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Abstract. Many forms of parsimony pressure are parametric, that is final fitness
is a parametric model of the actual size and raw fitness values. The problem with
parametric techniques is that they are hard to tune to prevent size from dominat-
ing fitness late in the evolutionary run, or to compensate for problem-dependent
nonlinearities in the raw fitness function. In this paper we briefly discuss existing
bloat-control techniques, then introduce two new kinds of non-parametric par-
simony pressure, Direct and Proportional Tournament. As their names suggest,
these techniques are based on simple modifications of tournament selection to
consider both size and fitness, but not together as a combined parametric equa-
tion. We compare the techniques against, and in combination with, the most popu-
lar genetic programming bloat-control technique, Koza-style depth limiting, and
show that they are effective in limiting size while still maintaining good best-
fitness-of-run results.

1 Introduction

One of the foremost challenges to scaling genetic programming (GP) is bloat, the ten-
dency for genetic programming individuals to grow in size as evolution progresses,
relatively independent of any justifying improvements in fitness. It is not uncommon
for the average size of an individual to grow over three orders of magnitude in just
fifty generations. This is a serious stumbling block to genetic programming, as it slows
the evolutionary search process, consumes memory, and can hamper effective breeding.
Bloat produces a sort of Zeno’s paradox, slowing successive generations by so much
that it places a cap on GP’s useful runtime.

Bloat is not a problem unique to genetic programming. It occurs in a wide vari-
ety of arbitrary-length representations, including neural networks, finite state automata,
and rule sets. Indeed, the earliest known report of bloating (and of approaches to deal
with it) involves evolving Pitt-approach rule systems [1]. However, because GP is the
most popular arbitrary-length representation technique, the lion’s share of papers on the
subject have been in the GP literature.

As discussed in [2], bloating is a hotly debated topic in GP theory; and there is
also presently no silver bullet to deal with it. The genetic programming literature uses a
large number of different techniques to counter bloat, each with its own advantages and
disadvantages. By far the most popular such technique is restricting breeding to only



produce children less than some maximal tree depth. A distant second is parsimony
pressure, where the size of an individual is a factor in its probability of being selected.

In this paper we examine two new approaches to parsimony pressure, and report
on their success in managing population size while retaining reasonable best-fitness-
of-run results as compared to Koza-style tree depth limitation. These techniques are
based on modifications of the well-studied tournament selection method, which picks N
random individuals with replacement, then selects the fittest individual from that pool.
We modify tournament selection to consider parsimony as well as fitness, but retain the
nonparametric features which make tournament selection popular.

2 PreviousBloat Control Techniques

Modification and Restriction Techniques. The most common approach to bloat con-
trol, at least in the GP literature, is maximal depth restriction [3]. Here, when a child
is created by removing a subtree from a parent and replacing it with another subtree
(as is done in subtree crossover or subtree mutation), and the child exceeds a maximal
depth limit, then the child is rejected and a copy of the original parent takes its place
in the new generation. The standard maximal depth limit for tree-based GP is 17. It
is also possible, but much less common, to place size restrictions on the child rather
than depth restrictions. Pseudo-hillclimbing [4] is a recent restriction approach: when a
child is generated, its fitness is immediately assessed. If its fitness is not superior to its
parent’s fitness, it is rejected and a copy of its parent takes its stead in the new gener-
ation. Note that this approach is very similar to depth restriction in mechanism, except
that oddly it does not compare size at all, yet is reasonably successful at limiting tree
growth. This gives some insight into why depth restriction and pseudo-hillclimbing are
successful: they limit growth not only by capping size but by injecting large numbers
of parents directly into later generations. As parents are generally smaller than their
children (hence the bloat), this has a stunting effect, but at a cost in diversity.

As GP parse trees may generally be viewed as computer functions, one obvious
way to counter bloat is to perform code editing to optimize those functions. One paper
[5] reports strong results with this approach, but there is evidence that editing may
lead to premature convergence [6]. Finally, a number of papers (for example [7]) have
investigated allowing GP parse trees to adapt, on a component-by-component basis,
the probability that a given component will be chosen for crossover. This bloat-control
technique is known as explicitly defined introns.

