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Abstract. A new graph-based evolutionary algorithm named “Genetic
Network Programming, GNP” has been proposed. GNP represents its
solutions as graph structures, which can improve the expression ability
and performance. Since GA, GP and GNP already proposed are based
on evolution and they cannot change their solutions until one genera-
tion ends, we propose GNP with Reinforcement Learning (GNP with
RL) in this paper in order to search solutions quickly. Evolutionary al-
gorithm of GNP makes very compact graph structure which contributes
to reducing the size of the Q-table and saving memory. Reinforcement
Learning of GNP improves search speed for solutions because it can use
the information obtained during task execution.

1 Introduction

A new graph-based evolutionary algorithm named “Genetic Network Program-
ming (GNP)” was proposed[1]. GNP represents its solutions as graph structures
which have some distinguished abilities inherently. For example, GNP can mem-
orize the past action sequences in the network flow and make quite compact
structures. PADO[2] is also one of the graph-based evolutionary algorithm. The
difference between PADO and GNP is that PADO aims to evolve programs in
static environments, while GNP aims to evolve them in dynamic environments.
However, conventional GNP are based on evolution, i.e., after the programs of
GNP are carried out to some extent, they are evaluated and evolved based on
their fitness values, so many trials must be done again and again. To overcome
this problem and search solutions quickly, Q learning[3] which is one of the
famous learning method was introduced for the learning of GNP[4, 5]. In this
paper, a new algorithm of GNP with Reinforcement Learning (GNP with RL) is
proposed. This method is the extension of the previous GNP, so it becomes more
general framework of GNP with RL in terms that 1) we defined the new state
and action pairs used by RL which are different from the previous method, 2)
the proposed method can change node functions in addition to node connections
and 3) reduce the size of the Q-table used by RL, so the calculation time and
the physical memory can be saved.
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[6, 7] are also the methods that combine RL and evolution. In [6], the special
nodes for learning are introduced to GP[8, 9] and the contents of the nodes,
namely the actions of agents, are determined by Q-learning, while in [7], Q-table
is produced by GP in order to do Q-learning efficiently. For example, if the GP
program is (TAB(∗xy)(+z5)), it represents the 2 dimensional Q-table having 2
axes, x ∗ y and z+5. On the other hand, the proposed method in this paper
determines node functions and connections of the GNP network efficiently by
combining RL and evolution.

This paper is organized as follows. In the next section, the algorithm of the
proposed method is described. Section 3 shows the results of the simulations.
Section 4 is devoted to conclusions.

2 Genetic Network Programming (GNP)

In this section, Genetic Network programming is explained in detail. GNP is an
extension of GP in terms of gene structures. The original motivation to develop
GNP is based on the more general representation ability of graphs than that of
trees, which is described in detail in this section.

2.1 Basic structure of GNP

First, we explain other evolutionary algorithms in order to compare them with
GNP. GP can be used as a decision making tree when function nodes are if -then
type functions and all terminal nodes are some concrete action functions. A tree
is executed from the root node to a certain terminal node in each iteration. How-
ever, GP tree might cause the severe bloat that makes the search for solutions
difficult due to the unnecessary expansion of the depth of the tree.

PADO is a graph-based evolutionary algorithm, but it has both the start node
and terminal node unlike GNP. The node used in PADO has two functional parts:
an action part and a branch-decision part. This branch-decision part selects the
branch leaving the current node depending on the stack memory. If the current
node reaches the end node before the threshold time, it runs again from the start
node without initializing an indexed memory. PADO weights on the indexed
memory because the node transition of PADO is based on the memory. PADO
has been applied to image and sound classification problems, and splendid results
have been shown. So PADO is distinguished for static problems, but GNP is
developed to deal with dynamic problems.

Next, we explain the characteristics of GNP.
Components and Structure

Fig. 1 shows the basic structure of GNP. GNP has a number of Judgement
nodes and Processing nodes. Judgement nodes are if -then type decision func-
tions or conditional branch decision functions. They return judgement results
for assigned inputs and determine the next node. Processing node determines
an action/processing an agent should do. Contrary to judgement nodes, process-
ing nodes have no conditional branches. The GNP we used never causes bloat
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Fig. 1. Basic structure of GNP

because of the predefined number of nodes although GNP can evolve the pro-
grams having variable sizes. Because the graph structure of GNP inherently has
the ability to re-use nodes unlike GA and GP1, GNP can use certain Judge-
ment/Processing nodes repeatedly to achieve tasks. Therefore, even if the num-
ber of nodes is predefined and smaller than GP programs, GNP can perform
well by making effective programs based on re-using nodes. So we do not have
to prepare the excessive number of nodes, as a result, we can easily determine
the number of nodes experimentally, i.e., determine it manually according to the
problems to be solved.

