nonterminals
with probabilities {¢g1 = .2,¢q2 = .3,¢3 = .5}. One can create
an array [ng, ni, ng, ng, na, N3, n3, N3, N3, ng). At nonterminal-
selection time, picking randomly from thisarray isO(1).

VIII. PTC2

PTC1 generates trees expected around a specific user-defined
tree size. A serious problem with pTC1 is that it does not give
the user control over variance in tree size. PTC1, like GROw,
producesalarge number of small trees; thereislittle the user can
do about it. For example, consider the large number of trees of
size 1 (equal to 1— p) generated under the previousexample(five
nonterminals and five terminals, and an average nonterminal ar-
ity of 2). Using PTC1 enforcing an expected tree size of 10, about
11/20 of all new treeswould be of size 1. Similarly, under GROW
(no enforcement), exactly half of the trees generated would be
of size 1, even though the expected tree size is infinity!

In general, when E,... is restricted to be less than GRow'’s
expected tree size, then PTC1 generates more trees of size 1 than
GRow would. If the enforced expected tree sizeislarger GROW'S
expected tree size, PTC1 will generate fewer small (or size 1)
trees than GrRow. Table 2 illustrates this for the introductory
domainsfrom [11].

PTC2 avoids this problem by allowing the user to provide be-
forehand a probability distribution of requested tree sizes. Like
PTC1, PTC2 also guarantees user-provided distributions of non-
terminals and terminals appearing in each tree. And like pTC1,
pTC2isvery fast. However, PTC2 isnot aselegant asPTC1: when
it picks atree size from the distribution, it may produce atree of
that size or dlightly larger. In effect, while PTC2 guaranteesthe
user-provided nonterminal and terminal probabilities of appear-
ance, it approximates the user-provided tree-size distribution.

pTC2 is as follows. the set of functions F' is divided into
two digoint subsets. nonterminals NV and terminals T". For each
nonterminal n in N the user provides a probability ¢,, that n
will be chosen from N when the algorithm needs anonterminal .
Similarly, for each terminal ¢ in T the user provides a probabil-
ity ¢; that ¢ will be chosen from 7" when the algorithm needs a
terminal. The user also provides a maximum depth bound D, a
maximum size bound S, and a probability distribution of desired
treesizesws, ..., wg for eachtreesizefrom1to S.

Given:
maximum depth bound D
maximum size bound S
function set F' consisting of nonterminal set N and terminal set 7'
probabilities ¢; and q,, for each t€T and ne N

probabilities w1, ..., wg of generating a tree of size {1, ..., S}

Do:
new tree T = PTC2()

PTC2()
Returns: a tree of depth <D and a size between 1and S + bmax
inclusive, where b, is the largest number of arguments to any
nonterminal in N

Let r be a random tree size from the probability distribution wq, ...
If » = 1 return a random terminal from 7" (by g probabilities)
Else
Choose a nonterminal n from N (by g, probabilities)
Tree root root<—n
Node depth d—1
For each argument position a of n, Enqueue({a, d})
Current tree size s<—1
Until Size()+s>r or Size()= 0,
{argument position a, depth d}«—RandomDequeue()
If d = D, Fill @ with a terminal ¢ from T (by ¢; probabilities)
Else
Choose a nonterminal n from N (by g, probabilities)
Fill @ with n
For each argument position a of n, Enqueue({a, d + 1})
s—s+1
Until Size()= 0,
{argument position a, depth d}«—RandomDequeue()
Choose a terminal ¢t from T" (by g: probabilities)
Fill @ with ¢
Return root

y WS

The agorithm begins by picking arandom tree size from the the
user-provided tree-size probability distribution. It then attempts
to build a tree of that size or dightly greater. The algorithm
buildsthetree by starting with asingle node, root, extending the
tree with nonterminals at random places along the current tree
boundary. It continuesthis until the size of the unfilled positions
along the boundary plus the number of nonterminals currently
inthetreeisgreater than or equal to the requested size. Thenthe
algorithm fills the remaining boundary positionswith terminals,
and returns the resullt.

Whenever the boundary extends beyond depth D, the offend-



ing boundary positions are automaticaly filled with terminals;
thismeansthat if D isso small that afull tree of .S nodes might
be greater than depth D, then PTC2 may return a tree smaller
than expected.

To maintain the tree boundary, the algorithm storesin aglobal
random queue the position and depth of each unfilled argument
along the boundary, picking random items from this queue as
needed. To do this, the algorithm relies on three random-queue
functions: size, which returns the size of the queue, Enqueue,
which enqueues an item, and RandomDequeue, which dequeues
and returns a random item. As shown below, the random queue
can be implemented so that all three functionsrunin O(1) time.

