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Abstract . We address here th e resolution of the so-called inverse
problem for the iterated functions system (IFS). This problem has al­
ready been widely considered, and some studies have been performed
for the affine IFS , using determin ist ic or stochast ic methods (simu­
lated annealing or genetic algorithm). In dealing with the nonaffine
IFS, the usual techniques do not perform well unless some a priori
hypoth eses on th e structure of the IFS (number and typ e of funct ions)
are made. In this work, a genetic programming method is investigated
to solve the "general" inverse problem, which allows the simultaneous
perform ance of a numeric and a symbolic optimization . The use of a
"mixed IFS" may enlarge th e scope of some applications, for example,
image compression, because it allows a wider range of shapes to be
coded.

1. Introduction

It erated functions syste m (IFS) theory is an important t opic in fractals. The
geometric and measure theoretical aspects of syste ms of contract ive maps
(and associate d probabiliti es) were worked out in [14], and the existe nce of a
unique compact invariant set was proved . Such studies have provided pow­
erful tools for the investigation of fract al set s, and the act ion of syste ms of
contractive maps to produce fra ctal sets has been considered by numerous
authors (e.g ., [2, 3, 8, 12]). A major challenge of both theor et ical an d prac­
t ica l interest is t he resolution of the so-called inverse problem [4, 20, 25, 26].
Except for som e particul ar case s, no exact solution is kno wn . From a com­
putation al viewpoint this problem may be form ulated as an optimization

"Electronic address: http: / / www-rocq . i nria . fr /fractale s /.



376 Lu tton, Levy-Vehel, Cretin , Glevarec, and Roll

Figure 1: A two-dimens ional slice of the error function for the Barns­
ley fern (left) , for affine IFS (right) . The dimension of the search
space is 24.

problem. A lot of work has been done in this framework, and some solu­
tions exist based on deterministic or stochastic optimization met hods. As
the function to be optimized is ext remely complex (see Figure 1), most of
them make some a priori restrictive hypoth eses: use of an affine IFS, with
a fixed numb er of funct ions [5, 9, 15, 17, 27] . Solutions based on genet ic
algorithms (GAs) or evolut ionary algorithms, have recent ly been presented
for the affine IFS [10, 21, 24, 25]. As seen in sect ion 3, the nonaffine IFS
provides an interesting variety of shapes, whose practical interest might be
large. However, in this case, the inverse problem cannot be addressed using
the "classical" techn iques. We propo se to make use of genetic programm ing
in th at framework. As far as we know, this is th e first attempt to use genet ic
programm ing to solve this problem.

We first review IFS th eory in sect ion 2, then present some examples of
mixed IFS attractors (section 3), and finally detail our genet ic programming
method (section 4).

2. Iterat ed functions system t heory

An IFS U = {F, (Wn)n=l,.. ,N} is a collection of N functions defined on a
complete met ric space (F,d). Let W be the Hutchinson operator , defined on
the space of subsets of F:

If K eF, W( K) = U wn(K).
nE [O,N]

Then, if the W n functions are contractive (this type of IFS is called a hyper­
bolic IFS), t here exists a unique set A such that:

W(A) = A.

A is called the attractor of th e IFS.
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Not e. A mapping W : F -. F , from a met ric space (F, d) into itself, is
called contractive if there exists a posit ive real number s < 1 such that

d(w(x) ,w(y)) :<:::: s.d(x ,y) Vx, y E F.

The uniqueness of a hyperbolic attractor is a result of the cont ractive map­
ping fixed-point theorem for W , which is contractive according to the Haus­
dorff distance as follows.

• Hausdorff distance.

dH(A, B) = max[max(min d(x, y)) , max(min d(x, y)) ].
x EA yEB yEB x EA

• Contractive mapping fixed-point theorem. If (F, d) is a complete metric
space, and W : F -. F is a contractive transformation, then W has a
unique fixed point .

From a computational viewpoint , an attractor can be generated according
to two techniques.

• Stochastic method (toss-coin). Let Xo be the fixed point of one of the ui;

functions. We build the point sequence Xn as follows: Xn +l = Wi(Xn ) , i
being randomly chosen in {l..N} . Then UnXn is an approximation of
the real attractor of U. The larger n is, the more precise the approxi­
mat ion is.

