
PerlGP - The Manual

Bob MacCallum
Stockholm Bioinformatics Center

Stockholm University
106 91 Stockholm

Sweden

February 3, 2003

Contents

1 Installation 5
1.1 Versions and Disclaimer . 5
1.2 Prerequisites . 6
1.3 Unpacking . 6
1.4 Environment Variables . 6

2 Overview 7
2.1 Aims of the Project . 7
2.2 Naming and Font Conventions 8
2.3 Class/Object Hierarchy . 9
2.4 How It All Works . 9

2.4.1 Step-by-step: perlgp-run.pl 9
2.4.2 Step-by-step: Data input 10
2.4.3 Step-by-step: Tournaments I, Fitness Evaluation 11
2.4.4 Step-by-step: Tournaments II, Selection and Reproduction 12

2.5 What You Have to Implement . 12

3 Class: Algorithm 13
3.1 Methods . 13

3.1.1 new() . 13
3.1.2 init() . 13
3.1.3 loadSet()* . 14
3.1.4 loadData() . 14
3.1.5 fitnessFunction()* . 14
3.1.6 saveOutput()* . 15
3.1.7 refresh() . 15
3.1.8 run() . 15
3.1.9 tournament() . 16
3.1.10 calcFitnessFor() . 17
3.1.11 makeFamilies() . 18
3.1.12 crossoverFamily() . 18
3.1.13 decideBetterFitness() 19

1

3.1.14 stopCondition() . 19
3.1.15 extraLogInfo() . 19
3.1.16 parseExtraLogInfo() . 19

3.2 Attributes & Variables . 20
3.2.1 TrainingSet* . 20
3.2.2 TestingSet* . 20
3.2.3 FitnessDirection* . 21
3.2.4 WorstPossibleFitness 21
3.2.5 Population . 21
3.2.6 Tournament . 21
3.2.7 Tournaments . 22
3.2.8 TournamentsSinceBest 22
3.2.9 BestFitness . 22
3.2.10 TournamentSize . 22
3.2.11 TournamentParents . 22
3.2.12 TournamentKillAge . 23
3.2.13 AlwaysEvalFitness . 23
3.2.14 MateChoiceRandom . 23
3.2.15 TournamentLogFile . 23
3.2.16 LogInterval . 24
3.2.17 FitnessesFile . 24
3.2.18 ComplexityLogFile . 24
3.2.19 ComplexityInterval . 24
3.2.20 RefreshInterval . 24
3.2.21 RecentTrainingOutputFile 25
3.2.22 RecentTestingOutputFile 25
3.2.23 RecentCodeFile . 25
3.2.24 BestTrainingOutputFile 25
3.2.25 BestTestingOutputFile 25
3.2.26 BestCodeFile . 26
3.2.27 KeepBest . 26
3.2.28 KeepBestDir . 26
3.2.29 KeepMax . 26
3.2.30 PopulationBackupInterval 26
3.2.31 EmigrateInterval . 27
3.2.32 ImmigrateInterval . 27
3.2.33 AlarmTime . 27
3.2.34 ForkForEval . 27

4 Class: Individual 28
4.1 Methods . 28

4.1.1 new() . 28
4.1.2 init() . 28
4.1.3 reInitialise() . 28
4.1.4 evalEvolvedSubs() . 28
4.1.5 evolvedInit() . 29
4.1.6 evaluateOutput()* . 29
4.1.7 extraLogInfo() . 30
4.1.8 crossover() . 30
4.1.9 start crossover() . 31

2

4.1.10 crossover() . 31
4.1.11 mutate() . 32
4.1.12 point mutate shallow() 32
4.1.13 point mutate deep() . 33
4.1.14 point mutate() . 33
4.1.15 random node() . 33
4.1.16 macro mutate() . 34
4.1.17 replace subtree() . 34
4.1.18 insert internal() . 34
4.1.19 delete internal() . 35
4.1.20 copy subtree() . 35
4.1.21 swap subtrees() . 35
4.1.22 encapsulate subtree() 36
4.1.23 simplify() . 36
4.1.24 xcopy subtree() . 37
4.1.25 fix nodes() . 37
4.1.26 get subnodes() . 37
4.1.27 del subtree() . 37
4.1.28 tree type size() . 38
4.1.29 display tree() . 38
4.1.30 saveCode() . 38
4.1.31 saveTree() . 38
4.1.32 save() . 39
4.1.33 load() . 39
4.1.34 tieGenome() . 39
4.1.35 untieGenome() . 40
4.1.36 retieGenome() . 40
4.1.37 initTree() . 40
4.1.38 init tree() . 41
4.1.39 grow tree() . 41
4.1.40 expand tree() . 41
4.1.41 tree id() . 41
4.1.42 initFitness() . 42
4.1.43 eraseMemory() . 42
4.1.44 memory() . 42
4.1.45 getCode() . 43
4.1.46 getSize() . 43
4.1.47 Fitness() . 43
4.1.48 Age() . 43
4.1.49 random terminal() . 44
4.1.50 random existing terminal() 44
4.1.51 random function() . 44