Parsimony Pressure Parsimony pressure is the popular bloat-control technique out-
side of GP, and is gaining popularity within GP as well. Most such parsimony pressure
computes fitness as a linear function of an individual’s raw fitness and its size (for ex-
ample, [8]), though there are some nonlinear examples as well [9]. For a more complete
survey of linear and other kinds of parametric parsimony pressure, see [10].

The trouble with parametric parsimony pressure is that it is parametric. We mean
this in the statistical sense: it considers the actual values of size and fitness together
in a parametric statistical model for selection: the experimenter must stipulate, in ef-
fect, that N units of size are worth M units of raw fitness. Stipulating this function is



problematic when fitness is a nonlinear function of actual “worth”, as is often the case:
fitness functions are typically ad-hoc. It may well be that a difference between 0.9 and
0.91 in fitness is much more significant than a difference between 0.7 and 0.9. Paramet-
ric parsimony pressure can thus give size an unwanted advantage over fitness when the
difference in fitness is only 0.01 as opposed to 0.2. This is also a problem because the
relative significance of exact size and fitness parameters changes during the course of
a run. For example, size-parameter dominance may arise late in evolution, when subtle
differences in fitness become important. Notice that these issues are similar to those
which gave rise to the preference of tournament selection and other nonparametric se-
lection procedures over fitness-proportionate selection.

One approach to fixing this is to adapt the size parameter as the evolutionary run pro-
gresses [11], except that such techniques must usually rely on problem-specific analysis.
Another recent approach, pareto parsimony pressure, eschews parametric techniques
and instead treats size as a second objective in a pareto-optimization scheme. Pareto
optimization is used when the evolutionary system must optimize for two or more ob-
jectives at once, and it is not clear which objective is “more important”. An individual
A is said to pareto-dominate another individual B if A is as good as B in all objectives,
and better than B in at least one objective. One possible use of pareto dominance is to
stipulate that an individual’s fitness is the number of peers it dominates. Unfortunately,
the technique has so far had mixed results in the literature. Some papers report smaller
trees and the discovery of more ideal solutions [12,13], but tellingly they omit best-
fitness-of-run results. Another reports the mean best-fitness-of-run, but it is worse than
when not using the technique [14].

3 Two New Parsimony Pressure Techniques

The two new techniques we propose here are modifications of the tournament selec-
tion operator. The techniques are double tournament, where individuals must pass two
layers of tournaments (one by size, one by fitness) to be selected; and proportional
tournament, where the tournament sometimes picks by size, and sometimes by fitness.

Double Tournament The double tournament algorithm selects an individual using
tournament selection: however the tournament contestants are not chosen at random
with replacement from the population. Instead, they were each the winners of another
tournament selection. For example, imagine if the “final” tournament has a pool size of
7: then seven “qualifier” tournaments are held as normal in tournament selection, and
the winners go on to compete in the “final” tournament. Double tournament has been
previously used to select for both fitness and diversity [15]. We suggest it may be used
for parsimony pressure by having the “final” tournament select based on parsimony
while the qualifying tournaments select based on fitness (or vice versa). The algorithm
has three parameters: a fitness tournament size S¢, a parsimony tournament size Sp, and
a switch (do-fitness-first) which indicates whether the qualifiers select on fitness and the
final selects on size, or (if false) the other way around.

Our initial experiments revealed that even Sp values as small as 2 put too much
pressure on parsimony, and the fitnesses of the resulting individuals were statistically



significantly worse than with no parsimony pressure at all. In order to rectify this matter,
we permit Sy to hold real values between 1.0 and 2.0. In this value range, two individuals
participate to the tournament; with probability Sp/2 the smaller individual wins, else
the larger individual wins. Ties are broken at random. Thus Sp = 1 is random selection,
while Sp = 2 is the same as a plain parsimony-based tournament selection of size 2.

Proportional Tournament This technique is even simpler. The proportional tourna-
ment algorithm selects an individual using tournament selection as usual, using some
fixed tournament size S. However, a proportion of tournaments will select based on par-
simony rather than on fitness. A fixed parameter R defines the proportion, where higher
values of R imply more of an emphasis towards fitness: R = 1 implies that all tourna-
ments will select based on fitness, while R = 0.5 implies that tournaments will select
on fitness or size with equal probability.

