
Is the Perfect the Enemy of the Good?

Sean Luke
George Mason University

http://www.cs.gmu.edu/∼sean/

Liviu Panait
George Mason University

http://www.cs.gmu.edu/∼lpanait/

Abstract

Much of the genetic programming literature
compares techniques using counts of ideal solu-
tions found. These counts in turn form common
comparison measures such as Koza’s Computa-
tional Effort or Cumulative Probability of Suc-
cess. The use of these measures continues de-
spite past warnings that they are not statistically
valid. In this paper we too criticize the mea-
sures for serious statistical problems, and also ar-
gue that their motivational justification is faulty.
We then present evidence suggesting that ideal-
solution counts are not necessarily positively re-
lated to best-fitness-of-run statistics: in fact they
are often inversely correlated. Thus claims based
on ideal-solution counts can mislead readers into
thinking techniques will provide superior final
results, when in fact the opposite is true.

1 INTRODUCTION

The best is the enemy of the good.
— Voltaire (1694–1778)

He who is determined not to be satisfied with
anything short of perfection will never do any-
thing to please himself or others.
— William Hazlitt (1778–1830)

The research methodology in the genetic programming
(GP) has many unusual features. Some of these features are
good. Some are not. But we tend to stick with the bad ones
out of inertia: we do it that way because others did. Sur-
prisingly, the literature does not have a large number of crit-
ics of the existing methodology. One notable exception is
Jason Daida, who has criticized poor random number gen-
erator usage [1997], evaluation and verification methodol-
ogy [1999a], and historical metaphors [1999b]. Paterson

and Livesey [2000] have decried the poor statistics behind
many claims, noting that many papers do no means testing
at all. Angeline [1996] has criticized the statistical reliabil-
ity of Koza’s Cumulative Probability of Success measure,
a criticism echoed in [Paterson and Livesey 2000].

Here we will continue the criticism of the popular Cumu-
lative Probability of Success and other measures based on
counting the number of ideal solutions discovered. There
are serious statistical flaws with such measures, but that
is not all. These measures also have questionable motiva-
tional philosophy, and most importantly, they are poorly
correlated with other more accepted measures of run qual-
ity in the evolutionary computation community.

This paper was born out of experiments for another pur-
pose: to test whether fitness might be improved and tree
size reduced by increasing the noise of a GP breeding op-
erator. The operator chosen was subtree crossover, and it
was made noisier through increasing the number of times
two parents were crossed over to create a child. Crossing
over more times does in fact decrease the mean tree size
by statistically significant amounts, but it also worsens the
best fitness of the run by a statistically significant margin.
But these experiments yielded another odd fact: ideal solu-
tion counts were not necessarily tied to fitness results, and
in some cases were inversely correlated with them.

The remainder of the paper will discuss common ideal-
solution count measures and their statistical weaknesses,
and question the motivational philosophy behind them.
Then the paper will present the evidence stemming from
these experiments. The paper then finishes with discussion
and recommendations.

2 A TALE OF TWO MEASURES

The non-GP evolutionary computation literature has tra-
ditionally compared techniques using the mean best fit-
nesses of a large (>30) sample of runs per technique, ac-
companied with so-called “best-so-far-curves” (plots of the



mean best fitness discovered so far), plus a t-test1 or other
difference-of-means test. When generalizability is impor-
tant, the mean best fitness results are supplemented with
generalization ratings on a test set.

Koza [1992] presented a very different metric for comput-
ing the “quality” of an evolutionary procedure: how often
and how rapidly it discovered the ideal solution. From this
data were derived a variety of statistical metrics ultimately
computing how many individuals would need to be evalu-
ated before an ideal solution was expected to be found with
some probability.

Koza defined four dependent statistical measures, given as
follows. The instantaneous probability of success measure
Y (m, i) is the probability that a run with a population size of
m will discover an ideal solution for the first time on gen-
eration i. From this it is simple to determine P(m, i), the
cumulative probability of success, which is the probability
that a run will discover an ideal solution before or on gener-
ation i. Koza writes R(m, i,z) as the number of evolutionary
runs required to have a probability z = 99% of discovering
a solution before generation i. He defines this as

R(m, i,z) =

⌈

log(1− z)
log(1−P(m, i))

⌉

Sometimes this is shortened to just R(z). The individuals to
be processed measure I(m, i,z) is then defined straightfor-
wardly as I(m, i,z) = m(i + 1)R(m, i,z), at least for gener-
ational evolutionary procedures. The computational effort
measure E is the minimum of I(m, i,z) over all values of i.