Given:
array of slots U = {u0, .-, US4 bynqp—1}
array-fill value h — 0

Size()

Returns: the size of the queue

return h

Enqueue(item 1)
Returns: nothing

Up 1

h—h+1

RandomDequeue()
Returns: the value of a random slot in U, or nil if U is empty

If h =0, return nil

Else
h—h—1
Let r be a random integer, 0<r<h
Swap the values of uj;, and u,
Return u,

The random-queue implementation relies in this case on a
maximum queue value of S + b4, the largest returnable tree
size. It can be instead implemented with a small initial queue
array, extended when needed by doubling its size. This also
yields an amortized complexity of O(1) for all three operations.

IX. COMPLEXITY OF PTC2

Because random-queue operations can be donein O(1) time,
and either a nonterminal or terminal is chosen at each iteration,
the complexity of building atree of requested size r is the time
it takes to pick a random terminal or nonterminal (from the ¢;
and ¢,, distributions) multiplied by the number of iterations.

Thefirst until-loop in PTC2 runs until Size()+s>r Or Size()= 0.
In the first case, consider the last iteration of the first until-
loop. As this iteration starts, Size()+s < ». The iteration may
perform one last Enqueue before the iteration ends. Since the
largest number of argumentsto anonterminal in NV iS b4, this
last enqueing operation will increase Size()-+s to no more than
r + bmas - At the point between the two until-loops, the first loop
hasrun for exactly s — 1 iterations, and the second loop will run
for exactly size() iterations. Hence the total number of iterations
isO(r + bmaz)-

In the exceptional second case (which will only occur when
D isinappropriately small relativeto S), thefirst until-loop runs
for no morethan r iterations, else thefirst case would have been
triggered. The second until-loop will then run for O iterations,

hence the total number of iterationsis O(r)<O(r + bmaz)-

Asdiscussed, the complexity of choosing a nonterminal from
N oratermina fromT isO(lg(]|N||)) and O(lg(||T’||)) respec-
tively, or both O(1) under reasonable constraints. Since at each
iteration either a nonterminal or a terminal is chosen, a loose
complexity bound for choosing nonterminals and terminals in
the algorithm is O((r + bynaz) x max(lg(|[N1]), Lg(||T]])))., or
O(r + bymas ) Under reasonable constraints.

Likewise, picking randomly fromthetree-size probability dis-
tribution takes at most O(lg(||S||)) time, or O(1) under reason-
able constraints. Let 7., be the mean tree size given the pro-
vided probability distribution. Then PTC2 has an average com-
plexity of

O((rmean =+ bmaz) x max(lg([|N1]), Lg(||T']])

Under reasonable constraints as discussed earlier, this reduces
to O(Tmean + bmaz). SiNce the largest possible tree is of size
S + bmaz, the worst-case complexity istherefore

O((S + bmaz) x max(lg([[N1]), L9 ([[T1])))

which under reasonable constraints reducesto O(S + byaz ), €f-
fectively linear. If D istoo small relativeto S and the exceptional
second caseistriggered, then the complexity may be even lower.

X. A STRONGLY-TYPED PTC1 ALGORITHM

Under relaxed constraints, PTC1 can be extended easily to
handle the “basic” form of strongly-typed genetic programming
(STGP) [16]. Under STGP, types are associated with each argu-
ment and the return value of each function; at tree-creation time,
a parent function may have a particular child in an argument
position only if the parent’s argument type (for that argument
position) and the child's return type match. StronglyTypedPTC1
assumes that for each type, there exists at least one nonterminal
and at least one terminal whose return values are of that type.

The algorithm presented is for the more common “basic”
STGP without generic functions, as detailed in [16]. In order
to accommodate STGP, StronglyTypedPTC1 must place further
constraints on user-specified probabilities, by dividing the set of
functions F' into not just terminals and nonterminals, but also
further subdividing these subsets by the functions’ return types.

The algorithm is as follows. Let Y be the set of types. The
set of functions F' is divided into two disoint subsets nonter-
minals N and terminals T'. These subsets are further divided
by their return types into subsets Ny;, Nyo, ... Ny, one for
each yeY, and T'y1, Ty, ... Ty, one for each yeY. During
tree-generation time, the algorithm will, for some y, alternately
choose new child nodes from either that N, or T,. For each
nonterminal n, €N, the user providesa probability g, , thet n,
will be chosen when the algorithm needs a nonterminal with
return type y. Similarly, for each termina ¢, 7, the user pro-
vides a probability ¢ , that ¢, will be chosen from T, when the
algorithm needsaterminal with returntypey. The user also pro-
vides areturn type y,. for the tree, and a maximum depth bound
D, though this bound is used only to enforce an absolute, and
preferably large, memory restriction. Lastly, the user indicates
an expected tree size Fyce.