4 Experiments

The bloat-control technique most used in the literature is Koza-style depth limiting, and
we, like most of the literature, compare our technique against it. In future work, we will
also compare against linear or pareto parsimony pressure. To this end, we performed
two experiments. The first experiment compared depth limiting against Double and
Proportional tournaments, while the second compared plain depth limiting against depth
limiting in combination with the tournaments. We wish to emphasize that although these
techniques are being used for GP in this paper, they are general techniques which are
representation-independent.

The experiments used population sizes of 1000, with 50-generation runs. The runs
did not stop when an ideal individual was found. Runs with plain depth limiting used
plain tournament selection with a tournament size of 7. We chose four problem do-
mains: Artificial Ant, 11-bit Boolean Multiplexer, Symbolic Regression, and Even-5
Parity. We followed the Koza-standard parameters specified in these four domains as
set forth in [3], as well as its breeding, selection, and tree generation parameters. Artifi-
cial Ant used the Santa Fe food trail. Symbolic Regression used no ephemeral random
constants. To compare means for statistical significance, we used ANOVAs with a 95%
confidence. The evolutionary computation system used was ECJ 7 [16].

Our results are graphed as follows. For the Double Tournament, we set Sy = 7 and
let Sp range from 1.0 to 2.0 by increments of 0.1. We experimented with setting do-
fitness-first to false (leftmost methods in the graphs), and to true (the next set of meth-
ods). For the Proportional Tournament, we set S = 7, and let R range from 1.0 down to
0.5 by decrements of 0.05. In all graphs, lower fitnesses were better, and the rightmost
bar represents plain depth-limiting alone.

4.1 First Experiment

The first experiment compared plain depth limiting against Double and Proportional
Tournament, using the four problem domains listed above. We ran 50 runs per technique
per problem domain, and plotted the mean best-fitness-of-run and the average tree size
per run. The fitness results are shown in Figure 2, and the tree size results in Figure 1.



Results. For most problems, there existed non-extreme settings for both Double and
Proportional Tournaments which maintained fitness with significantly smaller tree sizes
than plain depth limiting, often by wide margins. In the Symbolic Regression domain,
Double and Proportional Tournaments both improved on plain depth limiting in tree
size and fitness, but never in a statistically significant manner. As we noted in a previ-
ous paper [10], plain depth limiting performs very well in Symbolic Regression. Over-
all, Double Tournament Sy, values in the 1.4-1.6 range did reasonably well. The sweet
spot for Proportional Tournament was around R = 0.7, which always performed nearly
identically to plain depth limiting (other settings could do much better depending on
the problem). The particular setting of do-fitness-first did not have a significant effect.

4.2 Second Experiment

Reasonable settings of Double and Proportional Tournament either equalled or outper-
formed plain depth limiting, but not by as wide a margin as we would have hoped. We
wondered how well combining each of these two methods with depth limiting would
perform against just plain depth limiting alone. In our second experiment we compared
the combinations against depth limiting, once again doing 50 runs per technique, then
plotted the best fitness per run and the average tree size per run. The fitness results are
shown in Figure 4, and the tree size results are shown in Figure 3.

Results. This time judicious settings of Sy, or R dramatically outperformed plain depth
limiting in all four domains. Overall, Double Tournament S, values in 1.2-1.6 had
equal fitness to plain depth limiting, while significantly outperforming it in tree size,
often halving the size. The sweet spot for Proportional Tournament was again around
R = 0.7, which always halved tree size while maintaining statistically equivalent fitness.
Again, the particular setting of do-fitness-first did not have a significant effect.

