Complex Systems 9 (1995) 375-398

Mixed IFS: Resolution of the Inverse Problem using
Genetic Programming

Evelyne Lutton
Jacques Levy-Vehel
Guillaume Cretin
Philippe Glevarec
Cidric Roll
INRIA - Rocquencourt*
B.P. 105, 78153 LE CHESNAY Cedex, France

Abstract. We address here the resolution of the so-called inverse
problem for the iterated functions system (IFS). This problem has al-
ready been widely considered, and some studies have been performed
for the affine IFS, using deterministic or stochastic methods (simu-
lated annealing or genetic algorithm). In dealing with the nonaffine
IFS, the usual techniques do not perform well unless some a priori
hypotheses on the structure of the IFS (number and type of functions)
are made. In this work, a genetic programming method is investigated
to solve the “general” inverse problem, which allows the simultaneous
performance of a numeric and a symbolic optimization. The use of a
“mixed IFS” may enlarge the scope of some applications, for example,
image compression, because it allows a wider range of shapes to be
coded.

1. Introduction

Tterated functions system (IF'S) theory is an important topic in fractals. The
geometric and measure theoretical aspects of systems of contractive maps
(and associated probabilities) were worked out in [14], and the existence of a
unique compact invariant set was proved. Such studies have provided pow-
erful tools for the investigation of fractal sets, and the action of systems of
contractive maps to produce fractal sets has been considered by numerous
authors (e.g., [2, 3, 8, 12]). A major challenge of both theoretical and prac-
tical interest is the resolution of the so-called inverse problem [4, 20, 25, 26].
Except for some particular cases, no exact solution is known. From a com-
putational viewpoint this problem may be formulated as an optimization

*Electronic address: http://www-rocq.inria.fr/fractales/.

376 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

Figure 1: A two-dimensional slice of the error function for the Barns-
ley fern (left), for affine IFS (right). The dimension of the search
space is 24.

problem. A lot of work has been done in this framework, and some solu-
tions exist based on deterministic or stochastic optimization methods. As
the function to be optimized is extremely complex (see Figure 1), most of
them make some a priori restrictive hypotheses: use of an affine IFS, with
a fixed number of functions [5, 9, 15, 17, 27]. Solutions based on genetic
algorithms (GAs) or evolutionary algorithms, have recently been presented
for the affine IFS [10, 21, 24, 25]. As seen in section 3, the nonaffine IFS
provides an interesting variety of shapes, whose practical interest might be
large. However, in this case, the inverse problem cannot be addressed using
the “classical” techniques. We propose to make use of genetic programming
in that framework. As far as we know, this is the first attempt to use genetic
programming to solve this problem.

We first review IFS theory in section 2, then present some examples of
mixed IFS attractors (section 3), and finally detail our genetic programming
method (section 4).

2. TIterated functions system theory

An IFS U = {F,(wy)n=1..n} is a collection of N functions defined on a
complete metric space (F,d). Let W be the Hutchinson operator, defined on
the space of subsets of F"

VK C F, WK)= |J wi(K).

n€l0,N]

Then, if the w, functions are contractive (this type of IFS is called a hyper-
bolic IFS), there exists a unique set A such that:

W(A) = A.

A is called the attractor of the IFS.

Resolution of the Inverse Problem using Genetic Programming 377

Note. A mapping w : F — F, from a metric space (F,d) into itself, is
called contractive if there exists a positive real number s < 1 such that

dw(z),w(y)) < s.d(z,y) Vz,y € F.

The uniqueness of a hyperbolic attractor is a result of the contractive map-
ping fixed-point theorem for W, which is contractive according to the Haus-
dorff distance as follows.

e Hausdorff distance.

dg(A,B) = max[rileajc(grélg d(z,v)), I;leaé((rznelil d(z,y))]-

e Contractive mapping fized-point theorem. If (F,d) is a complete metric
space, and W : F' — F'is a contractive transformation, then W has a
unique fixed point.

From a computational viewpoint, an attractor can be generated according
to two techniques.

e Stochastic method (toss-coin). Let xq be the fixed point of one of the w;
functions. We build the point sequence z,, as follows: z,41 = w;(z,), i
being randomly chosen in {1..N'}. Then U, z, is an approximation of
the real attractor of U. The larger n is, the more precise the approxi-
mation is.

e Deterministic method. From any kernel Sy, we build the set sequence

{Sn},

Sne1 = W(Sn) = Jwn(S,).