Ideal-solution count measures have since taken root in the
GP community. Of these four, the two most common mea-
sures in the literature are Cumulative Probability of Suc-
cess, for which higher values are better, and its derived
measure Computational Effort, for which lower values are
better. We performed an informal survey of the genetic pro-
gramming and evolvable hardware non-poster papers in the
three GECCO conferences so far (1999, 2000, 2001). Of
these, 44 compared two or more techniques for solution
quality. Eighteen compared the mean best fitness of run
between techniques.2 Twelve instead used statistics based
on the number of ideal solutions discovered (most used the

1The validity of the t-test and ANOVA for GP were examined
in [Paterson and Livesey 2000]. As the t-test and ANOVA assume
normality, the authors had expected to find them wanting in the
GP realm, but astonishingly they significantly outperformed non-
parametric tests. Even so, the authors warned about the dangers of
relying too much on t-tests for the skewed distributions common
to GP. We agree! Still, we think that t-tests and ANOVAs should
at least be the bare minimum for means testing in GP.

2Of the eighteen experiments which used fitness curves to
compare techniques, only seven used good statistics. The other
eleven had sample sizes that were too small (much less than 30)
or unreported, or they did not indicate statistical significance re-
sults or variance information. One of us (Sean Luke) hastens to

Koza measures). Fourteen used a train/test methodology
borrowed from the machine learning community: typically
they measured how long it took to discover a perfect solu-
tion to a training set, then tested generalization ability.3

We feel there are three problems with ideal-solution count
measures. First, they rely on unacceptably poor statistics, at
least as generally practiced in the community, and to rem-
edy this would require a very large sample size. Second,
they are founded on, in our opinion, an unclear motiva-
tional philosophy. The third problem, and most troubling,
is that they appear to be uncorrelated with best-fitness-of-
run comparisons. These problems call a fair chunk of the
literature into question.

2.1 STATISTICAL PROBLEMS

Ideal solution count measures are statistically suspect.

First, the measures are based on a single point sample of
the number of ideal solutions and the generations in which
they were found. A point sample does not have a mean
test: there is no accepted procedure to state that two such
samples differ in a statistically significant way.

The point sample difficulty might be alleviated by doing
a large number of runs, then dividing them into at least
thirty piles, then counting the ideal solutions in each pile
and using the mean number of ideal solutions per pile as a
sample statistic. For Symbolic Regression this is feasible,
as a large number of runs end in perfect solutions. But for
many problem domains, ideal solutions are typically few
and far between. In this paper we gathered samples of five
hundred each, typically five to ten times the number found
in most of the experimental literature. And still, the ideal-
solution counts for the Artificial Ant and 11-Bit Boolean
Multiplexer were so small (at most sixteen and twelve re-
spectively) that dividing into piles was not doable.

Second, several of the measures are statistically dependent
across generations. For example, to truly compute statisti-
cally independent Cumulative Probability of Success mea-
sures for both generation 4 and for generation 8 would re-
quire two separate, independent samples.

Third, changes in the Individuals to be Processed mea-
sure and its derived Computational Effort measure are both
greatly exaggerated when small changes occur in ideal so-

note that he too has published papers with statistical difficulties,
though in his defense they were either corrected ([Luke and Spec-
tor 1997] fixed in [Luke and Spector 1998]) or openly acknowl-
edged and justified in the paper itself [Luke 2001b].

3As many machine learning algorithms are deterministic, they
do not require statistical mean tests. This is not true for stochastic
evolutionary computation algorithms: yet relatively few train/test
methodology papers in this survey presented statistical signifi-
cance results.



lution counts. For example, note that the Computational
Effort in Figure 12 is a strongly nonlinear function of the
number of ideal solutions found, shown in Figure 10.

To overcome all the statistical problems detailed here
would require multiple independent samples across gener-
ations, plus dramatically larger sample sizes for the more
difficult domains. We feel these statistical flaws would be
forgivable only if ideal-solution counts were the only feasi-
ble way to compare techniques. But they are not.