4.2 Attributes & Variables . 45
4.2.1 NodeMutationProb . 45
4.2.2 FixedMutations . 45
4.2.3 FixedMutationProb . 45
4.2.4 PointMutationFrac . 45
4.2.5 NumericMutationFrac . 46
4.2.6 NumericMutationRegex 46
4.2.7 NumericIgnoreNTypes . 46

3

4.2.8 NumericAllowNTypes . 46
4.2.9 NoNeutralMutations . 47
4.2.10 PointMutationDepthBias 47
4.2.11 MacroMutationDepthBias 47
4.2.12 MacroMutationTypes . 47
4.2.13 EncapsulateIgnoreNTypes 48
4.2.14 EncapsulateFracMax . 48
4.2.15 UseEncapsTerminalsFrac 48
4.2.16 MutationLogFile . 48
4.2.17 MutationLogProb . 49
4.2.18 NodeXoverProb . 49
4.2.19 FixedXovers . 49
4.2.20 FixedXoverProb . 49
4.2.21 XoverDepthBias . 50
4.2.22 XoverSizeBias . 50
4.2.23 XoverHomologyBias . 50
4.2.24 AsexualOnly . 50
4.2.25 XoverLogFile . 51
4.2.26 XoverLogProb . 51
4.2.27 MaxTreeNodes . 51
4.2.28 MinTreeNodes . 51
4.2.29 TreeDepthMax . 52
4.2.30 TerminateTreeProb . 52
4.2.31 TreeDepthMin . 52
4.2.32 NewSubtreeDepthMean . 52
4.2.33 NewSubtreeDepthMax . 53
4.2.34 UseExistingTerminalsFrac 53
4.2.35 GetSizeIgnoreNTypes . 53
4.2.36 DBFileStem . 53
4.2.37 ExperimentId . 53
4.2.38 Population . 54
4.2.39 Functions . 54
4.2.40 Terminals . 54

5 Class: Population 54
5.1 Methods . 54

5.1.1 new() . 54
5.1.2 init() . 55
5.1.3 addIndividual() . 55
5.1.4 findNewDBFileStem() . 55
5.1.5 repopulate() . 55
5.1.6 backup() . 56
5.1.7 emigrate() . 56
5.1.8 export tar file() . 56
5.1.9 immigrate() . 57
5.1.10 initFitnesses() . 57
5.1.11 countIndividuals() . 57
5.1.12 randomIndividual() . 58
5.1.13 selectCohort() . 58

5.2 Attributes & Variables . 58

4

5.2.1 Individuals . 58
5.2.2 PopulationSize . 58
5.2.3 MigrationSize . 58
5.2.4 PopulationDir . 59
5.2.5 ExperimentId . 59

6 Universal Base Class: PerlGPObject 59
6.1 Methods . 59

6.1.1 new() . 59
6.1.2 AUTOLOAD() (get and set attributes) 59
6.1.3 optionalParams() . 60
6.1.4 compulsoryParams() . 60

6.2 Attributes & Variables . 61
6.2.1 Class . 61

7 Grammar definition 61
7.1 Tree-as-Hash-Table Genotype Representation 62
7.2 Grammar Specification . 62
7.3 Random Initialisation of Programs 63

8 Utility Scripts 64
8.1 perlgp-run.pl . 64
8.2 plot-tlog.pl . 65
8.3 perlgp-wipe-expt.pl . 65
8.4 perlgp-rand-prog.pl . 65
8.5 perlgp-sample-pop.pl . 65
8.6 perlgp-show-prog.pl . 66
8.7 perlgp-mrun.pl . 66
8.8 perlgp-avg-logs.pl . 66