• Deterministic method. From any kernel So, we build the set sequence
{Sn},

n

When n tends to 00 , Sn is an approximation of th e real at t ractor of U.

The inverse problem for a two-dimensional IFS can be stat ed as follows.

For a given two-dimensional shape (a binary image), find a set of
cont ractive maps whose attractor more resembles th is shape, in
the sense of a predefined error measure.

Our error measure will be described in section 4.
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Figure 2: A mixed IFS and its at t ractor.

3. Mixed iterated functions system

In the case of an affine IFS, each cont ract ive map ui , of U is represented as

[ a; bi ] [ x] [ ei ]Wi(x , y) = Ci di . Y + I i .

The inverse probl em corresponds to the optimizat ion of th e values (ai, bi,
Ci, di , ei, Ii) to get th e attractor that more resembles the target . When th e
ui, are no longer restri cted to be affine funct ions, we call the corresponding
IFS a mixed IFS. The first point we have to address is finding an adequate
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Figure 3: Other examples of attractors generated with mixed IFS.

representation of these mixed IFS. The more natural method is to represent
them as t rees. T he at t ractors of Figures 2 and 3 are random mixed IFS. T he
W i funct ions have been recursively buil t with the help of random shots in a
set of basic functions, a set of te rminals (x and y) , and a set of constants . In
our examples, the constants belong to [a,1], and the set of basic funct ions is

• +· -

• x

• div(x, y) = a .aaa~ + Iy l

• cos

• sin

• root (x) = vN
• loga(x) = log(1 + Ixl)

We thus represent each ui; as a tree as shown in Figure 4. The t rees of the
W i are t hen gathered to build the main t ree represent ing the IFS U as shown in
Figure 5. This is a very simple st ructure t hat allows an IFS to be coded with
different numbers and different types of funct ions. The evaluation of such a
st ructure corresponds to that of a simple mathematical expression. However ,
note that t he evaluation is recursive and thus may be time consuming. As we
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Figure 4: Th e funct ion ((cos(x) + 2 * y) * (1 + x) ).

Figure 5: Represent ation of a mixed IFS .

have seen, generating a mixed IFS is done via simple recursive random shots .
The set of possible IFS depends on th e choice of th e basic function set and
a constant set. A difficult problem for a mixed IFS is to verify th at th e ui ,

are contract ive, in order to select a hyperbolic IFS. Contrary to the case for
an affine IFS , th is verification is not straightforward for a mixed IFS and is,
in fact , computationally intractable. We thus propo se to use some heuristics
that reject st rongly noncontractive functions. The simplest way to do this
(see section 4.3 for a finer criterion) is to verify the cont ractivity on some
samp le points, for example, vertices of a grid placed on th e domain . Because
we have chosen to generate IFSs whose at t ractors are in the [0,1] x [0, 1]
domain, we verify at the same tim e th at each grid vertex remains in th e
domai n.

4 . Genetic programming to address the inverse problem

4.1 Introduction

Since the first prop osal to extend th e GA model to th e realm of computer
programs [16], to create programs able to solve problems for which th ey were
not explicitly designed, a lot of very different applications have arisen; for
example, robotics control and symbolic regression. Compared with the GA
approaches, the individuals in a genetic programming (GP ) population are
not str ings of fixed length but are programs th at , when executed, give a
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Figure 6: The domain constraint is tested on each vertex, and the
contractivity constraint on each couple of vertices.

possible solution to the problem. Typically, these programs are coded as
t rees. The pop ulation programs are buil t from elements of a set of functions
and a set of term inals that are typically symbols selected as being appropriate
to the kind of problems being solved. The "crossover" operation is performed
by exchanging subtrees betwee n the programs. Generally, the "mutation"
operation is not used in GP. Wh en it is used, mutation sometimes (with a
weak probability) involves modify ing a symbol of th e t ree. The evolut ion
of a program within a GP algorithm is done simultaneously on its size, its
st ructure, and its content . The search space is the set of all recursively
possible (sometimes according to some restrict ion rules) st ructures , built from
the function, terminal, and constant sets (see Figure 7).

When applying GP (or GA) to the resolut ion of a given problem, one
genera lly has to deal with several points such as the following.

• Coding of t he individu als.