2.2 MOTIVATIONAL PHILOSOPHY

The evaluation functions used in the assessment of a GP
individual’s fitness do not correspond well to a stated goal
of an ideal-solution end result. GP optimizes for as good a
fitness as it can get, not for increasing probability of attain-
ing the ideal. Many GP problem domains are highly de-
ceptive, leading the evolutionary trajectory away from the
ideal rather than toward it. Consider the Symbolic Regres-
sion domain: if the ideal solution is not found early on, and
the population has fixated on certain near-solutions, it will
continue to tack on code to the bottom of trees which can
make the solutions only incrementally fitter. Many Sym-
bolic Regression runs will ultimately generate very large
trees with solutions very close to the answer, but far (in
makeup) from anything remotely resembling the answer.

Given this, and given the statistical problems behind ideal-
solution count measures, what is the GP community’s mo-
tivational justification for using ideal-solution counts at all?
We believe that counts are popular because of a philo-
sophical conceit that GP operates over problem domains
which demand correct programs. More generally this can
be thought of as an absolute hard constraint on the desired
outcome: either the program works or it doesn’t work, and
a highly fit but suboptimal solution is not valuable. A term
peculiar to GP, “discovery”, reinforces this notion: either
GP “discovers” the answer, or it doesn’t.4

4In fact, though his influential text introduced the ideal-
solution count measures discussed in this paper, Koza couched
his support of this philosophy, writing:

“Several pages ago, when I spoke of writing a computer pro-
gram to center the cart in optimal time, you probably assumed that
I was talking about writing a correct computer program to solve
the problem. Nothing could be further from the truth. In fact, this
book focuses almost entirely on incorrect programs. In particular,
I want to develop the notion that there are gradations in perfor-
mance among computer programs. Some incorrect programs are
very poor; some are better than others; some are approximately
correct; occasionally, one may be 100% correct. Expressing this
biologically, one could say that some computer programs are fit-
ter than others in their environment. It is rare for any biological
organism to be optimal.” [Koza 1992, p. 130]

Regression 3 2 4 1 5 6 7 10 8 9

Multiplexer 2 1 3 4 5 6 7 8 9 10

Ant 2 1 4 6 3 5 7 8 9 10

Table 1: Statistical significance groupings for the mean
best-fitness-of-run for each problem domain, using the
Tukey post-hoc ANOVA test. Numbers indicate the num-
ber of crossovers for a given multi-crossover technique.
Techniques are ordered by increasing (poorer) mean best-
fitness-of-run. Bars connect techniques with statistically
insignificant differences in means among them. Note that
more crossovers generally results in worse mean best-
fitness-of-run. Compare to Figures 1, 5, and 9.

It is clear that there exist valid and important GP prob-
lem domains where discovery is of paramount importance.
However, we believe that many, and likely most, new prob-
lems in GP rarely require 100% correctness as a necessary
attribute. These problems include neural networks, molec-
ular structures, soccer softbot programs, probabilistic and
quantum algorithms, analog electrical circuits, etc. The
primary reason for this, we think, is that these new do-
mains are significantly harder and their optima are often
unknown. Discovering the optimum, and particularly dis-
covering it enough times to make statistical conclusions, is
a luxury usually reserved for only the simplest of problem
domains.

We are now out of the proof-of-concept period for GP. For
the technique to now be used realistically as a tool, we must
assume it will typically be used to attack hard problems for
which we do not know the optimum, do not expect it to dis-
cover the optimum, nor even know if there is an optimum.
An engineer would ask: if we already know the answer,
why bother to use GP to find it? What matters is not if tech-
nique A finds more perfect solutions than technique B does
to Easy Problem C. What usually matters is that technique
A gets a better answer than B does for Hard Problem D.
We submit that if one can “discover” the optimum enough
times to validly measure the performance of a technique
against a given problem domain, then we are dealing with
a toy problem.

If past literature used a weak methodology, we should dis-
continue its use. Nonetheless, we recognize that for those
problems which demand perfection, ideal-solution-count
statistics may have some usefulness. Later in this paper we
will recommend experimental protocols which may incor-
porate ideal solution counts as one part of a comprehensive
analysis. At the same time, we will propose an alternative
which we think provides more useful information.



1 2 3 4 5 6 7 8 9 10
Number of Crossovers

0

0.5

1

1.5

2

2.5

3

B
es

tF
itn

es
s

of
R

un

Figure 1: Boxplots of the distribution of best-fitness-of-
run, by number of crossovers, Symbolic Regression do-
main. Lower fitness is better. Compare to Table 1.