Memory function of graph

1 GP can also re-use nodes by using ADFs.
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Although GNP is booted up from the start node, there are no terminal nodes.
After the start node, the current node is determined according to the connec-
tions of the nodes and judgement results, so GNP is carried out according to
the network flow without any terminals, in other words, the determination of
the current node is influenced by the node transitions of the past. Therefore, the
graph structure itself implicitly has a memory function of the past actions of an
agent. The node transition ends when the end condition is satisfied, for exam-
ple, the time step reaches the maximum one or the GNP program completes the
given tasks.

Time Delays
GNP can have time delays. di is the time delay GNP spends on judgement

or processing of node i, and dij is the one GNP spends on transitions from node
i to j. In the real world problems, when agents judge environments, prepare for
actions and take actions, agents need to spend time. For example, when a man
is walking and there is a puddle before him, he will avoid it. At that time, it
takes some time to judge the puddle (di for judgement), to put judgement into
action (dij for transition from judgement to processing) and to avoid the puddle
(dj for processing). Since time delays are listed in each node gene and they are
the unique attributes of each node, GNP can make the flexible system consid-
ering time delays. In this paper, for simplicity, dij is set at 0, di of judgement
nodes is set at 1 time unit, and di of processing nodes is set at 5 time units. In
addition, the one step of an agent’s behavior is defined in such a way that one
step ends when an agent uses 5 or more time units. So an agent can do less than
5 judgements and 1 processing, or 5 judgements in one step.

2.2 Gene structure of GNP

The whole structure of GNP is determined by the combination of the following
node genes. A genetic codes of node i (0 ≤ i ≤ n − 12) is shown in Fig.1.

Ki represents the node type, Ki = 0 means Start node, Ki = 1 means
Processing node and Ki = 2 means Judgement node. IDip (1 ≤ p ≤ mi

3 )
shows the code number of judgements and processings, and they are represented
as a unique number shown in the LIBRARY. In Fig. 1, mi of all nodes are set
at 2, i.e., GNP can select the node function IDi1 or IDi2. Qij means Q-value
which is assigned to each state and action pair. In this method, ”State“ means
a current node, and ”Action“ means a selection of node function (IDip). dip is
the time delay spent for judgement or processing. CA

ip, C
B
ip, . . . show the node

number of the next node j. dA
ip, d

B
ip, . . . mean time delay spent for the transition

from node i to node j.

2 Each node has a unique number from 0 to n-1, respectively, when the number of
nodes is n.

3 mi (1 ≤ mi ≤ M M : Maximum number of functions in a node) shows the number
of node functions GNP can select at the current node i.
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Judgement node determines the upper suffix of the connection gene which
indicates the judgement result. We can set the number of branches from the
judgement nodes at any value depending on the problem. For example, we sup-
pose branch A and B exist, then if the result of the judgement is “B”, GNP
refers to CB

ip and dB
ip, but processing nodes refer to only CA

ip and dA
ip because

they have no conditional branches, i.e., no judgement functions.

2.3 Node transition rule of GNP

GNP starts its node transition from a start node, so the first current node is
a start node. Then a current node is moved based on the connection of a start
node.

If the current node i is a judgement node, first one Q-value is selected from
Qi1, . . . , Qimi based on ε-greedy policy. That is, a maximum Q-value among
Qi1, . . . , Qimi is selected with the probability of 1−ε, or a random one is selected
with the probability of ε, then the corresponding IDip is selected. After selecting
a function, GNP executes the selected judgement function and determine the
next node according to the judgement result. For example, if the selected function
is IDi2 and the judgement result is “B”, the next node becomes node CB

i2.
If the current node is a processing node, a processing function is selected in

the same way as judgement node. After GNP executes the selected processing,
the next node becomes node CA

i2 if the selected function is IDi2.

2.4 Evolution phase

Fig. 2 shows the whole flowchart of GNP. In this sub-section, the genetic oper-
ators in the evolution phase are introduced.

GNP realizes evolution using crossover and mutation. In each generation, the
elite individuals are preserved and the rest of the individuals are replaced with
the new ones generated by crossover and mutation.

Crossover Crossover is executed between two parents and generates two off-
spring [Fig. 3]. Crossover operator exchanges all the genes of the selected nodes.

1. Select two parents using tournament selection.
2. Each node i (0≤i≤n−1) is selected as a crossover node with the probability

of Pc.
3. Two parents exchange the genes of the corresponding selected nodes having

the same node number.
4. Generated new individuals become the new ones of the next generation.