9 Demos 67
9.1 Approximation of pi . 67

9.1.1 Problem definition . 67
9.1.2 PerlGP approach . 67

9.2 Symbolic regression of sine function 68
9.2.1 Problem definition . 68
9.2.2 PerlGP approach . 68

9.3 Compound interest . 69
9.3.1 Problem definition . 69
9.3.2 PerlGP approach . 69

1 Installation

1.1 Versions and Disclaimer

This is version 1.001 of the PerlGP manual, which refers to version 1.0.0 of
PerlGP, released on 03 Feb 2003. While every effort has been made to keep
the manual up to date and accurate, it is not guaranteed to be free of errors
and omissions. The author is not responsible for any losses or inconvenience

5

caused by such errors. All reports of errors and suggestions for improvement or
clarification are welcome. This manual is copyright Bob MacCallum 2003.

1.2 Prerequisites

You are strongly advised to install the plotting program gnuplot on your system
(http://www.gnuplot.info). That’s all you need I think, apart from Perl of
course. Perl 5.6.1 or higher is recommended, but 5.6.0 works too (you may
experience memory leaks).

PerlGP is currently only tested under Linux, but it should work on all Unix-
like systems (it used to run on IRIX a few years ago, and in MacPerl even longer
ago).

1.3 Unpacking

After obtaining the file perlgp-X.Y.Z.tar.gz (where X, Y and Z are version num-
bers), unpack it with one of the following command sequences on most Unix-like
systems:

linux> tar xzf perlgp-X.Y.Z.tar.gz
or
unix1> gtar xzf perlgp-X.Y.Z.tar.gz

or
unix2> gunzip perlgp-X.Y.Z.tar.gz
unix2> tar xf perlgp-X.Y.Z.tar

Then cd into the newly created directory named perlgp-X.Y.Z and follow the
instructions in the README file for starting to work with the PerlGP system.
Before you download, you may take a look at this README file in the following
section.

1.4 Environment Variables

Here follows a copy of the README file to give you an idea of the preparation
needed to get PerlGP ready for use. I hope you agree that it is not much
work. For the latest instructions, always refer to the README file in the latest
distribution.

The PerlGP system - author/copyright: Bob MacCallum 2002

To run the demos, first set the following environment variables
(preferably in your shell startup file)

##############################
PerlGP environment variables (bash style)

where you unpacked the PerlGP package
PERLGP_BASE=~/perlgp

6

probably don’t need to change these two
PERLGP_LIB=$PERLGP_BASE/lib
PERLGP_BIN=$PERLGP_BASE/bin

for best results, add $PERLGP_BIN to your PATH

a LOCAL temporary directory (you’ll need to clean up manually afterwards)
PERLGP_SCRATCH=/scratch

a network directory for storing ’checkpoint/restart’ populations and
migrants between machines. leave empty if you’re not doing this
PERLGP_POPS=

if you use a queueing system, give the name of the environment
variable which contains the job id
PERLGP_JOBID=

#
##############################

then you simply go into a demo directory and type

perlgp-run.pl

(preferably backgrounding it)

for more, see the README files in the demo directories.

2 Overview

2.1 Aims of the Project

One early aim in this project was to create a GP system using some of Perl’s
most convenient and well developed features (namely hash tables and regular
expressions) rather than make a Perl clone of existing implementations. The ini-
tial goal was to evolve string manipulation code for protein secondary structure
prediction, but through time the emphasis has shifted more towards making a
robust GP system for general use.

This GP implementation has always tried to follow the evolution of biological
organisms. It does not start from a baseline, such as Koza’s work, but uses
many borrowed and a few original ideas. The first release of this software
contains code for running tournament based genetic algorithm on a population
of tree-encoded programs. However, the object-oriented design allows exchange
of components, for example a generational GA or Monte Carlo approach for
the search algorithm, and other representations of individuals. Object method
overloading lets you easily customise the algorithms to suit your needs.

7

2.2 Naming and Font Conventions

I have tried to be consistent with naming, particularly during the recent re-
organisation in preparation for going open source. However, at this stage the
project was around 4 years old and there are some exceptions to the rules.