1 2 3 4 5 6 7 8 9 10
Number of Crossovers

150

200

250

300

N
um

be
r

of
Id

ea
lS

ol
ut

io
ns

Figure 2: Number of ideal solutions found, by number of
crossovers, Symbolic Regression domain.

3 A TROUBLING LACK OF
CORRELATION

At first it seems intuitive that a system which searches bet-
ter for high-fitness solutions would also tend to find more
ideal solutions. An experiment gone awry shows us that in
fact this is not necessarily the case.

The experiment we performed applied what we call multi-
crossover to GP. Ordinarily GP crossover selects two indi-
viduals, and performs one swap of randomly-chosen sub-
trees, producing two children. If a child passes validity
constraints (such as maximal depth), it then enters the next
generation; otherwise a copy of the child’s mother enters
in its stead. Multi-crossover is simply a composition of GP
crossover operators: two parents are selected and crossover
is performed, including validity constraints. Then the chil-
dren become the “parents” for the next crossover operator,
which produces two new children. This happens N times,
then the final results enter the next generation.

We had two reasons for doing multi-crossover experiments.
First, some models of code bloat (our own depth-based
theory [Luke 2000], Defense Against Crossover [Banzhaf
et al. 1998], and Removal Bias [Langdon et al. 1999]) as-
sume that there is a single crossover per individual; hence

10
20

30
40

50

Generation

1

2
3

4
5

6
7

8
9

10

Crossovers

0

0.2

0.4

0.6Cumulative
Probability
of Success

10
20

30
40

50

Generation

Figure 3: Cumulative Probability of Success per genera-
tion, by number of crossovers, Symbolic Regression do-
main.

1 2 3 4 5 6 7 8 9 10
Number of Crossovers

6000

7000

8000

9000

10000

11000

E
ffo

rt

Figure 4: Computational Effort by number of crossovers,
Symbolic Regression domain.

the probabilities of choosing crossover point A or B respec-
tively were not independent. While increasing the num-
ber of crossover events would not break this dependency, it
could lower the effect the dependency had in causing bloat.

Second, adding more nonhomologous crossover events
meant adding more variation (more noise) into the breed-
ing procedure. This gave us a dial to turn which would ef-
fectively change the amount that crossover “randomized”
individuals (an idea inspired by arguments made in [An-
geline 1997]). Would more randomization be beneficial or
detrimental to GP?

The experiments were done as follows. We ran for 51 gen-
erations, including the initial generation, using a population
of 500, and tournament selection of size 7. Multi-crossover
was the sole operator used. The three problem domains
chosen were Symbolic Regression, 11-Bit Boolean Mul-
tiplexer, and Artificial Ant. Symbolic Regression used
no Ephemeral Random Constants. Artificial Ant used the
Santa Fe Trail. All other run and problem domain param-
eters were done as stipulated in [Koza 1992]. The evolu-
tionary computation system used was ECJ [Luke 2001a].



1 2 3 4 5 6 7 8 9 10
Number of Crossovers

0

100

200

300

400

500

600

700

B
es

tF
itn

es
s

of
R

un

Figure 5: Boxplots of the distribution of best-fitness-of-
run, by number of crossovers, 11-Bit Boolean Multiplexer
domain. Lower fitness is better. Compare to Table 1.

1 2 3 4 5 6 7 8 9 10
Number of Crossovers

2

4

6

8

10

12

N
um

be
r

of
Id

ea
lS

ol
ut

io
ns

Figure 6: Number of ideal solutions found, by number of
crossovers, 11-Bit Boolean Multiplexer domain.

We performed ten different experiments, with multi-
crossover set to 1 through 10 crossovers respectively. Each
experiment consisted of 500 independent runs. This num-
ber of runs is much higher than is necessary to produce
best-fitness-of-run results, but we needed as many runs as
possible to feel at least partially confident in our ideal-
solution counts, and 15,000 total runs was the most we
could afford to do. For each problem domain we used box-
plots5 to plot best-fitness-of-run distributions for different
numbers of crossovers. We also plotted the number of ideal
solutions found, and the Cumulative Probability of Success
and Computational Effort measures.