• Evaluation functi on of t he individuals (fitness).

• Definit ion of the genet ic operators.

• Choice of t he parameters.

Concerning t he first point , as we have already seen, the individu als of the
population (i.e., the mixed IFS), are coded as t rees . This allows the coding
of a variable number of functions (dynamically), and it is an appropriate
data st ructure for mutati on and crossover. In the next sect ion we address
th e other points and insist on the original ones for our application: the use
of two different types of mutation and the integration of the cont ractivity
constraints in the fitness function .
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1. Generate an initial population of random compositions of the
functions and the term inals of the problem (computer pro­
grams) .

2. Iteratively perform the following substeps until the termina­
tion criterion has been satisfied.

a. Execute each program in the population and assign to it a
fitness value according to how well it solves the problem.

b. Create a new population of computer programs by apply­
ing the following two primary operations to selected com­
puter programs. This selection is done by choosing pro­
grams in the population with a probability proportional
to their fitness .

i . Copy som e existing computer programs in the new
population (with probability 1 - »-).

ii . Create new computer programs by genetically recom­
bining randomly chosen parts of two existing pro­
grams (with probability v.) .

3. Th e best computer program that appears in any generati on
(i .e., the "best so far" individual) is designated as the result
of genetic programming. This result ma y be a solution (or an
approxima te solution) to the problem.

Figure 7: Structure of a genet ic programming algorithm.

4 .2 The fitness function

From a general viewpoint , the fitness funct ion is a maj or procedure in GP
or GA applicat ions, because fitn ess is evaluated a large number of times at
each generation. Moreover, in most complex problems, such as the one we
deal with, the fitness evaluation step is t ime consuming. For these reasons,
the fitness evaluation procedure must be very carefully implemented, as it
can severely influence the computational t ime and result accuracy. In our
applicat ion, we have to characterize th e quality of an IFS, that is, to evaluate
how far its at t ractor is from the target image.

4.2 .1 Fitness based on collage theorem versus fitness bas ed on
t os s-coin algorithm

Among people dealing with the inverse problem for the IFS with GA, it
is largely admitted that t he fitn ess function based on the so-called collage
theorem is preferable to fitn ess based on a direct evaluation of the attractor
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Figure 8: Hausdorff distance may be counterintuitive.

via the toss-coin algorithm. Indeed, the first met hod is very attract ive and
can be less t ime consuming tha n the toss-coin evaluation algorithm.

Collage theorem . Let A be th e attractor of the hyperb olic IFS U =
{ WI " ' " Wn }

VKCP,

where A is the smallest number such that Vn,V(x,y) E t» , d(wn(x) ,wn(y)) <
A.d(x,y ).

This t heorem means that the problem of finding an IFS U whose attrac to r
is close to a given image I is equivalent to the minimization of th e dist an ce

n

dH(I , UWi(I ))
i=1

und er t he const ra int that the Wi are cont ractive functions. But if
dH(I ,U~1 Wi (I )) is t o be used as the fitness function in a GA (or a GP
algorit hm), then we have t he following.

• The fitness depends on the cont ractivity of the ma ps; if one of the
maps is weakly contract ive, t hen the term 1/(1 - A) may become very
large, and t he bound becomes meaningless. Moreover, in the case
of an affine IFS , it is possible to est imate A and thus to minim ize
1/ (1 - A)dH(I,U~=1 Wi(I )) to overcome this difficulty. For mixed IFS,
t he contract ion factor may not be uniform over the domain and is
almost impo ssible to estim ate.

• The Haus dorff distance itself is CP U-t ime consuming, an d may also
appear counte rint uit ive in many cases. For exam ple, Figure 8 shows
two couples of shapes [(a) , (b)] and [(a') , (b ')] with dH [(a), (b)] =
dH[(a') , (b') ]. While (a) and (b) are perceived as similar, (a' ) and (b')
look quite different.
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These drawbacks led us to use the toss-coin fitness, which experimentally
provid es more precise results. Moreover, t he direct computation of a dist ance
between the target and the est imated at t rac tor using the toss-coin algorit hm
allows the following.

• Variable accuracy est imations of the at t rac tor , by t uning of the itera­
tions numb er (see sect ion 4.2.2).