The following table should explain all the font usage in this manual:

Thing Example Description Exceptions

Perl program
or package

perlgp-run.pl normal font, with
trailing .pl or .pm

File or
directory name

‘results/best.pl’ normal font, in
single quotes

see text

Environment
variable

PERLGP LIB normal capitals, no $

Public object
method

loadSet() typewriter font,
trailing (), no
underscores,
capitalised words,
except first word,
which is usually a
verb

Fitness(), Age(),
mutation operators

Private object
method

init tree() typewriter font,
leading underscore,
usually all
lowercase with
underscores
between words

Mutation
operator

copy subtree() typewriter font,
lowercase with
underscores,
trailing ()

Other Perl
functions

eval() typewriter font,
trailing ()

Object
attribute

AlarmTime typewriter font, no
underscores,
capitalised words

don’t forget the get
and set forms:
$self->KeepBest()
and
$self->KeepBest(5)

Variables fitness italics

Data types number small capitals

Finally, some subroutines and methods take a hash table as their argument.
This is a way of having “named” arguments, which don’t have to be given in

8

any particular order (and can be left out if not required). In the manual, this
is presented as:

Arguments: ArgName1 => type1, ArgName2 => type2

Be extremely careful typing these argument names, because if you spell them
wrong, it will probably silently ignore it.

The type called attribute-hash is just a hash where the keys are valid
Attribute names, and the values are the values you want them to have.

Non absolute file names are always relative to the current “experiment direc-
tory”, which is the directory which contains the Algorithm.pm, Individual.pm
and so on.

2.3 Class/Object Hierarchy

Individual Population Algorithm

GeneticProgram GPPopulation

BaseIndividual BasePopulation

PerlGPObject

TournamentGP

SupervisedLearning

BaseAlgorithm

is a

has a/knows its

has many

The classes above the dotted line are the “user servicable parts”, you don’t
need to edit the classes below this, but you might need to look at them from
time to time (they live in PERLGP LIB).

2.4 How It All Works

Here I will take you through the perlgp-run.pl script and the sine curve fitting
example, also discussed in Section 9.2. Some code is excluded for clarity. This
script is always run from the “experiment directory”, the one containing your
locally modified Algorithm, Individual and Population classes (see Section 2.5).

2.4.1 Step-by-step: perlgp-run.pl

#!/usr/bin/perl -w

use lib ’.’, $ENV{PERLGP_LIB} || die "
PERLGP_LIB undefined
please see README file concerning shell environment variables\n\n";

9

use Population;
use Individual;
use Algorithm;
use Cwd;

my ($exptid) = cwd() =~ m:([^/]+)$:;

Here we make sure that the current directory and PERLGP LIB are in the
Perl include path. Then the three main classes are loaded and the experiment id
is extracted from the trailing part of the current directory. In this case $exptid
would be ‘sin’.

my $population = new Population(ExperimentId => $exptid);
$population->repopulate();

Then we make a new Population object with this experiment id, and ask it
to repopulate itself from disk (only does something if this is a restarted run).

while ($population->countIndividuals() < $population->PopulationSize()) {
$population->addIndividual(new Individual(Population => $population,

ExperimentId => $exptid,
DBFileStem => $population->findNewDBFileStem()));

}

This bit fills up the Population with brand new Individuals, until it is full.
Note that they are told the identity of their parent Population, but this isn’t
used by the Individuals in the standard PerlGP system.

my $algorithm = new Algorithm(Population => $population);

Now we create an Algorithm object which does need to know about a Popu-
lation, because this is the Population that the (genetic) Algorithm will manip-
ulate.

$algorithm->run();

Then we ask the algorithm object to run itself, and this is the last thing that
perlgp-run.pl does. So you can see that perlgp-run.pl is just a wrapper which
constructs some objects and tells them to get on with it...

2.4.2 Step-by-step: Data input

Now into TournamentGP.pm we go... The run() method is basically a for
loop around calls to the tournament() method. But first, the data is loaded if
needed with

$self->loadData() unless ($self->TrainingData());

In other words, if the TrainingData attribute is undefined, then loadData()
is called (which as you will see, will set both TrainingData and TestingData).

loadData() is just a wrapper to call the user-defined loadSet() method on
training and testing data. In the sine curve example, the data is read from files

10

TrainingSet and TestingSet (there is no real need for this, the data could be
generated on-the-fly, but it is more transparent).