3.1 SYMBOLIC REGRESSION RESULTS

Symbolic Regression did in fact lower tree size. But it did
so at the cost of a statistically significant worsening of fit-
ness, though only gradually: large swaths of crossover ex-
periments were in the same statistical equivalence class, as
shown in Table 1. Increasing the amount of noise in the
crossover procedure, thus moving the system more towards

5In a boxplot, the rectangular region covers all values between
the first and third quartiles, the stems mark the furthest individual
within 1.5 of the quartile ranges, and the center horizontal line
indicates the median. Dots show outliers, and × marks the mean.

10
20

30
40

50

Generation

1
2

3
4

5
6

7
8

9
10

Crossovers

0

0.005

0.01

0.015
Cumulative
Probability
of Success

10
20

30
40

50

Generation

Figure 7: Cumulative Probability of Success per genera-
tion, by number of crossovers, 11-Bit Boolean Multiplexer
domain.

1 2 3 4 5 6 7 8 9 10
Number of Crossovers

1· 106

2· 106

3· 106

4· 106

5· 106

E
ffo

rt

Figure 8: Computational Effort by number of crossovers,
11-Bit Boolean Multiplexer domain.

random search, yielded worse results on average, using the
mean best-fitness-of-run measure as shown in Figure 1.

But one would not have known this from the ideal-solution
counts. As noise in crossover increased, the number of
ideal solutions increased rapidly from 150 per 500 runs
with a single crossover, to stabilizing at about 350 per 500
runs with seven crossovers or more, as shown in Figure 2.
This in turn resulted in an unexpected Cumulative Proba-
bility of Success curve, and a major decrease in Compu-
tational Effort as the number of crossovers increased, as
shown in Figures 3 and 4.

Symbolic Regression is the easiest of the three problem do-
mains presented: it finds the ideal solution very often (no
less than 30% of the time in these experiments). Thus our
counts were very high and the Cumulative Probability of
Success curve was very smooth.

This outcome was very disturbing. Were we to have used
ideal-solution count measurements as our basis of compar-
ison in this experiment, our conclusions wouldn’t just have
been uncorrelated with best-fitness-of-run results: they



1 2 3 4 5 6 7 8 9 10
Number of Crossovers

0

10

20

30

40

50

B
es

tF
itn

es
s

of
R

un

Figure 9: Boxplots of the distribution of best-fitness-of-run,
by number of crossovers, Artificial Ant domain. Lower fit-
ness is better. Compare to Table 1.

1 2 3 4 5 6 7 8 9 10
Number of Crossovers

2

4

6

8

10

12

14

16

N
um

be
r

of
Id

ea
lS

ol
ut

io
ns

Figure 10: Number of ideal solutions found, by number of
crossovers, Artificial Ant domain.

would have been the opposite. We would have concluded
that increasing number of crossovers does a better job.

3.2 11-BIT BOOLEAN MULTIPLEXER RESULTS

11-Bit Boolean Multiplexer was to yield another surprise.
First, it too lowered tree size, and like Symbolic Regres-
sion, it did so by statistically significantly worsening the fit-
ness results. Again, increasing the amount of noise yielded
worse results on average, when using the mean best-fitness-
of-run measure, as shown in Figure 5. This time, the fit-
nesses worsened rapidly, with few in the same statistical
equivalence class, as seen in Table 1.

Given its tendency to bloat like Regression does, we
fully expected Multiplexer to have similar ideal-solution
counts. But this was not quite the case. As the number
of crossovers increased, the number of ideal solutions in-
creased, but then it then decreased again. Multiplexer is a
relatively more difficult problem domain to find ideal so-
lutions in: thus we found no more than thirteen ideal so-
lutions in 500 runs, with the maximum peaking when we
applied five crossovers. The nadir was a single solution
discovered, when we applied nine crossovers, as shown in
Figure 6.

10
20

30
40

50

Generation

1
2

3
4

5
6

7
8

9
10

Crossovers

0

0.01

0.02

0.03Cumulative
Probability
of Success

10
20

30
40

50

Generation

Figure 11: Cumulative Probability of Success per genera-
tion, by number of crossovers, Artificial Ant domain.

1 2 3 4 5 6 7 8 9 10
Number of Crossovers

500000

1· 106

1.5· 106

2· 106

2.5· 106

3· 106

3.5· 106

4· 106

E
ffo

rt

Figure 12: Computational Effort by number of crossovers,
Artificial Ant domain.