When n tends to oo, S, is an approximation of the real attractor of U.

The inverse problem for a two-dimensional IFS can be stated as follows.

For a given two-dimensional shape (a binary image), find a set of
contractive maps whose attractor more resembles this shape, in
the sense of a predefined error measure.

Our error measure will be described in section 4.

378 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

() (\/| sin (cos 0.90856 — log(1 + |z]))])
sin

cos(cos() >
cos(log(1+ ly1)

log(1 + | cos(log(1 + |y + z|))])
3(2,9) | sin 0.084698|

log (1 + |sin(|O 565372])|)
|0 81366 — ((log(1 +]0.814259])) * cos y)|

log(1+ [1/10.747399 + cos y||)
ws(z,y) =)

Sll’l 0.73624

0.00014-|0.264553%y+0.581647+x|

Figure 2: A mixed IFS and its attractor.

3. Mixed iterated functions system

In the case of an affine IF'S, each contractive map w; of U is represented as

wi(a:,y)Z{Z Z}[HJF{;}

The inverse problem corresponds to the optimization of the values (a;, b;,
¢, diy €;, f3) to get the attractor that more resembles the target. When the
w; are no longer restricted to be affine functions, we call the corresponding
IFS a mized IFS. The first point we have to address is finding an adequate

Resolution of the Inverse Problem using Genetic Programming 379

Figure 3: Other examples of attractors generated with mixed IF'S.

representation of these mixed IFS. The more natural method is to represent
them as trees. The attractors of Figures 2 and 3 are random mixed IFS. The
w; functions have been recursively built with the help of random shots in a
set of basic functions, a set of terminals (z and y), and a set of constants. In
our examples, the constants belong to [0, 1], and the set of basic functions is

® + ® COS
& e sin
° X e root(z) = /|z]
T
d. = =
o div(e.) = o o loga(z) = log(1 + |a)

We thus represent each w; as a tree as shown in Figure 4. The trees of the
w; are then gathered to build the main tree representing the IFS U as shown in
Figure 5. This is a very simple structure that allows an IF'S to be coded with
different numbers and different types of functions. The evaluation of such a
structure corresponds to that of a simple mathematical expression. However,
note that the evaluation is recursive and thus may be time consuming. As we

380 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

Figure 5: Representation of a mixed IFS.

have seen, generating a mixed IFS is done via simple recursive random shots.
The set of possible IFS depends on the choice of the basic function set and
a constant set. A difficult problem for a mixed IFS is to verify that the w;
are contractive, in order to select a hyperbolic IFS. Contrary to the case for
an affine IF'S, this verification is not straightforward for a mixed IFS and is,
in fact, computationally intractable. We thus propose to use some heuristics
that reject strongly noncontractive functions. The simplest way to do this
(see section 4.3 for a finer criterion) is to verify the contractivity on some
sample points, for example, vertices of a grid placed on the domain. Because
we have chosen to generate IFSs whose attractors are in the [0,1] x [0, 1]
domain, we verify at the same time that each grid vertex remains in the
domain.

4. Genetic programming to address the inverse problem
4.1 Introduction

Since the first proposal to extend the GA model to the realm of computer
programs [16], to create programs able to solve problems for which they were
not explicitly designed, a lot of very different applications have arisen; for
example, robotics control and symbolic regression. Compared with the GA
approaches, the individuals in a genetic programming (GP) population are
not strings of fixed length but are programs that, when executed, give a

Resolution of the Inverse Problem using Genetic Programming 381

y
A
a0 a3 .1
al a2
(050) = X

Figure 6: The domain constraint is tested on each vertex, and the
contractivity constraint on each couple of vertices.

possible solution to the problem. Typically, these programs are coded as
trees. The population programs are built from elements of a set of functions
and a set of terminals that are typically symbols selected as being appropriate
to the kind of problems being solved. The “crossover” operation is performed
by exchanging subtrees between the programs. Generally, the “mutation”
operation is not used in GP. When it is used, mutation sometimes (with a
weak probability) involves modifying a symbol of the tree. The evolution
of a program within a GP algorithm is done simultaneously on its size, its
structure, and its content. The search space is the set of all recursively
possible (sometimes according to some restriction rules) structures, built from
the function, terminal, and constant sets (see Figure 7).