If you look at loadSet() in Algorithm.pm in the sin demo directory, you’ll
see that an array is filled as the input file is read. Each element represents one
training point and an ‘x’ and “known” ‘y’ value are stored in an anonymous hash
(wasteful but transparent). loadSet() returns a reference to this array, and this
scalar reference will be stored in the attribute TrainingData or TestingData.
We have now loaded up the data structures for training and testing data into
the Algorithm object.

sub loadSet {
my ($self, $file) = @_;
my @set;
open(FILE, $file) || die "can’t read data set $file\n";
while (<FILE>) {
my ($x, $y) = split;
push @set, { ’x’=>$x, ’y’=>$y };

}
close(FILE);
return \@set;

}

2.4.3 Step-by-step: Tournaments I, Fitness Evaluation

So remember that run() calls tournament() many times. The most important
steps in tournament() are outlined below.

First a group of Individuals is selected from the Population at random:

my @cohort = $self->Population()->selectCohort($self->TournamentSize());

Then for each Individual in the cohort, the fitness on the training examples
is calculated (simplified):

my $fitness = $ind->Fitness();
if (not defined $fitness) { # fitness is not cached
$ind->reInitialise(); # evaluate evolved subroutines
$fitness = $self->calcFitnessFor($ind, $self->TrainingData());
$ind->Fitness($fitness); # set new fitness

}

The method reInitialise() calls evalEvolvedSubs() which expands the
code tree into Perl code and evaluates it, which redefines object methods for
the Individual including, importantly, evaluateOutput().

The method calcFitnessFor() is a wrapper which calls evaluateOutput()
on the Individual object and then calls the Algorithm method fitnessFunction()
on the output.

Let’s take a closer look at evaluateOutput(). You can get a copy by either
looking at Grammar.pm or running perlgp-rand-prog.pl, which will generate a
random version from the grammar.

sub evaluateOutput {
my ($self, $data) = @_;

11

my ($x, $y, $z, @output);
foreach $input (@$data) {
$x = $input->{x};
begin evolved bit

$y = (2 + ($x - pdiv(5,2)));

end evolved bit
push @output, { ’y’=> $y };

}
return \@output;

}

Note that this has some similarities to loadSet(); mainly in the way it fills
an array with anonymous hashes and returns a reference to it. This argument
passed to this method is the data structure that loadSet() returned. The data
structure returned by evaluateOutput() is then passed to the fitness function.

In most cases, fitnessFunction() also requires the “correct answer” too.
You will see that in this example, loadSet() loads the “known” y value into
the input data structure. It is critical that the y value is not accessed by the
evolving code, otherwise the trivial result $y = $y would occur, and we would
be wasting our time. So long as y is not mentioned in the grammar, this will
not occur. The main point here is that the input data structure is not purely
input in nature, it will often also contain the known or observed output too.
The use of the word “input” here is not perfect, and I apologise.

The only requirement that PerlGP makes on the data structures passed
between these methods is that it must be a scalar variable. You will usually use
a reference to an array or a hash, but look in the pi demo (Section 9.1) where
you will see that the scalar is a number.

2.4.4 Step-by-step: Tournaments II, Selection and Reproduction

Now that we have a fitness value for every Individual in the tournament, the
rest is standard. The tournament members are sorted on fitness and the best
ones get a chance to reproduce (by calling the Individual method crossover())
and replace the worst ones. The offspring are mutated.

2.5 What You Have to Implement

Data I/O Algorithm.pm: loadSet(), saveOutput()

Fitness Algorithm.pm: fitnessFunction()

Grammar Grammar.pm: Functions and Terminals to produce Perl code which
defines Individual::evaluateOutput() or other object methods or sub-
routines. All explained in Section 7.

Functions Individual.pm: Perhaps you need to define some special functions,
like protected division. If your grammar didn’t produce a definition for
evaluateOutput() then you need to define it here.

12

3 Class: Algorithm

The following sections refer to the TournamentGP implementation of the Algo-
rithm object, unless otherwise stated.

3.1 Methods

Methods marked with * must be implemented in Algorithm.pm for each new
application/experiment. These are the routines for reading/writing data, fitness
function etc.

3.1.1 new()

Arguments: Population => object, attribute-hash (optional)
Return value: object
Defined in: PerlGPObject.pm
Mainly called by: perlgp-run.pl
Usually calls: init()
Relevant attributes: all

This is the constructor, but you probably don’t need to call it directly, except
in specialist applications. A Population object must be given in the argument
hash. Other attributes may also be specified in the argument hash, but note
that the “usual” way to set these attributes is to edit Algorithm.pm in the
experiment directory.