The Cumulative Probability of Success similarly followed
a bell curve distribution, as is shown in Figure 7. The
relatively low number of ideal solutions resulted in the
expected exaggerated swings in Computational Effort, as
shown in Figure 8.

Here, while a best-fitness-of-run measure would state
that increasing crossovers generally decreased quality, an
ideal-solution count measure would argue that increasing
crossovers somewhat (to five) made the result twice as
good.

3.3 ARTIFICIAL ANT RESULTS

Artificial Ant gave us yet another result. Again, it low-
ered tree size, and once again, it also did so by statisti-
cally significantly worsening the fitness results (Figure 9)
though like Symbolic Regression the results worsened only
slightly, resulting in large numbers of experiments in the
same statistical equivalence class (Table 1).

Figure 10 reveals that this time, the ideal-solution counts
followed the statistically significant fitness: increasing the
amount of noise decreased the number of ideal solutions



discovered. As shown in Figure 11, the Cumulative Prob-
ability of Success followed a radically different curve than
was the case in Symbolic Regression. Like Multiplexer,
Artificial Ant discovers relatively few ideal solutions (no
more than sixteen out of 500). And like Multiplexer, this
exaggerates the Computational Effort results (Figure 12).

Here, as in Symbolic Regression, one would conclude on
the basis of the best-fitness-of-run measure that the mean is
getting just a little worse, though statistically significantly.
But here an ideal-solution-count measure suggests that in-
creasing the number of crossovers considerably worsens
the result.

4 WHAT’S GOING ON?

For all three problems, fitness gradually worsened as the
number of crossovers increased. But each problem yielded
a wildly different result in the ideal-solutions count, and
thus in the Cumulative Probability of Success and Compu-
tational Effort metrics. In short, the ideal-solution counts
were not correlated with the best-fitness-of-run measure.

We think the reason for this phenomenon is that, as shown
in Figures 1, 5, and 9, the number of ideal solutions is more
closely linked to the variance of — rather than the mean of
— the best-fitness-of-run distribution. As the variance in-
creases, fitness is increasingly scattered both up and down.
But there is a bound at zero (one cannot be better than per-
fect), whereas there is no bound on getting worse. Thus a
wider variance tends to rack up more perfect scores. This
trend is echoed in the data for all three problem domains,
although the ideal-solution counts in the Artificial Ant and
Multiplexer domains are low enough to make us wary about
making a pronouncement.

In the Symbolic Regression domain, the distributions are
skewed. As the number of crossovers increases, the mean
increases a little, but not nearly as much as the variance
does. Thus a worsening in the mean is not able to pre-
vent ideal solutions from piling up. In the Multiplexer do-
main, the mean worsens only a little initially but rapidly
at the end, while the variance generally increases steadily.
This allows the mean to lose to, then catch up with the
variance, which might explain the ideal-solution counts.
Lastly, the Artificial Ant domain’s mean worsens slowly
while the variance decreases, which can explain the steady
decrease in ideal-solution counts.

This combination of mean and variance has a closely re-
lated effect: even if low-variance technique A has a higher
expected value than high-variance technique B for a single
run, B can still have a higher expected best result of N inde-
pendent runs (Figure 13). This phenomenon was explored
in [Luke 2001b].

Figure 13: Example of two distributions which differ in
mean and in variance. While one sample from the flatter
distribution will give a lower expected result (the mean)
than the tall distribution, in this case the best of two or more
samples from the flatter distribution will give a higher ex-
pected result.

We will not venture a guess as to why increasing the num-
ber of crossovers changed the mean and variance results in
the way it did. We had expected that increasing the number
of crossovers would consistently increase the variance, but
clearly it does not.

Regardless of the outcome, we do not believe that these ex-
periments bode well for the body of GP literature which
relies on ideal-solution counts to compare the quality of
different techniques. We are concerned that upon reading
this literature, experimenters may mistakenly conclude that
certain techniques are better than others on average, when
in some cases better ideal-solution counts are actually in-
dicative of a worse result in mean best-fitness-of-run.

5 RECOMMENDATIONS

One downside to mean-best-fitness-of-run results is
demonstrated in the Symbolic Regression domain: tech-
niques which produce large, bloated trees that are function-
ally “close” to the ideal are given high marks, even though
the results do not remotely resemble our notion of what the
ideal individual ought to look like. Ideal-solution counts
can be somewhat useful here in weeding these pretenders
out. But given their statistical problems, we feel that ideal-
solution count results alone simply cannot be justified.