When applying GP (or GA) to the resolution of a given problem, one
generally has to deal with several points such as the following.

e Coding of the individuals.

e Evaluation function of the individuals (fitness).
e Definition of the genetic operators.

e Choice of the parameters.

Concerning the first point, as we have already seen, the individuals of the
population (i.e., the mixed IFS), are coded as trees. This allows the coding
of a variable number of functions (dynamically), and it is an appropriate
data structure for mutation and crossover. In the next section we address
the other points and insist on the original ones for our application: the use
of two different types of mutation and the integration of the contractivity
constraints in the fitness function.

382 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

1. Generate an initial population of random compositions of the
functions and the terminals of the problem (computer pro-
grams).

2. Iteratively perform the following substeps until the termina-
tion criterion has been satisfied.

a. Ezecute each program in the population and assign to it a
fitness value according to how well it solves the problem.

b. Create a new population of computer programs by apply-
ing the following two primary operations to selected com-
puter programs. This selection is done by choosing pro-
grams in the population with a probability proportional
to their fitness.

i. Copy some existing computer programs in the new
population (with probability 1 — p.).

it. Create new computer programs by genetically recom-
bining randomly chosen parts of two ewxisting pro-
grams (with probability p.).

8. The best computer program that appears in any generation
(i.e., the “best so far” individual) is designated as the result
of genetic programming. This result may be a solution (or an
approzimate solution) to the problem.

Figure 7: Structure of a genetic programming algorithm.

4.2 The fitness function

From a general viewpoint, the fitness function is a major procedure in GP
or GA applications, because fitness is evaluated a large number of times at
each generation. Moreover, in most complex problems, such as the one we
deal with, the fitness evaluation step is time consuming. For these reasons,
the fitness evaluation procedure must be very carefully implemented, as it
can severely influence the computational time and result accuracy. In our
application, we have to characterize the quality of an IF'S, that is, to evaluate
how far its attractor is from the target image.

4.2.1 Fitness based on collage theorem versus fitness based on
toss-coin algorithm

Among people dealing with the inverse problem for the IFS with GA, it
is largely admitted that the fitness function based on the so-called collage
theorem is preferable to fitness based on a direct evaluation of the attractor

Resolution of the Inverse Problem using Genetic Programming 383

(@ (b) @) (b)

Figure 8: Hausdorff distance may be counterintuitive.

via the toss-coin algorithm. Indeed, the first method is very attractive and
can be less time consuming than the toss-coin evaluation algorithm.

Collage theorem. Let A be the attractor of the hyperbolic IFS U =
{wi, ..., wy}

€
1-2A

VK CF, dg(K,W(K))<e= dg(K,A) <

where) is the smallest number such that Vn, V(z,y) € F?, d(w,(z), wa(y)) <
Ad(z,y).

This theorem means that the problem of finding an IFS U whose attractor
is close to a given image [is equivalent to the minimization of the distance

under the constraint that the w; are contractive functions. But if
dg(I,Ul_; w;(I)) is to be used as the fitness function in a GA (or a GP
algorithm), then we have the following.

e The fitness depends on the contractivity of the maps; if one of the
maps is weakly contractive, then the term 1/(1 — A) may become very
large, and the bound becomes meaningless. Moreover, in the case
of an affine IF'S, it is possible to estimate A and thus to minimize
1/(1 = Ndg(I,U, wi(I)) to overcome this difficulty. For mixed IFS,
the contraction factor may not be uniform over the domain and is
almost impossible to estimate.

e The Hausdorff distance itself is CPU-time consuming, and may also
appear counterintuitive in many cases. For example, Figure 8 shows
two couples of shapes [(a), (b)] and [(a’), (b’)] with dg[(a), (b)] =
dgl(a’), (b”)]. While (a) and (b) are perceived as similar, (a’) and (b’)
look quite different.