3.1.2 init()

Arguments: attribute-hash
Return value: void
Defined in: Algorithm.pm, TournamentGP.pm, SupervisedLearning.pm
Mainly called by: constructor
Usually calls: init() cascade (see below)
Relevant attributes: all, and in particular: BestFitness,
WorstPossibleFitness, FitnessDirection, TournamentLogFile,
Tournament

This method sets the attributes. You should customise the object at-
tributes by editing the init() method in Algorithm.pm. Default settings
can be found in TournamentGP.pm and SupervisedLearning.pm. The init()
methods are called in a cascade in the following order Algorithm:: init(),
TournamentGP:: init(), SupervisedLearning:: init(). Attributes set at
the beginning of the cascade override those defined at the end.

TournamentGP:: init() performs some other initialisation. If
WorstPossibleFitness has not already been defined in Algorithm.pm,
it is set to zero or an arbitrarily large number (1e99) according to the
FitnessDirection. The attribute/variable BestFitness is used to store
the fitness of the fittest Individual during the run, and is initialised to
WorstPossibleFitness. If the file ‘results/tournament.log’ file exists (for
example after a restart), Tournament (the current tournament number) and
BestFitness are updated from the values in last line in this file. If the ‘results’

13

directory does not exist it is created, likewise the directory KeepBestDir if
required.

3.1.3 loadSet()*

Arguments: string filename
Return value: scalar (usually a reference to training/testing data structure)
Defined in: Algorithm.pm
Mainly called by: loadData()
Usually calls:
Relevant attributes:

You must redefine this method to load up training or testing data into a
suitable data structure, and return a scalar variable (which is usually going to
be a reference to a more complex data structure). If your data is in files then
you can use filename; see Section 3.1.4 for more details, and see the sine curve
fitting demo in Section 9.2 for an example. You don’t have to read from a file
of course; see the pi demo in Section 9.1 for an example.

3.1.4 loadData()

Arguments: none
Return value: void
Defined in: SupervisedLearning.pm
Mainly called by: run(), refresh()
Usually calls: loadSet()
Relevant attributes: TrainingSet, TestingSet, TrainingData, TestingData

A simple wrapper to call loadSet() twice, once each on the training and test-
ing data. The filenames passed to loadSet() are the attributes TrainingSet
and TestingSet. The two return values (usually references to data structures)
are stored in the attributes TrainingData and TestingData.

3.1.5 fitnessFunction()*

Arguments: Input => scalar, Output => scalar, TimeTaken => number,
CodeSize => number
Return value: number
Defined in: Algorithm.pm
Mainly called by: calcFitnessFor()
Usually calls:
Relevant attributes: FitnessDirection

Calculates the fitness given the Input data (which should also contain
the desired/true output value), and the Output data (which is generated by
Individual::evaluateOutput()). The Input and Output scalars will usually
be references to data structures containing multiple data points, which you will
have to loop through (see Section 9.2 for an example). You may ignore CodeSize
and TimeTaken. The fitness value may go “up” or “down” as you wish, but you
must set the attribute FitnessDirection accordingly.

14

3.1.6 saveOutput()*

Arguments: Filename => filename, Input => scalar, Output => scalar,
Individual => object (optional)
Return value: void
Defined in: Algorithm.pm
Mainly called by: tournament()
Usually calls:
Relevant attributes:

This method saves the output (usually from the best-of-tournament Individ-
ual) in filename for further offline analysis, for example plotting a regression
curve. Both Input and Output data are required as in Section 3.1.5, so that
input variables, output variables and the desired/true outputs can be saved. If
the Individual object is passed to this function, you can print out some infor-
mation about that too. See the sine curve demo in Section 9.2 for an example
of how to implement this method.

This method should perhaps have been put in the Individual class, but it
was put in the Algorithm class alongside loadSet() which also deals with data
formatting.

3.1.7 refresh()

Arguments: none
Return value: void
Defined in: TournamentGP.pm
Mainly called by: run()
Usually calls:
Relevant attributes: RefreshInterval, BestFitness

Redefine this method in Algorithm.pm if you want to re-read or modify
the training/testing data at certain intervals (see attribute RefreshInterval).
The sine demo in Section 9.2 uses this technique. The default refresh() does
nothing. It is usually a good idea to reset BestFitness if the training data
changes.