• Use of a more intuitive dist ance between shapes (nam ely, pixel differ­
ence or quadratic dist ance) inst ead of the Hausdorf distance.

4.2.2 P ract ical fit ness computation

To improve the algorit hm efficiency, we have modified the fitness computation
in the following two ways.

• As the fitness computat ion is the most comp utationally tim e-consuming
procedure (it is repeated a large number of t imes), it must be consid­
ered very carefully. The toss-coin algorithm generally needs a lot of
it erations to create the IFS's attractor. But because the population
quickly converges to a rough approximation of the target, only an ap­
proximation of the at t ractor may be needed at the beginning of the
optimization process. We thus make the iteration numb er linearly in­
crease during the genera t ions. This is done in order to provide a quickly
computed approximation at the beginning of the GP, and then progres­
sively fine-tune details during the computation.

• To guide the research of the optimum, we use dist ance images. This
allows the consideration of "smoother" functions to be opt imized, as
in [19]. A dist ance image is the transformation of a black and white
image into a gray-level image. The level assigned to each image point
is a function of its dist an ce from the original shape. It can be eas­
ily computed using a simp le algorit hm (see [6]), based on the use of
two masks shown in Figure 9. The resulting images are parameterized
by d1 and d2 , which represent the two elementary dist ances in verti ­
cal/horizontal and diagonal directions. This parameterizati on allows
the use of distan ces that are more or less abrup t . For pr actical reasons,
here we use gray-level values t hat are prop ortional to the inverse of a
dist an ce. Wh ite pixels (value 255) are inside the at t rac tor. Pixels get
darker as their dist ance to the attractor increases (values between 254
and 0).

The comp utat ion of the fitn ess of t he current IFS is thus based on a
measure of the difference between it s at t rac tor and th e dist ance image of the
target. The simple byt e-to-byte difference (i.e., a count of coinciding white
pixels) is thus completed with the mean value of t he gray levels of the points
belonging to the evaluated IF S attrac tor. This yields to the algorithm more
"local" inform ation about the resemblance between the attractor and the
target.
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Figure 9: Transform ing an image from black and white to gray-levels.

We impr oved this technique by varying t he distance image param eters (d1

and d2 ) along the generations. We begin with a very fuzzy distance image.
Every x generat ions we modify it so that at the end it becomes the real black
and whit e attra ctor. Tolerance to small errors and computat ion t imes have
thus been improved.

4 .3 Contractivity constraints

Before each individu al evaluat ion, we have to verify that it is a hyperbolic IFS
(thus yielding a unique attrac tor) . As we have seen , this verificat ion is not
easy for a mixed IFS , mainly because of the nonlinearity of the mappings. We
have proposed simply verifying the contract ivity condit ions on some sample
point s of the domain , and reject ing the individuals for which t he condit ions
are not verified. This is a way to discard a lot of noncontractive IFS from
the current pop ulat ion. But it may not discard some pathological mappings,
even if we use a lot of sampling point s. We propose addressing this problem
in a different way, which will allow us to use a priori inform ation in the t arget
image and to reduce the computat ion t ime. Our approach is based on the
fixed-point theorem. For a hyperb olic IFS U = Uui; whose attractor is A,
each mapping W i is cont ractive and thus admits a unique fixed point X i ' We
must then have

Vi ,Xi E A.

The verification of the exist ence of the X i and their est imation can be easily
performed. We built two suites of point s x~+1 = Wi(X~+1) start ing from two
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points of the domain (for example, (0,0) and (1,1)) .

• Within a few iterations we can estimate the fixed point or decide that
the function is not contractive. The use of two sequences allows us to
speed up the fixed-point estimation.

• We then check if the X i point belongs to the target shape. This test
yields a rough estimation of the chance that U correctly approximates I .

Notice that the first step above only gives a necessary condition for the
mapp ing to be cont ractive. Pr actically, we compute a constraint function
C( U) which is the mean distance value (measured on the distance image
of the target) of the X i to the target . If C( U) has too Iow a value, t he
fitness computation using the toss-coin algorit hm can be pruned. The fitn ess
computat ion integrates the contract ivity constraints in the following ways.

• If there exists a W i that is not contract ive, then fitness(U) = - 1 and
th e individual is directly discarded from the population.

• If C (U) < Co, th en fitness(U) = C (U).