384 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

These drawbacks led us to use the toss-coin fitness, which experimentally
provides more precise results. Moreover, the direct computation of a distance
between the target and the estimated attractor using the toss-coin algorithm
allows the following.

e Variable accuracy estimations of the attractor, by tuning of the itera-
tions number (see section 4.2.2).

e Use of a more intuitive distance between shapes (namely, pixel differ-
ence or quadratic distance) instead of the Hausdorf distance.

4.2.2 Practical fitness computation

To improve the algorithm efficiency, we have modified the fitness computation
in the following two ways.

e As the fitness computation is the most computationally time-consuming
procedure (it is repeated a large number of times), it must be consid-
ered very carefully. The toss-coin algorithm generally needs a lot of
iterations to create the IFS’s attractor. But because the population
quickly converges to a rough approximation of the target, only an ap-
proximation of the attractor may be needed at the beginning of the
optimization process. We thus make the iteration number linearly in-
crease during the generations. This is done in order to provide a quickly
computed approximation at the beginning of the GP, and then progres-
sively fine-tune details during the computation.

e To guide the research of the optimum, we use distance images. This
allows the consideration of “smoother” functions to be optimized, as
in [19]. A distance image is the transformation of a black and white
image into a gray-level image. The level assigned to each image point
is a function of its distance from the original shape. It can be eas-
ily computed using a simple algorithm (see [6]), based on the use of
two masks shown in Figure 9. The resulting images are parameterized
by d; and ds, which represent the two elementary distances in verti-
cal/horizontal and diagonal directions. This parameterization allows
the use of distances that are more or less abrupt. For practical reasons,
here we use gray-level values that are proportional to the inverse of a
distance. White pixels (value 255) are inside the attractor. Pixels get
darker as their distance to the attractor increases (values between 254
and 0).

The computation of the fitness of the current IFS is thus based on a
measure of the difference between its attractor and the distance image of the
target. The simple byte-to-byte difference (i.e., a count of coinciding white
pixels) is thus completed with the mean value of the gray levels of the points
belonging to the evaluated IFS attractor. This yields to the algorithm more
“local” information about the resemblance between the attractor and the
target.

Resolution of the Inverse Problem using Genetic Programming 385

f .t

d2| di d2| i1 0 |difi

di| o i | d2 | di| d2| is1

-1 g+l -1+l

mask 1 mask 2
Original image Distance Masks

Distance (5,7) Distance (10,14) Distance (20,28)

Figure 9: Transforming an image from black and white to gray-levels.

We improved this technique by varying the distance image parameters (d;
and dy) along the generations. We begin with a very fuzzy distance image.
Every z generations we modify it so that at the end it becomes the real black
and white attractor. Tolerance to small errors and computation times have
thus been improved.

4.3 Contractivity constraints

Before each individual evaluation, we have to verify that it is a hyperbolic IF'S
(thus yielding a unique attractor). As we have seen, this verification is not
easy for a mixed IF'S, mainly because of the nonlinearity of the mappings. We
have proposed simply verifying the contractivity conditions on some sample
points of the domain, and rejecting the individuals for which the conditions
are not verified. This is a way to discard a lot of noncontractive IFS from
the current population. But it may not discard some pathological mappings,
even if we use a lot of sampling points. We propose addressing this problem
in a different way, which will allow us to use a priori information in the target
image and to reduce the computation time. Our approach is based on the
fixed-point theorem. For a hyperbolic IFS U = |Jw; whose attractor is A,
each mapping w; is contractive and thus admits a unique fixed point X;. We
must then have

Vi, X; € A.

The verification of the existence of the X; and their estimation can be easily
performed. We built two suites of points 27, ; = w;(z}) starting from two

386 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

points of the domain (for example, (0,0) and (1,1)).

e Within a few iterations we can estimate the fixed point or decide that
the function is not contractive. The use of two sequences allows us to
speed up the fixed-point estimation.

e We then check if the X; point belongs to the target shape. This test
yields a rough estimation of the chance that U correctly approximates I.

Notice that the first step above only gives a necessary condition for the
mapping to be contractive. Practically, we compute a constraint function
C(U) which is the mean distance value (measured on the distance image
of the target) of the X; to the target. If C(U) has too low a value, the
fitness computation using the toss-coin algorithm can be pruned. The fitness
computation integrates the contractivity constraints in the following ways.

o If there exists a w; that is not contractive, then fitness(U) = —1 and
the individual is directly discarded from the population.
o If C(U) < Cy, then fitness(U) = C(U).

e If C(U) > Cy, then the attractor A of U is computed using the toss-coin
algorithm, and fitness(U) measures the difference between A and the
target.