Fig. 3 is a simple crossover example of the graph structure with 3 processing
nodes.
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Fig. 2. Flowchart of GNP

Mutation Mutation is executed in one individual and a new one is generated
[Fig. 4].

1. Select one individual using tournament selection
2. Mutation operator

(a) connection : Each node branch is re-connected to the different node with
the probability of Pmc.

(b) the number of functions : Each node i is selected with the probability of
Pmn, and the number of functions mi is changed to 1, . . . , or M . If mi

becomes greater than the previous one, then one or more new functions
selected in the LIBRARY are added to the node. If mi becomes smaller
than the previous one, then one or more functions are deleted from the
node.
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(c) the content of functions : Each function is selected with the probability
of Pmf , and it is changed to the other function, i.e., IDip and dip are
changed to the other ones.

3. Generated new individual becomes the new one of the next generation.

2.5 Learning phase

In learning phase, node transitions are carried out and Q values are updated.
Since RL of GNP is done when agents are carrying out their task, GNP can
search for better solutions every judgement/processing besides the evolutional
operation executed every generation. The aim of the combination between RL
and evolution is to take advantage of the sophisticated search ability of evolution
and online learning of RL.

Sarsa(λ) In this paper, Sarsa(λ) algorithm is used for the learning phase of GNP
because the method with eligibility traces has good characteristics of both Monte
Carlo and TD methods, i.e., using real experience and bootstrap simultaneously.
Eligibility traces are useful for dealing with non-Markov tasks and long-delayed
rewards.

Generally, state s is determined by the information an agent can get, and
action a means the actual action it takes. In GNP learning, however, a state
means a current node and an action means a selection of a function. Fig. 5
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shows states, actions and an example of node transition. Since sarsa(λ) is used
in learning phase, replacing traces eip are assigned to all state and action pairs.
Here an example of node transition is explained using Fig. 5.

1. At time t, GNP refers to all Qip and select one of them based on ε-greedy.
We suppose that GNP selects Qip1 and the corresponding function IDip1 .

2. Then GNP executes the function IDip1 , gets the reward rt and the next
node j becomes CA

ip1
.

3. At time t + 1, GNP selects one Qjp in the same way as step 1. Here we
suppose that Qjp2 is selected.

4. Then the following procedure is executed.
δ = rt + γQjp2 − Qip1 , eip1 = 1
For all i and p,
Qip = Qip + αδeip

eip = γλeip

5. t = t + 1, i = j, p1 = p2 then return step 2.

In this example, node i is a processing node, but if it is a judgement node, next
current node is selected among CA

ip, C
B
ip, . . . according to the judgement result.

time
t t+1

node i

IDi1

IDip1

...
...

...
...

state st

IDimi

...
...

Qip1

at

eip1

node j (=Cip1)

IDj1

IDjp2

...
...

...
...

state st+1

IDjmj

...
...

Qjp2

at+1

ejp2

reward rt reward rt+1

Cip1

A

A

Fig. 5. An example of node transition

3 Simulations

To confirm the effectiveness of the proposed method, the simulations using tile-
world and maze problem are done in this section.
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Table 1. Function Set

Judgement node Processing node

symbol content symbol content

JF judge FORWARD MF move forward
JB judge BACKWARD TR turn right
JL judge LEFT side TL turn left
JR judge RIGHT side ST stay
TD direction of the nearest TILE from the agent RD random (MF, TR or TL)
HD direction of the nearest HOLE from the agent
THD direction of the nearest HOLE from the nearest TILE
STD direction of the second nearest TILE

3.1 Tileworld

The tileworld[10] used in the simulations is shown in Fig. 6 which is the 2D grid
world including multi-agents (three agents in this paper), obstacles, tiles, holes
and floors. Agents have some sensors and action abilities, and they aim to push
and drop many tiles into holes as fast as possible. Since the given sensors and
simple actions are not enough to achieve a task, agents should make the clever
combinations of the sensor information (judgements) and actions (processings).
The nodes used by agents are shown in Table 1, but RD (random) is not used
in the tileworld environment. The judgement nodes { JF, JB, JL, JR } return
{ tile, hole, obstacle, floor or agent } and { TD, HD, THD, STD } return {
forward, backward, left, right or nothing } as judgement results like A, B, . . . in
Fig. 1.

T
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Floor

T

T

T

T
T

T

T

T

T
T

T

T
T T

T

T
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T

T
T T

T
T

T

Fig. 6. Tileworld problem

goalG

key

obstacle

agent

floor

K

door
K G

Fig. 7. Maze problem

Fitness and Reward A trial ends when the time step reaches the predefined
step (300), and then fitness is calculated. “Fitness” is used in evolution phase
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and “Reward” is used in learning phase.
Fitness = the number of dropped tiles
Reward =1 (when an agent drops a tile into a hole.)