If such incrementalism is the critical sticking-point tempt-
ing an author to only report ideal-solution counts, we sug-
gest instead that the author produce results showing both
mean best fitness of run and mean tree size. If a tech-
nique is superior both in tree size and mean best fitness, it is
more difficult to argue that the improvements in mean best-
fitness-of-run are due to incrementalism, since this would
likely also increase tree size. Another approach would be



to change the methodology to one showing generalization,
using training and testing sets. Incrementalism tends to re-
sult in solutions custom-tailored to the training set: such
poor generalizability would then show up when the final
solution is compared to the testing set.

If instead one were performing runs in a domain which de-
manded perfection, then it would obviously be useful to
know how often a technique was likely to find the ideal so-
lution. Another situation also commonly arises: trying to
beat an existing record, where it’s useful to know not if a
technique is likely to find the ideal, but whether or not it is
likely to find any solution better than the record. In these
situations we suggest that counts could supplement, but not
replace, the mean best-fitness-of-run results.

But for most cases we suggest a different point statistic
to use as a supplement. The procedure specified in [Luke
2001b] gives the expected maximum best-fitness-of-run for
N total runs. This procedure, like the ideal-solution-count
procedure, suffers statistically from the assumption that the
sample is exactly representative of the population, and from
its reuse of statistically dependent data. However, as a sup-
plement to mean best-fitness-of-run results, we think it is a
more useful metric than ideal solution counts in most cases.

The procedure is as follows. Perform a large number m runs
for a given technique T . Sort the runs by fitness and assign
ranks 1, ...,m to the runs, where rank 1 is the worst-fitness
run for the technique. Let F(r) be the fitness of the run
ranked r. Then if one were to perform N runs and return
the best run, the expected best fitness E(T,N) among those
N runs would be:

E(T,N) =

m
∑

r=1

F(r)
rN − (r−1)N

mN

This presumes that higher fitness values are better. Now
consider two techniques A and B, where beyond some point
N ≥C, E(B,N) is consistently greater than or equal to
E(A,N). Ideally, C would be 1. This would lend evidence
to the belief that not only is A better than B on average, but
it is also superior no matter how many runs you are likely
to perform. This gives strong weight to the claim that A
really is better than B. Further, it seems likely that if tech-
nique A finds many more ideal solutions than technique
B, that E(A,N) will surpass E(B,N) above some point N
where finding ideal solutions with A becomes sufficiently
common.

In any case, given their grievous statistical problems, we
strongly urge that an ideal solution count measures never
be used alone as proof that one technique is superior to
another, except under special circumstances and with the
appropriate disclaimers. If used at all, they should be only
used to bolster a more statistically viable fitness compari-
son procedure.

Last, we recommend that experimenters more closely adopt
difference-of-means tests (at least t-tests and ANOVAs),
and a reasonable sample size (30 at a minimum) in pub-
lished evolutionary computation experiments, or give justi-
fications for doing otherwise.

6 CONCLUSION

Many papers in the GP literature use ideal-solution counts
in one way or another, usually to compare the quality of
techniques. This notion was popularized by Koza’s Cumu-
lative Probability of Success, Individuals to be Processed,
and Computational Effort measures. This use continues de-
spite warnings that counts are poor estimates, as they are a
point statistic with no associated means test; as they make
assumptions about dependencies across generations; and as
they are exaggerated by small count sizes.

In this paper we reiterated this warning about counts, and
noted motivational concerns. Specifically, we noted that for
most “difficult” problems, the goal is to find as good a so-
lution as possible. Counting the number of times the ideal
solution is found does not help achieve this goal. Further,
if one can find the ideal reliably, then the problem is trivial.

We also demonstrated the disturbing fact that ideal solution
counts are not well correlated with mean best-of-fitness
measures. In fact, for some problem domains, we showed
that ideal solution counts may lead to the opposite conclu-
sion that mean best-of-fitness measures lead to. This begs
a reevaluation of much of the GP literature, as published
results may be dubious, and in some cases the opposite of
their intended meaning.

Acknowledgments

Our thanks to Lee Spector, Paul Wiegand, and Ken De Jong
for their insights and responses, and to our reviewers for
their helpful comments.