Before generating any trees, the algorithm computes p,, for
each yeY . p, isthe probability of choosing a nonterminal over
aterminal of return type y in order to produce a tree with an
expected tree size Eyee

1 B Efree

E In,ybn.y

ny €Ny

Py =

whereb,, ,, isthe number of argumentsfor nonterminal n,,. This
computation need be done only once at function-creation time.
Then the algorithm proceeds to create the tree;

Given:
maximum depth bound D
disjoint nonterminal subsets N, of nonterminal set N for each yeY
disjoint terminal subsets 77, of terminal set T" for each yeY
computed nonterminal-choice-probabilities p,, for each yeY
for each T}, and Ny,
probabilities ¢,y and g, for each t, €T, and ny €N,
return type for the tree y, €Y
Do:
new tree T = StronglyTypedPTC1(0,y,)

SronglyTypedPTCL(depth d, return type y€Y’)
Returns: a tree of depth <D — d and of return type y

If d = D, return a terminal from T, (by g:,, probabilities)

Else if, with probability p,, a nonterminal must be picked,
Choose a nonterminal ny from Ny (by gn,, probabilities)
For each argument a of n, of argument type yq

Fill @ with StronglyTypedPTC1(d + 1,ya)
Return the completed nonterminal n,, with filled arguments

Else return a terminal from T, (by g¢,, probabilities)

Because of the user-provided type constraints of strongly-typed
genetic programming, thisversion of PTC1 cannot guaranteethat
each terminal ¢ will appear in the tree with some probability ¢;
relative to other terminals (or likewise a nonterminal n appear-
ing with probability g,, relative to other nonterminals). Instead,
it makes sure that each terminal ¢, of atype yeY will appear
with probability ¢; , relative to other terminals of type y, and
similarly that each nonterminal n,, of typeyeY will appear with
g,y relative to other nonterminals of typey.

This algorithm guarantees an expected tree size of Fy,... for
al STGP trees by determining the necessary probability p,, for
each return type y such that subtrees returning that return type
will each be of E;,... size. Theorem 5 showsthat the algorithm’s
method of picking of each p,, is correct and invariant over of y.

Theorem5: Let Y be is the set of STGP return types. Let
the set of nonterminals N be divided into nonempty subsets
Ny, Ny,,... Ny, onefor each yeY . At tree-building time, let
py be the probability that a nonterminal will be chosen as a
new child node for a particular type y€Y. Given some y, for
each n,eN,, let ¢, , be the probability that n, will be cho-
sen given that a nonterminal is to be chosen, and b, , be the
number of arguments to n,,. Let b, be the expected number of
children of a nontermi nal node of return type y in the tree, that
IS, by = >, cn, dn.ybn.y- Then under StronglyTypedPTC1, the
nonterm| nal-choice probability p, necessary to guarantee that a
tree or subtree T of return type y€Y will be of expected finite

— Etree

sizeE > 0isp, =
tree py ZnyeNy qn,ybn,y

Proof: Let g>0 be the expected number of children of
a node newly generated by the algorithm. From Theorem 1,
FEiree = if and onIy if ¢ < 1. Thus ¢ may be determined

from Et,ee aSg =1-—=—

For any yeY’, since py denot&e the likelihood that the newly
generated node function will be a nonterminal, and the expected
number of childrento aterminal isO, thenthe expected number of
children of thenewly generated nodeis g = p,b,+(1—p,)(0) =

1
Etree
b, .

pyby. Thereforep, = =
Since N, is nonempty, b > 0, so for any given b, and re-
quested Etree, an approprlatepy may alwaysbe determ| ned. Re-
1
placing by, with >, o n,ybn,y Yieldsp, =

__Eiree

ZnueNU q"‘yb"’y
o |

Thealgorithm can be modified to permit typesfor which there
exists no nonterminal with areturn value for that type; for each
such typey, simply set p,, to 0. However, this does not guarantee
that the expected size of the tree will remain E,,..., only that it
will beno larger than Ey,...