4.4 Genetic operators

Crossover. We use the classical GP crossover that performs exchanges of
randomly selected nodes between the parent trees (see Figure 10).

16
@

e Parents)
—
Nodes 1 & 2 selected for crossover l
S
g TN

Offsprings

Figure 10: GP crossover with nodes 1 and 2 selected for crossover.

Resolution of the Inverse Problem using Genetic Programming 387

Node mutated
Node to be mutated

Figure 11: Mutation of constants.

Mutation. We decided to use mutation in our algorithm, which is a common
operator in GA but seldom used in classical GP. Indeed, mutation in a GA
is a small change in the genetic code of the chromosome; for example, in the
case of binary codes, mutation is a bit flip of one of the genes. In the case of
GP, mutation has to slightly perturb a tree structure. In this view, we have
to differentiate the nodes and the leaves of the tree.

1. Nodes. The nodes belong to the basic function set, which is finite. A
node mutation could be to replace one node by another basic function
randomly chosen from the basic function set. Since such a perturbation
may have drastic effects, we do not use it.

2. Leaves. The leaves are chosen from a terminal set (z or y) or from
a constant set, which is a continuous interval ([0, 1]). We also have
to separate the mutation of constants from the mutation of variables,
because they are of a different nature. Of course, we could also imagine
a mutation process that transforms a constant into a variable and vice
versa. However, this seems to be too extreme, except for the case of
transforming variables, as we will see.

(a) Constants. Mutation is the only means to make constants evolve.
This is very important in our case, because we need to perform a
numerical optimization of the constants. We perturb the constants
with a parameterized probability (see section 4.5). A constant is
replaced by a new value obtained from a uniform random shot
within a disk of fixed radius (another parameter of our algorithm)
around it (see Figure 11).

(b) Variables. An “internal” mutation (i.e., changing an z to a y or
vice versa) is again possible, but we selected a mutation that
changes a variable into a randomly chosen constant (see Fig-
ure 12). We made this choice on an empirical basis. We noticed

388

Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

‘ i‘l}de to be mutated

Figure 12: Mutation of variables.

that in some cases constants tend to disappear from the current
population. Once they have disappeared, they cannot reappear in
the offspring populations. We thus propose the use of a constants
creation process, via mutation of variables, to maintain a minimal
proportion of constants in the population. The effect of vanishing
constants noted experimentally may be explained as follows. The
numerical optimization of the constants is a more difficult task
than the symbolic optimization of the other nodes. The selec-
tion operator thus tends to eliminate IF'S with bad constants too
rapidly. This difference is due to the fact that the search space of
the nodes and variables is a finite one, whereas the search space of
the constants is theoretically infinite. Other techniques (that we
have not tested) to avoid the disappearance of constants may be to
reduce the size of the constant search space by allowing only a fi-
nite set of constants (via sampling, for example) or to separate the
symbolic and the numerical optimization (i.e., using a subprocess
that optimizes the constants before each IFS evaluation).

4.5 Parameter setting

Many parameters have to be tuned to make the algorithm efficient. Here we
summarize these parameters and specify practical settings for each.

e Image size. The method was tested on images from 64 x 64 to 256 x 256
pixels.

e Population size. Typically 20 to 50 individuals, larger populations were
less efficient.

e Mazimum number of generations. Typically 1000 to 2000. Because
small population sizes are used, a large number of generations are

Resolution of the Inverse Problem using Genetic Programming 389

needed for convergence. This approach is more efficient than an algo-
rithm with a large population size and a smaller number of generations.

e (Crossover probability. Typically 0.7 to 0.9.

e Mutation probabilities. Typically 0.1 to 0.2 for the constants, and 0 to
0.01 for the variables.

o Range of the constants. [0,1].

e Perturbation radius of the constants during a mutation. Between 0.05
and 0.15. The mutation of a constant is thus a uniform random shot
inside an interval centered on the constant.

e Mazimum and minimum number of contractive maps. From 3 to 7
maps. This is the only constraint set on the structures of the evolved
IFS’s trees. No depth restrictions are imposed. However, we experi-
mentally verified that their structures do not excessively expand during
the evolution.