References

Angeline, P. J. (1996). An investigation into the sensitiv-
ity of genetic programming to the frequency of leaf se-
lection during subtree crossover. In Koza, J. R., Gold-
berg, D. E., Fogel, D. B., and Riolo, R. L., editors, Ge-
netic Programming 1996: Proceedings of the First An-
nual Conference, pages 21–29, Stanford University, CA,
USA. MIT Press.

Angeline, P. J. (1997). Subtree crossover: Building block
engine or macromutation? In Koza, J. R., Deb, K.,
Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo,
R. L., editors, Genetic Programming 1997: Proceedings



of the Second Annual Conference, pages 9–17, Stanford
University, CA, USA. Morgan Kaufmann.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D.
(1998). Genetic Programming – An Introduction; On
the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, dpunkt.verlag.

Daida, J., Ross, S., McClain, J., Ampy, D., and Holczer,
M. (1997). Challenges with verification, repeatability,
and meaningful comparisons in genetic programming. In
Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon,
M., Iba, H., and Riolo, R. L., editors, Genetic Program-
ming 1997: Proceedings of the Second Annual Confer-
ence, pages 64–69, Stanford University, CA, USA. Mor-
gan Kaufmann.

Daida, J. M., Ampy, D. S., Ratanasavetavadhana, M., Li,
H., and Chaudhri, O. A. (1999a). Challenges with verifi-
cation, repeatability, and meaningful comparison in ge-
netic programming: Gibson’s magic. In Banzhaf, W.,
Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V.,
Jakiela, M., and Smith, R. E., editors, Proceedings of the
Genetic and Evolutionary Computation Conference, vol-
ume 2, pages 1851–1858, Orlando, Florida, USA. Mor-
gan Kaufmann.

Daida, J. M., Yalcin, S. P., Litvak, P. M., Eickhoff, G. A.,
and Polito, J. A. (1999b). Of metaphors and darwinism:
Deconstructing genetic programming’s chimera. In An-
geline, P. J., Michalewicz, Z., Schoenauer, M., Yao, X.,
and Zalzala, A., editors, Proceedings of the Congress on
Evolutionary Computation, volume 1, pages 453–462,
Mayflower Hotel, Washington D.C., USA. IEEE Press.

Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, USA.

Langdon, W. B., Soule, T., Poli, R., and Foster, J. A.
(1999). The evolution of size and shape. In Spector, L.,
Langdon, W. B., O’Reilly, U.-M., and Angeline, P. J.,
editors, Advances in Genetic Programming 3, chapter 8,
pages 163–190. MIT Press, Cambridge, MA, USA.

Luke, S. (2000). Issues in Scaling Genetic Programming:
Breeding Strategies, Tree Generation, and Code Bloat.
PhD thesis, Department of Computer Science, Univer-
sity of Maryland, A. V. Williams Building, University of
Maryland, College Park, MD 20742 USA.

Luke, S. (2001a). ECJ 7: An evolutionary computation
research system in Java. Available at
http://www.cs.umd.edu/projects/plus/ec/ecj/.

Luke, S. (2001b). When short runs beat long runs. In
Spector, L., Goodman, E. D., Wu, A., Langdon, W. B.,
Voigt, H.-M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S.,
Garzon, M. H., and Burke, E., editors, Proceedings of
the Genetic and Evolutionary Computation Conference

(GECCO-2001), pages 74–80, San Francisco, Califor-
nia, USA. Morgan Kaufmann.

Luke, S. and Spector, L. (1997). A comparison of crossover
and mutation in genetic programming. In Koza, J. R.,
Deb, K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H.,
and Riolo, R. L., editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages
240–248, Stanford University, CA, USA. Morgan Kauf-
mann.

Luke, S. and Spector, L. (1998). A revised compari-
son of crossover and mutation in genetic programming.
In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K.,
Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg,
D. E., Iba, H., and Riolo, R., editors, Genetic Program-
ming 1998: Proceedings of the Third Annual Confer-
ence, pages 208–213, University of Wisconsin, Madison,
Wisconsin, USA. Morgan Kaufmann.

Paterson, N. and Livesey, M. (2000). Performance com-
parison in genetic programming. In Whitley, D., editor,
Late Breaking Papers at the 2000 Genetic and Evolu-
tionary Computation Conference, pages 253–260, Las
Vegas, Nevada, USA.