The complexity of this algorithm is dependent largely on the
size of each set of functions by type, and the combinations of
types of arguments to each function. However, the complexity
is no worse than the complexity for PTC1 under ordinary GP
(that is, ignoring the types to the functionsin question). Thisis
because the number of nonterminalsthat must be searched isno
more than || V||, and the number of terminals is no more than
1T

The algorithm can also be modified to accommodate a more
advanced STGP with “general functions’ (functions with more
than one valid return type) [16], [9]. In this case the various sets
N, arenot required to be disoint, nor are the various sets T,
Choos ng anonterminal from some N, isstill nomore dlfflcult
than O(|| V||) and choosing anonterminal from someT,, isno
more difficult than O(||T"||). However, since ||Y'|| may now be
greater than || V|| and ||T||; the complexity of PTC1 with general
functions is bounded by the maximum of the PTC1 complexity
bound and ||Y||. Of course ||Y|| may be any size the designer
likes, but it is rarely larger than || F||; at any rate, ||Y||<2I71,
else Y will contain duplicate types.

XI. A STRONGLY-TYPED PTC2 ALGORITHM

PTC2 can also be extended to handle strongly-typed genetic
programming, assuming relaxed constraints similar to Strongly-
TypedPTC1. And just like StronglyTypedPTC1, StronglyTypedPTC2
assumes that for each user-provided type, there exists at least
one nonterminal and at least one terminal whose return values
are of that type.

The algorithm works as follows. the set of functions F' is
divided into two digoint subsets: nonterminals N and ter-
minals T'. These subsets are further divided by their return
types into subsets Ny1, Ny, ... Ny, one for each yeY, and
Ty1, Ty, ... Ty, one for each yeY. During tree-generation
time, the algorithm will, for some y, aternately choose new
child nodes from either that NV, or T),. For each nonterminal
ny €N, the user provides a probability g, , that that function
will be chosen when the algorithm needs a nonterminal with re-
turntypey. Similarly, for each terminal ¢, €7, the user provides



aprobability g; ,, that ¢, will be chosen from T}, when the algo-
rithm needs aterminal with return typey. The user also provides
a maximum depth bound D, a maximum size bound S, are-
quested return type for the tree y,., and a probability distribution
of desired tree sizeswy, ..., wg for each treesizefrom1to S.

Given:
maximum depth bound D
maximum size bound S
disjoint nonterminal subsets N, of nonterminal set N for each yeY
disjoint terminal subsets T, of terminal set T for each yeY
for each T}, and Ny,
probabilities ¢»,,, and g, for each t, €Ty and nyeNy
return type for the tree y, €Y
probabilities w1, ..., wg of generating a tree of size {1,...,.S}
Do:
new tree T = StronglyTypedPTC2(y,)

SronglyTypedPTC2(return type y€Y)
Returns: a tree of depth <D, of return type y, and of size between 1
and S + bmaz inclusive, where bp,q4 is the largest number of
arguments to any nonterminal in N

Let r be a random tree size from the probability distribution wq, ...
If » = 1 return a random terminal from 717, (by g¢,, probabilities)
Else
Choose a nonterminal n, from Ny, (by gn,, probabilities)
Tree root root«—ny,
Node depth d—1
For each argument position a of n,, Enqueue({a, d})
Current tree size s<1
Until Size()+s>r or Size()= 0,
{argument position a, depth d}«—RandomDequeue()
y«—argument type of a
If d = D, Fill a with a terminal t,, from T, (by g:,, probabilities)
Else
Choose a nonterminal n, from Ny, (by gn,, probabilities)
Fill a with ny,
For each argument position a of ny, Enqueue({a, d + 1})
s—s+1
Until Size()= 0,
{argument position a, depth d}«—RandomDequeue()
y«—argument type of a
Choose a terminal ¢, from T}, (by g:,y probabilities)
Fill a with ¢,
Return root

y WS

Thisagorithmworksidentically to PTC2, except that like Strong-
lyTypedPTC1 it too must loosen the guarantees on probability of
occurrence of nonterminals and terminals. Namely, each termi-
nal ¢, of atypeycY will appear with ¢; ,, probability relative to
other terminals of typey, and each nonterminal n,, of typeycY
will appear with ¢; ,, relative to other nonterminals of type y.
Like stronglyTypedPTC1, the complexity of this algorithm is
dependent on the size of each set of functions by type, and the
combinations of types of argumentsto each function. However,
the complexity is no worse than the complexity for PTC2. This
is because the number of nonterminalsthat must be searched at
any time is no more than || V||, and the number of terminalsis
no more than || T'||. And like StronglyTypedPTC1, this algorithm
can be adapted to STGP generic functions, with a complexity
bounded by the maximum of the pPTc2 complexity and ||Y||.