5. Results

We have tested our algorithm on shapes that were actual attractors of IFS,
some generated with randomly chosen contractive maps. The choice of basic
functions for the GP is the one presented in section 3. Initial populations
were randomly chosen. We present here three good convergence results.
For each example, we specify the target attractor, the best image obtained
after convergence, the fitness evolution curve, the parameter setting, and the
functions composing the best IFS, compared with the “true” ones (in general,
there are an infinite number of IFS leading to the same attractor).

The first point to note is that the functions of the approximations do
not resemble those of the target images (especially for Example 1). This is
due to the fact that the representation of an attractor by a set of functions
is not unique. Parameter adjustment remains a challenging task, but we
empirically noticed the following facts.

e The distance images are very efficient. This is particularly obvious from
the fitness evolution curves (Figures 14, 16, and especially Figure 18).
When updating the distance image, the curve suddenly drops and then
rises again. For the new distance image, the value of the fitness becomes
lower, because it is computed on a distance image with larger d; and
d, parameters. This corresponds to a more precise evaluation of the
difference between the current IFS and the target.

e The mutation of the constants is important: it brings diversity and
cannot be set to zero.

Finally, the target images that yield good results are rather compact; the
convergence to line-shaped targets is more difficult.

390 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

Example 1. Approximation of a square (see Figures 13 and 14 and Table 1
for the parameter settings).

IF'S of the best image:

wi(z,y) = (:;E(gfsin(cos(sin Y)))

wa(z, y) = (sin(sin z))

siny
(@,y) = sinz
WaE Y) = sin(siny)

gl g = < s%n(sin(cos z)))

siny

g,) = (sin{giri z))

sin(siny)

IFS of the target image:

0.52 + 0.5
wi@Y) = g5y405

wa(7,y)

0.5y — 0.5

0.5z — 0.5
0.5y — 0.5

)
- (05 ro3)
< 0.5z + 0.5)
0= (0503

Resolution of the Inverse Problem using Genetic Programming

Figure 13: Example 1, from left to right: Original image and best

images of generations 10, 100, 300, and 1500.

Yx10 X Graph

3.10

0.00 0.50 1.00

Figure 14: Example 1, fitness evolution. The maximum fitness of the
current population is the continuous curve; the mean fitness is the

dotted one.

Table 1: Example 1 parameter settings.

Xx10
150

Image size

Population size

Max number of generations

Crossover probability

Mutation probability for constants
Mutation probability for variables

Range of the constants

Perturbation radius for the constants
Max and min number of contractive maps

64 pixels
30
1500
0.7
0.2
0
0,1]
0.1
3to6

392 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

Example 2. Approximation of a random IFS (see Figures 15 and 16 and
Table 2 for the parameter settings).

IF'S of the best image:

wy(z,y) = < gg:(ios(cosy)))

ws(z,y) = (sin:z:fk cos(siny) >

cos(siny)

mmw=(“mj

cosy

o= (2

ws(z,y) = (sin(sin(sin z)) * cos(cos z))

sin(siny)

IF'S of the target image:

sinz
m@@=(mw)

log(1 + |z|)
cosy

cos T
siny
\/| sin(log(1 + log(1 + |z|))) — sin(sinz — 0.118226)|
cos \/| y*z —sinz)*siny|)

Resolution of the Inverse Problem using Genetic Programming 393

4

=,

o
]

e B K
Figure 15: Example 2, from left to right: Original image and best
images of generations 50, 300, 500, and 1000.

Yx10 X Graph

3.60
NWM’

3.40

3.20 Jf

2_“__
TR

= S

|
\
N Nt '
3.00 \i‘im :”-“ T
yliet :3, ; B
' I A IR)
il gt h !
REEATR R R I
2.80 MM Lyl T
e THDINEEEH
AT T
T
L A
|
2.60 bttt v T
Vo H !
£ \
K !
" H
2.40 :(7
d
Iy
2.20—}
XxlO.’
0.00 0.20 040 0.60 0.80 1.00

Figure 16: Example 2, fitness evolution. The maximum fitness of the
current population is the continuous curve; the mean fitness is the
dotted one.