• If C (U) 2': Co, t hen th e at t ractor A of U is computed using the toss-coin
algorit hm, and fitn ess(U) measures th e difference between A and th e
target .

4.4 Genetic operators

Crossover. We use the classical GP crossover that performs exchanges of
randomly selected nodes between the parent t rees (see Figure 10).

_____~P!..!!~~ts!!--------

Nodes I & 2 selected for crossover

----- - - --"---------
Offsprings

Figure 10: GP crossover with nodes 1 and 2 selected for crossover.
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Figur e 11: Mutati on of constants.

Muta tion. We decided to use mutat ion in our algorit hm, which is a common
operat or in GA but seldom used in classical GP. Indeed, mutation in a GA
is a small change in the genet ic code of the chromosome; for example, in the
case of binary codes, mutat ion is a bit flip of one of the genes. In the case of
GP , mutation has to slight ly perturb a tree st ruct ure . In this view, we have
to differentiate the nodes and the leaves of the tree.

1. Nodes. The nodes belong to the basic funct ion set , which is finite. A
nod e mut ati on could be to replace one node by anot her basic function
randomly chosen from the basic function set. Since such a perturbation
may have dr asti c effects, we do not use it .

2. Leaves. The leaves are chosen from a termina l set (x or y) or from
a const ant set, which is a cont inuous int erval ([0,1 ]). We also have
to separa te the mut ation of constants from the mut ation of variables,
because they are of a different nature. Of course, we could also imagine
a mutation proc ess that t ransforms a constant into a variable and vice
versa. However, t his seems to be too extreme, except for the case of
tr ansforming variables, as we will see.

(a) Constants . Mutation is the only means to make constants evolve.
This is very import ant in our case, because we need to perform a
numerical optimization of the constants . We perturb t he constants
with a parameterized prob ability (see section 4.5). A constant is
replaced by a new value obtained from a uniform random shot
within a disk of fixed radius (another parameter of our algorit hm)
around it (see Figure 11).

(b) Variables. An "internal" mutat ion (i.e., changing an x to a y or
vice versa ) is again possible, but we selected a mutation th at
changes a variable into a randomly chosen constant (see Fig­
ure 12). We made this choice on an empirical basis. We noticed
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Figure 12: Mutation of variables.

that in some cases constants tend to disappear from the curre nt
populat ion . Once they have disapp eared, they cannot reapp ear in
the offspring pop ulations. We thus propose the use of a constants
creation proc ess, via mutat ion of vari ables, t o maintain a minimal
proportion of const ants in the population. The effect of vanishing
constants not ed experimentally may be explained as follows. The
num erical optimizat ion of t he constants is a more difficult t ask
than the symbolic optimizat ion of the other nodes. The selec­
tion operato r thus tends to eliminate IFS wit h bad constants too
rapidly. This difference is due to the fact that the search space of
th e nod es and variables is a finit e one, whereas the search space of
the constants is theoreti cally infinite. Other techniques (that we
have not tested) to avoid the disappearance of constants may be to
reduce the size of the constant search space by allowing only a fi­
nite set of constants (via sampling , for example) or to separate the
symbolic and the num erical optimizat ion (i.e., using a subprocess
that optimizes the constants before each IFS evaluation).

4.5 Parameter setting

Many parameters have to be tuned to make the algorithm efficient . Here we
summarize these param eters and specify practical settings for each.

• Image size. The method was tested on images from 64 x 64 to 256 x 256
pixels.

• Populat ion size. Typically 20 to 50 individuals, larger populat ions were
less efficient .

• Maximum number of generations . Typically 1000 to 2000. Because
sma ll population sizes are used, a large numb er of generations are
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needed for convergence. This approach is more efficient than an algo­
rithm with a large population size and a smaller number of generations.

• Crossover probabilit y. Typically 0.7 to 0.9.

• Mutat ion probabilities. Typically 0.1 to 0.2 for th e constants, and 0 to
0.01 for th e variables.

• Range of the constants. [0,1].

• Perturbation radius of the constants during a mutation. Between 0.05
and 0.15. The mutation of a constant is t hus a uniform rand om shot
inside an interval centered on the constant .