Results We used the proposed method (GNP with RL), standard GNP (GNP),
standard GP and GP with ADFs for the comparisons. Standard GNP uses only
evolution to make its programs. The simulation conditions are shown in Table
2. Only GNP with RL preserves 5 elite individuals instead of 1 in order to
make the system stable because the programs of GNP with RL are changed
during task execution unlike the other methods. GP uses the judgement nodes
of GNP as root and function nodes of the trees, and processing nodes are used
as terminal nodes. A program of GP is executed from the root node, and GP
repeats selecting branches at function nodes. Finally the content of the reached
terminal node is executed. This procedure is defined as 1 step of GP. GP uses
one-point crossover described in [11] and half-and-half initialization methods [8]
for fixing the maximum depth of trees and producing trees with various sizes
and shapes in an initial population. GP with ADFs has three ADFs in each
individual.

Fig. 8 shows the fitness curves of GNP with RL, GNP and GP averaged
over 30 simulations. The result of GP is based on the tree of maximum depth 6
because it shows the best results, and that of GP with ADFs is based on the main
program (tree) of maximum depth 5 and the ADFs of maximum depth 4.From
the results, GNP with RL shows the best fitness value. Although it seems to be
natural that the method using RL can obtain better solutions than the other
methods without it, the aim of developing GNP with RL is to solve the problems
faster than the others in the same time limit of actions. In other words, GNP
with RL aims to make full use of the information obtained during task execution
for its learning.

In this problem, the arity of the function nodes of GP is relatively large (five),
so the total number of nodes of GP becomes quite large as the depth becomes
large. Although GP programs can have higher expression ability with the increase
of the number of nodes, it takes much time to execute the programs and much
memory is needed. For example, GP (depth6) takes too much time to execute the
evolutionary operations and GP (depth7) cannot be executed because of the lack
of memory in our machine (Pentium4 2.5GHz, DDR-SDRAM PC2100 512MB).
GNP can obtain the good results using relatively small number of nodes (60
nodes).

3.2 Maze problem

Fig. 7 shows the environment used in the simulations. An agent should go to the
goal but there is a door in front of the goal, so agent must take the key put on
the upper left cell first in order to open the door. The nodes used by an agent
are shown in Table 1, and an agent uses the processing nodes { MF, TL, TR,
RD } and the judgement nodes { JF, JB, JL, JR } which return { floor, obstacle
or goal } as a judgement result.
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Table 2. Simulation conditions

GNP with RL GNP GP

the number of crossover 120 120 120
individuals mutation 175 179 179

elite 5 1 1

the number of nodes 60 60 GP: max 19,531
(5 per each) GP+ADFs: 6,249

Crossover rate Pc 0.1 0.1 ——

Mutation rate Pmc, Pmn, Pmf 0.1, 0.01, 0.01 Pm=0.1 Pm=0.1

step size α 0.1
Learning parameters discount rate γ 0.9 —— ——

trace decay
parameter λ 0.9 —— ——
ε 0.1
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Fig. 8. Tileworld problem
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Fig. 9. Maze problem

Fitness and Reward The fitness and reward in maze problem are as follows
and the time limit is also 300 steps.

Fitness = remaining time (if arriving at the goal), otherwise 0.
Reward =1 (when an agent arrives at the goal)

Result Fig. 9 shows the fitness curves averaged over 30 simulations.
From the results, GP(max depth 6) can learn faster than the other methods

in the early generation. However, the characteristics of GNP are to reuse nodes
and memory function, so GNP can find better solutions finally although it takes
a little long time to make the complicated graph structure. In addition, GNP
with RL can improve the learning speed and find better solution than standard
GNP, and find the optimal policy (fitness=253, 47 steps) in all 30 simulations.
GP can obtain the optimal policy some times, but there are some cases which
show the fitness values around 200, so it degrades the average fitness.
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4 Conclusion

In this paper, in order to enhance the performance of GNP, a new algorithm of
GNP using reinforcement learning is proposed. Since GNP with RL can make
full use of the information obtained during task execution, it is clarified from the
simulations that the proposed method can improve the learning speed and find
better solutions than standard GNP. In addition, the proposed method assigns
a state to each node, so the number of states is that of nodes. As a result, the
size of the Q-table becomes very small.

In a future, various problems will be solved in order to confirm the effective-
ness of GNP with RL and comparisons with other methods such as GP with
ADFs and other graph-based evolutionary methods like EP with FSMs will be
done.
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