Table 2: Example 2 parameter settings.

Image size 64 pixels
Population size 20

Max number of generations 1000
Crossover probability 0.7
Mutation probability for constants 0.2
Mutation probability for variables 0
Range of the constants [0,1]
Perturbation radius for the constants 0.1
Max and min number of contractive maps | 4 to 6

394 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

Example 3. Approximation of a random IFS (see Figures 17 and 18 and
Table 3 for the parameter settings).

IFS of the best image:

sinx
wl(m,y) = (cosy)

sl (log(1 + |z|))

cosy

COST
7~U3($1y) = (siny)

sl g (/([sin(log(1 + log(1 + |a]))) — (sin((sin) — 0.118226))]))
’ cos(4/(|((y * z) — (sinz)) * (siny)|))

IF'S of the target image:

sin x
wl(xa y) = < COSy >

log(1 + \/I cos(sin z) — sin(cos(0.568514 — cos(y/| cos y|)
\/| cos(cos(siny) — y * cos(cos(y/+/y — 0.999847)))|

Iy—

s, = m*\/\/10335979—cosf|)

cosy

ws(z,y) = Sin(M‘F x — cos(cos(sinz))))

cos(cos(cos(cos y)))

Resolution of the Inverse Problem using Genetic Programming

395

Figure 17: Example 3, from left to right: Original image and best

images of generations 50, 260, 1010, and 1300.

Yx10 X Graph
fmax
64.00 }';;y
61.00 T b :
‘ kb A
s YA PO I TR
590 i YN bl % i
I LA
sl i 14 LT R4 Y g
AR I T
.60 B I i
ch]
sepo—Hai 1}
R
55.00 i‘g
H
54.00—
53.00
Xxlo?
0.00 0.50 1.00

Figure 18: Example 3, fitness evolution. The maximum fitness of the
current population is the continuous curve; the mean fitness is the

dotted one.

Table 3: Example 3 parameter settings.

Image size

Population size

Max number of generations

Crossover probability

Mutation probability for constants
Mutation probability for variables

Range of the constants

Perturbation radius for the constants
Max and min number of contractive maps

256 pixels
30
1300
0.85
0.25
0.001
0,1]
0.1
4t07

396 Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

6. Conclusion

We have proposed a method to solve the “general” inverse problem for the
mixed IFS within a reasonable computation time (a few hours on some mod-
ern computers). This computation time is similar to computation times of
GA applied to the inverse problem for the affine IFS [18], although in the
case of the mixed IFS the size of the search space is much larger. This fact
may be explained by the use of variable-sized structures in the GP algorithm,
which seems to perform a more efficient search in a large space. The method
may be improved in several directions.

e Test a “smoother” transition between distance images. A recomputa-
tion of distance images at every generation would allow the parameters
dy and ds to vary more smoothly.

e Test other mutation strategies, as suggested in section 4.4.

e Test an adaptive radius for mutation of constants, in the same way as
for evolutionary programming techniques, where mutation variance is
dynamically adapted, in response to the performance of the individual.

e Make the iteration number of the toss-coin evaluation algorithm more
adaptive (we can theoretically fix the iteration number and the prob-
abilities of the toss-coin algorithm to more rapidly approximate the
attractor within a fixed error).

e Modify the storage structure of the IF'S to reduce the computation time
(mainly by avoiding some useless computations).

Such an approach might be interesting in the field of image compression. IFS
compression techniques are generally based on the affine IFS. The use of the
mixed IFS may yield more flexible spatial and gray-level transformations,
and thus allow the compression ratio to be improved for the same number of
functions.

References

(1] J. Albert, F. Ferri, J. Domingo, and M. Vincens, “An Approach to Natural
Scene Segmentation by Means of Genetic Algorithms with Fuzzy Data,” in
Pattern Recognition and Image Analysis, Selected papers of the 4th Spanish
Symposium (September 1990), Perez de la Blanca Ed, pages 97-113, 1992.

[2] M. Barnsley and S. Demko, “Iterated function system and the global con-
struction of fractals,” Proceedings of the Royal Society of London, A 399
(1985) 243-245.