• Maximum and minimum number of contractive maps. From 3 to 7
maps. This is t he only constraint set on the structures of the evolved
IFS's tr ees. No depth restrictions are imposed. However, we experi­
mentally verified that t heir structures do not excessively expand dur ing
th e evolution.

5 . Results

We have tested our algorithm on shapes that were act ual at tractors of IFS ,
some generated with rand omly chosen contractive maps. The choice of basic
functions for the GP is the one presented in section 3. Initial popul ations
were randomly chosen. We present here three good convergence results.
For each example, we specify the target at t ractor, th e best image obtained
after convergence, the fitness evolution curve, the parameter setting, and the
funct ions composing the best IFS, compared with the "true" ones (in general,
there are an infinit e numb er of IFS leadin g to th e same att ractor).

The first point to note is th at the funct ions of the approximations do
not resemble those of the target images (especially for Example 1). This is
due to the fact that the representation of an attractor by a set of functions
is not unique. Parameter adjustment remains a challenging task, but we
empirically noticed the following facts.

• The distance images are very efficient . This is particular ly obvious from
th e fitness evolution curves (Figures 14, 16, and especially Figure 18).
When upd ating the distance image, the curve suddenly drops and then
rises again. For th e new distance image, the value of the fitn ess becomes
lower, because it is computed on a dist ance image with larger d1 and
d2 parameters. This corresponds to a more precise evaluation of th e
difference between the current IFS and the target .

• The mutation of the constants is important : it brings diversity and
cannot be set to zero.

Finally, the target images that yield good results are rather compact; the
convergence to line-shaped targets is more difficult .
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Example 1. Approximation of a square (see Figures 13 and 14 and Table 1
for the parameter settings) .

IFS of t he best image:

(
sinx )

WI (x,y) = sin(sin(cos(sin y)))

W (x ) = ( s ~n(sinx) )
2 ,y smy

(
sinx )

W3 (X,y) = sin(siny)

W (x ) = ( s~n(sin(cosx) ) )
4 , y smy

_ ( sin(sinx) )
W5(X , y ) - sin(s in y)

IFS of the target image:

( ) (
0.5x + 0.5 )

W I x, Y = 0.5y + 0.5

( ) (
0.5x - 0.5 )

W2 x, Y = 0.5y + 0.5

( ) (
0.5x + 0.5 )

W3 x , y = 0.5y - 0.5

( ) (
0.5x - 0.5 )

W 4 x,y = 0.5y - 0.5
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Figure 13: Example 1, from left to right: Original image and best
images of genera t ions 10, 100, 300, and 1500.

XX1~
1.~01.00

X Graph
froax
r,;;~y

-I------ --=""'-"'-'t-----,-----,-------:;:-r-n-- - ----t--

YX1~

4.00

3.90

3.80

3.70

3.60

3.50

3.40

3.30

3.20

3.10

0.00 0.50

Figure 14: Example 1, fitn ess evolut ion. The maximum fitne ss of the
current population is the cont inuous curve; t he mean fitn ess is the
dotted one .

Tabl e 1: Example 1 param eter set t ings .

Image size
Population size
Max numb er of genera t ions
Crossover probability
Mutat ion probability for constants
Mutati on probability for variables
Range of the constants
Perturbati on radius for the constants
Max and min numb er of contract ive maps

64 pixels
30

1500
0.7
0.2
o

[0,1]
0.1

3 to 6
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Example 2 . Approximation of a random IFS (see Figures 15 and 16 and
Table 2 for t he parameter settings).

IFS of t he best

(
cosx )

Wi(X, y) = cos(cos(cos y))

W (x ) = ( sin x .* cos(siny) )
2 ,y cos(sm y)

(
sin x )

W3(X ,y) = cosy

(
sin(sin x) )

W4(X , y) = log(1 + Iyl)

( ) = ( sin(sin(s in x)) .* cos(cos x) )
Ws x , y sin(s in y)

IFS of the target image:

(
smx )

Wi ( x , y) = cos y

W (x ) = ( log(1 + Ixl ) )
2 , Y cosy

(
COS x )

W3(X,y) = siny

( )_( Visin(log(l + log(1 + Ixl))) - sin(sinx - 0.118226)1 )
W4 x ,y - V

cos( I(y .* X - sinx) .*Sinyl )
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Figure 15: Example 2, from left to right : Original image and best
images of generations 50, 300, 500, and 1000.