5 Conclusionsand Future Work

When it comes to fitness, plain depth limiting is hard to beat. The techniques discussed
in this paper all had statistically equivalent best-fitness-of-run results as depth limit-
ing, but not better. However they were able to achieve these results while lowering
the tree size. Double Tournament and Proportional Tournament by themselves could
only lower total tree size slightly in comparison to plain depth limiting. However, when
combined with depth limiting, they significantly outperformed depth limiting alone,
yielding tree sizes at half the normal size while maintaining an equivalent best fitness
of run. Given their simple implementation and general applicability, we think that non-
parametric tournament-based parsimony pressure is worth consideration in a GP system
in combination with depth limiting. As future work we hope to examine the applicabil-
ity of these techniques to non-GP environments as well, and in comparison with other
parsimony pressure methods.
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Fig. 1. Mean tree sizes for various parsimony pressure methods, as compared compared to plain
depth limiting (labeled D). Distributions are plotted with boxplots. Proportional Tournament is
labeled P, with the given ratio value R. Double Tournament is labeled T1 (do-fitness-first false)
or T2 (do-fitness-first true), with the given tournament size Sp. The mean of each distribution
is indicated with an x. Lower values are better. Techniques statistically superior to plain depth
limiting are marked with |; techniques statistically inferior are marked with 7
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Fig. 2. Best fitness of run for various parsimony pressure methods, as compared compared to plain
depth limiting (labeled D). Distributions are plotted with boxplots. Proportional Tournament is
labeled P, with the given ratio value R. Double Tournament is labeled T1 (do-fitness-first false)
or T2 (do-fitness-first true), with the given tournament size Sp. The mean of each distribution
is indicated with an x. Lower values are better. Techniques statistically superior to plain depth
limiting are marked with |; techniques statistically inferior are marked with 7



Atrtificial Ant

T 1 12 14 16 18 2T2: 1 12 14 16 18 2P 1 9 8 7 6 05 D

———————————————
250 [ ¢
S 200 |
é
k] .
g 150 | s
5 . .
2 .
o L]
2 100 | s, .
5 e o o L]
§
S s f %$ %%% %$
. Fhy
L S A A 2 A AR IR R 1 A A 2
T 1 12 14 16 18 2T2: 1 12 14 16 18 2P 1 9 8 7 6 0.5 D
Parsimony Pressure
Even-5 Parity
T 1 12 14 16 18 2T2: 1 12 14 16 18 2P 1 9 8 7 6 0.5 D
e
400 +
.
S 300 [ : .
5
3 :
gzoo F $ s .
& % :
§ 100 [ . % % i %é
2 $ é
L %
0 5
NI S S N SR S 2 S 2 S S S S S S S S S S
T 1 12 14 16 1.8 2T2: 1 12 14 16 18 2P 1 9 8 7 6 05 D
Parsimony Pressure
11-Bit Boolean Multiplexer
T 1 12 14 16 18 2T2: 1 12 14 16 18 2P 1 9 8 7 6 0.5 D
250 [ *
. 1 ]
c .
Z 200 [ LY ° .
5 . °
8 150 [ . .o
3 . :
8 :
= 100 | ] .
-
é 0 %% % 1 $é !
. . é
, Thaa ITH
I I S I B SR B TS 22 S S S S S 2 22 2 S S
T 1 12 14 16 1.8 2T2: 1 12 14 16 18 2P 1 9 8 7 6 05 D
Parsimony Pressure
Symbolic Regression
T 1 12 14 16 1.8 2T2: 1 12 14 16 18 2P 1 9 8 7 6 05 D
100
80 -
S
é
S 60 |
R
g .
2]
$ 40 [
= .
§ .
E ol $ . %é . %é
0 @%é&; %%dal* %é
AR SRR NI N SN I SR 2 2 SR S 2 2R 2 2 S

Fig. 3. Mean tree sizes for various parsimony pressure methods in combination with depth lim-
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Fig. 4. Best fitness of run for various parsimony pressure methods in combination with depth lim-
iting, as compared compared to plain depth limiting alone (labeled D). Distributions are plotted
with boxplots. Proportional Tournament is labeled P, with the given ratio value R. Double Tour-
nament is labeled T1 (do-fitness-first false) or T2 (do-fitness-first true), with the given tournament
size Sp. The mean of each distribution is indicated with an x. Lower values are better. Techniques
statistically superior to plain depth limiting are marked with | ; techniques statistically inferior are
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