XI1l. SUBTREE MUTATION AND CODE GROWTH

Oneimportant issue istree creation’s role in subtree mutation
(“point” mutation) as described in p. 105[11]. Subtree mutation
isanincreasingly popular method for modifying GPtreestoform

new ones as part of itsevolutionary process. I n subtree mutation,
a node is chosen randomly within a tree; the subtree rooted at
thisnodeisthen replaced by a new, randomly-generated subtree.
Commonly GRow is used to produce this new subtree.

Asdescribed below, it appearsthat even with no selection bias
(trees selected for mutation are picked entirely at random from
the population), repeated subtree mutation can naturally increase
theaveragesize of aGP population. Thereare provableexamples
showing trees growing naturally under subtree mutation using
GROW or PTC1, even with no selection bias. Consider a func-
tion set of one nonterminal of arity 1, and one terminal, both
equally likely to appear. The resultant “lists’ have an Ej,.c. Of
2, but after applying subtree mutation to an initially-generated
population of these “lists’, the expected size of individuals in
the population growsto 2.5 (shown in Theorem 6 below). Addi-
tionally, experimental results indicate that after repeated subtree
mutation using either of these methods, the size of atree consis-
tently grows asymptotically towards some value. This has been
tested for population sizes ranging from 1 to 100,000, with no
selection bias.

It appears that (in the case of the “lists”) if ... for newly
mutated subtreesisrestricted to 1.5, thiswill maintain E;,... = 2
for the populationasawhole. A general solutionfor function sets
other thanthe“list” function set described aboveisdesirable; this
could enableusto usePTC1 not only to guaranteean expected tree
size for an initial population but maintain that tree size through
subtree mutation. This would eliminate subtree mutation as one
of several candidate culprits behind GP tree growth.

Lemma2: If -1 <z <1 then 7%, iz’ = %5

Proof:

it = x + 222 4+ 38 +

=1
xZixi = 22+ 228 4+

i=1

Therefore,

(1—x)2ixi =z+a?+a3+ . :in

i=1 i=1

(1—x)Zixi = (le> -1
i=1 =0

From the Geometric Series, if —1 < x < 1, then

> ) 1 T
1— '7’: —1:
( x);zaz 1-—=x 1-—=x

|

Theorem6: Let the set of functions F' consist of a single
terminal and a single nonterminal of arity 1 withp = % (eg.,
functionswhich build “lists”). The natural expected tree size of
treesbuilt fromthisset is Fy,... = 2; however, after a subjecting



the individualsin the initial generation to subtree mutation, the
expected tree size rises (to 2).

Proof: Sincethereare only two functions (aterminal with
0 children and a nonterminal with 1 child) with equal likelihood
of being generated, then the expected number of children of a
newly generated node is g = % From Theorem 1, this means
that Eyec = 2. Sincep = 3, a“list” of node size 1 should
clearly occur in % of all cases, node size 2 should occur in ;11 of
all cases, node size 3 has a probability of occurrence %, and so
on. In general, the probability that a “list” of node size n will
occur in apopulationis 5.

The expected new size of an individual of size n undergoing
subtreemutationistheoriginal size minusthe expected Ioss("TJrl
for alist) plusthe expected size of the new subtree. For alist this
comesto n — % + 2. Hence the expected size of individuals
in a population after subjecting each to subtree mutation is

Z%(n—";l+2)= %Zﬁ L3y 2

n=1

From Lemma2, thefirst termreducesto 1. Fromthe Geometric
Series, the second term reducesto % Thereforethe new expected
size of anindividual is 3. [ |

XI111. CONCLUSIONS

PTC1 and PTC2 are an advance over GROW and add robustness
to an important part of genetic programming. Unlike other tree-
creation algorithms which provide uniformly distributed tree
structures but have high computational complexity, PTC1 and
pTC2 provide uniform distribution of functions and have very
low computational complexity. Both of these algorithms com-
parewell GRow, whichrunsin O(E;,... ) time, but permits E,.c.
to be infinite in many common configurations.

PTC1 guarantees trees will be generated around an expected
tree size, but does not provide control over variance in size.
If the function set demands continuous-valued probabilities of
appearance, PTC1 runsin < O(19(||F'||) Etree) time, where || F||
isthe number of total functions, and E;,... isthe(finite) expected
tree size. With reasonable constraints, PTC1 canrunin O(E},...)
time.

pTC2 takes a user-provided probability distribution by tree
size, and approximates generating trees from this distribution.
PTC2 runs in O((r + bmaz) x max(lg(||N|)),1g(||T|]))), or
O(r + bmas) With reasonable constraints, where r is the av-
eragetree sizein the probability distribution, || V|| isthe number
of nonterminalsand ||T"|| the number of terminalsin thefunction
set, and b, iSthelargest number of children of any nonterminal
in the function set.
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