[3] M. Barnsley, S. Demko, J. Elton, and J. Geronimo, “Invariant Measures
for Markov Processes Arising from Iterated Function Systems with Place-
dependent Probabilities,” (Georgia Institute of Technology, preprint).

Resolution of the Inverse Problem using Genetic Programming 397

4]

(5]

[6]

(7]

(8]

[10]

[11]

(12]

[13]

(14]

[15]

[16]
(17]

[18]

[19]

20]

[21]

M. Barnsley, V. Ervin, D. Hardin, and J. Lancaster, “Solution of an Inverse
Problem for Fractals and other Sets,” Proceedings of the National Academy
of Science (USA), 83 (1986).

M. F. Barnsley, Fractals Everywhere (Academic Press, New York, 1988).

G. Borgefors, “Distance Transformation in Arbitrary Dimension,” Computer
Vision, Graphics, and Image Processing, 27 (1984).

Y. Davidor, “Genetic Algorithms and Robotics: A Heuristic Strategy for
Optimization,” (World Scientific, 1991).

J. H. Elton, “An Ergodic Theorem for Iterated Maps,” (Georgia Institute
of Technology, preprint, 1986).

Y. Fisher, “Fractal Image Compression,” Siggraph 92 course notes, 1992.

B. Goertzel, “Fractal Image Compression with the Genetic Algorithm,”
Complexity International, 1 (1994).

D. A. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning (Addison-Wesley, Reading, 1989).

D. P. Hardin, “Hyperbolic Iterated Function Systems and Applications,”
(Georgia Institute of Technology, Ph.D. thesis, 1985).

A. Hill and C. J. Taylor, “Model-based Image Interpretation using Genetic
Algorithms,” Image and Vision Computing, 10 (1992) 295-301.

J. Hutchinson, “Fractals and Self-similarity,” Indiana University Journal of
Mathematics, 30 (1981) 713-747.

A. E. Jacquin, “Fractal Image Coding: A Review,” Proceedings of the IEEE,
81 (1993).

J. R. Koza, Genetic Programming (MIT Press, Cambridge, 1992).

J. Livy Vihel, Analyse et syntheése d’objets bi-dimensionnels par des méthodes
stochastiques, (Université de Paris Sud, Ph.D. thesis, 1988).

E. Lutton and J. Levy-Vehel, “Optimization of Fractal Functions using
Genetic Algorithms,” (INRIA, research report 1941, June 1993).

E. Lutton and P. Martinez, “A Genetic Algorithm for the Detection of
2d Geometric Primitives in Images,” in 12-ICPR (Jerusalem, Israel, 9-13
October, 1994).

G. Mantica and A. Sloan, “Chaotic Optimization and the Construction of
Fractals: Solution of an Inverse Problem,” Complez Systems, 3 (1989) 37-62.

D. J. Nettleton and R. Garigliano, “Evolutionary Algorithms and a Fractal
Inverse Problem,” Biosystems, 33 (1994) 221-231.

398

[22]

(23]

(24]

(25]

(26]

27]

Lutton, Levy-Vehel, Cretin, Glevarec, and Roll

G. Roth and M. D. Levine, “Geometric Primitive Extraction using a Genetic
Algorithm,” in IEEE Computer Society Conference on CV and PR, 1992,
pages 640-644.

S. Truvé, “Using a Genetic Algorithm to Solve Constraint Satisfaction Prob-
lems Generated by an Image Interpreter,” in Theory and Applications of
Image Analysis: 7th Scandinavian Conference on Image Analysis, August
1991. (Aalborg, DK, pages 378-386).

L. Vences and I. Rudomin, “Fractal Compression of Single Images and Image
Sequences using Genetic Algorithms,” The Eurographics Association, 1994.

E. R. Vrscay, “Fractal Geometry and Analysis,” Iterated Function Systems:
Theory, Applications and the Inverse Problem, 1991, pages 405-468.

R. Vrscay, “Moment and Collage Methods for the Inverse Problem of Fractal
Construction with Iterated Function Systems,” in Fractal 90 Conference,
Lisbonne, June 6-8, 1990.

E. W. Jacobs, Y. Fisher, and R. D. Boss, “Fractal Image Compression using
Iterated Transforms,” Data Compression, 1992.