X GraphY x Iii

3.60

3.40

3.20

3.00

2.80

2.60

2.40

2.20

0.00 0.20 0.40 0.60 0.80
x x Iii

1.00

Figure 16: Example 2, fitness evolution. The maximum fitn ess of the
current population is the continuous curve; the mean fitness is the
dot ted one.

Table 2: Example 2 parameter settings.

Image size
Populat ion size
Max number of generat ions
Crossover prob ab ility
Mutation probab ility for constants
Mutatio n probabili ty for var iables
Range of t he constants
Pert urbat ion rad ius for the const ant s
Max and min number of cont ract ive maps

64 pixels
20

1000
0.7
0.2
o

[0,1]
0.1

4 to 6
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Example 3. Approximat ion of a random IFS (see Figures 17 and 18 and
Table 3 for t he parameter settings).

IFS of the best image:

(
sin x )

Wl( X,y) = cosy

W (x ) = ( log(1 + Ixl) )
2 , y cosy

(
cosx )

W3( X,y) = sin y

W4(X, y) = ( V(Isin(log(1 + log(1 + Ix l))) - (sin((sinx) - 0.118226))1) )

cos(V( I((y * x) - (sin x)) * (siny) I))

IFS of the target image:

(
sinx )

Wl(X, y) = cosy

(

log(1 + V Icos(sin x) - sin(cos(0.568514 - cos(V icos yl)))I) )
W2(X ,y) = ~----;-~~~---;~r::;:::::~~~~Vicos(cos(sin y) - y * cos(cos(l./y - 0.999847)))1

(
cosx )

W3(X,y) = siny

W4(X , y) = ( x * V1 0.335979 - cos vr;Il )
cos y

( ) _ ( sin (V lcos YI+ x - COS(cos(sin x))))
W s x , y -

cos(cos(cos(cos y)))
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Figure 17: Example 3, from left to right : Original image and best
images of generat ions 50, 260, 1010, and 1300.

Xx Ii}
1.00
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63.00
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60.00

59.00

58.00

57.00

56.00

55.00
"

54.00 i

53.00

0.00

Figure 18: Example 3, fitn ess evolut ion. The maximum fitn ess of the
current population is the continuous curve; the mean fitness is the
dotted one.

Table 3: Example 3 parameter settings.

Image size
Population size
Max number of generations
Cro ssover probabili ty
Mut at ion probabi lity for constants
Mutat ion prob abi lity for variables
Ran ge of the constants
Perturbat ion rad ius for the constants
Max and min number of cont ractive map s

256 pixels
30

1300
0.85
0.25
0.001

[0,1]
0.1

4 to 7
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6. Conclusion

We have proposed a method to solve the "general" inverse problem for the
mixed IFS within a reasonable computat ion t ime (a few hours on some mod­
ern computers) . This computation t ime is similar to computation t imes of
GA applied to the inverse pr oblem for the affine IFS [18], although in the
case of the mixed IFS the size of the search space is much larger. This fact
may be explained by t he use of variable-sized st ruc tures in the GP algorithm,
which seems to perform a more efficient search in a large space. The method
may be improved in several directions.

• Test a "smoother" t ransit ion between dist ance images. A recomputa­
t ion of distan ce images at every generation would allow t he param eters
d1 and d2 to vary more smoothly.

• Test other mutation strat egies, as suggest ed in sect ion 4.4.

• Test an adapt ive radius for mutation of const ants , in the same way as
for evolut ionary programming techniques, where mutation vari ance is
dynamically adapted , in respons e to t he performance of the individual.

• Make the iteration numb er of the toss-coin evaluation algorithm more
adapt ive (we can t heoret ically fix the iterati on number and the prob­
abilit ies of the toss-coin algorit hm to more rapidly approximate the
attractor within a fixed error).

• Modify th e storage st ructure of the IFS to reduce the computation tim e
(mainly by avoiding some useless comp utations) .

Such an approach might be interesting in the field of image compression. IFS
compression techniques are generally based on the affine IFS . The use of the
mixed IFS may yield more flexible spatial and gray-level t ransformations,
and t hus allow the compression ratio to be improved for the same numb er of
functions.
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