3.1.8 run()

Arguments: none
Return value: void
Defined in: TournamentGP.pm
Mainly called by: perlgp-run.pl
Usually calls: tournament(), loadData(), refresh(), stopCondition(),
Population::{backup(),immigrate(),emigrate()}
Relevant attributes: Tournaments, Tournament, RefreshInterval,
ComplexityInterval, ComplexityLogFile, PopulationBackupInterval,
EmigrateInterval, ImmigrateInterval

This method will try to call the tournament() method Tournaments times,
regardless of the starting tournament number (in the case of a restart). If
RefreshInterval is non-zero, refresh() is called before any tournaments are

15

performed. Then loadData is called if TrainingData has not already been
loaded.

Before each call to tournament(), refresh() is called if the tournament
number (Tournament) modulus RefreshInterval equals zero. Afterward each
tournament, if stopCondition() returns true, the main loop is terminated, and
no more tournaments will be performed.

The ComplexityLogFile is updated every ComplexityInterval tourna-
ments with size in characters of the Perl code of a random 10% of the population
after compression with gzip. This gives an estimate of the complexity of the
population of evolved programs. The 10% sample is made using perlgp-sample-
pop.pl.

At intervals of PopulationBackupInterval, the Population object belong-
ing to this Algorithm object is told to perform a backup. Immigration and
emigration are handled similarly. See Section 5 for more details.

3.1.9 tournament()

Arguments: none
Return value: void
Defined in: TournamentGP.pm
Mainly called by: run()
Usually calls: Population::selectCohort(), Individual::reInitialise(),
calcFitnessFor(), makeFamilies(), crossoverFamily(), extraLogInfo(),
saveOutput()
Relevant attributes: TournamentSize, TournamentKillAge, ForkForEval,
BestFitness, TournamentsSinceBest, WorstPossibleFitness, LogInterval

This is where it all happens. First a cohort1 of size TournamentSize is
generated by calling the Population’s selectCohort() method. The Individuals
in the cohort whose Age is greater than or equal to TournamentKillAge are
removed and labelled “old”, and those that remain are called “young”.

The fitnesses of each young Individual are either retrieved from memory
(see Section 4.1.44 and AlwaysEvalFitness) or calculated afresh with a call to
calcFitnessFor(). Before calcFitnessFor() is invoked, the reInitialise()
method is called on the Individual, to redefine any evolved methods, such as
evaluateOutput(). This is important, because otherwise all Individuals would
generate the same outputs.

There is an option to restrict run-time with an alarm() call (see
calcFitnessFor and AlarmTime). Sometimes this causes instability in Perl
when the alarm call arrives (particularly when it interrupts the evaluation of
regular expressions). A work-around is to do the fitness calculation in a forked
process by setting the ForkForEval attribute. Before any fitness evaluation is
performed, the fitness of the Individual is set to WorstPossibleFitness, in case
something goes wrong during forking or as a result of alarm calls.

The Age of each young Individual is incremented by one every tournament.
The young Individuals are sorted by fitness, so that the best Individuals are

at the top of the list. The old Individuals are added back to the bottom of
the list. The method makeFamilies() is called to convert the sorted cohort
into an array of “families” each containing four individuals: two parents and

1Cohort: “A band of warriors” according to the Concise Oxford Dictionary

16

Table 1: Descriptions of columns in ‘results/tournament.log’

column description

1 unix time when log was updated

2 tournament number

3 BestFitness - best (training) fitness seen so far

4 (training) Fitness of best-of-tournament Individual

5 test set fitness for the same Individual as in column 4

6 result of best-of-tournament Individual::Age()

7 result of best-of-tournament Individual::getSize()

two unfit Individuals which will be replaced when the parents reproduce (see
crossoverFamily()).

A number of log-files are created or appended every LogInterval tourna-
ments. The most important is ‘results/tournament.log’, where a summary of
the run’s progress through time is stored. Table 1 explains the format of this
file. Additional columns can be specified by redefining extraLogInfo() for both
the Algorithm and Individual objects. The output of the best-of-tournament
Individual for both training and testing data are saved using saveOutput()
(to ‘results/recent.training.output’ and ‘results/recent.testing.output’) and the
Perl code is also written to a file (‘results/recent.pl’).

If the best-of-tournament Individual has better fitness than BestFitness
(this usually means this is the best Individual seen so far), the files discussed
above are always saved (as ‘results/best.*’), even if logging is not being done this
tournament. BestFitness is updated and the counter TournamentsSinceBest
is reset to zero.

3.1.10 calcFitnessFor()

Arguments: object individual, scalar inputdata
Return value (array context): number fitness, scalar outputdata
Return value (scalar context): number fitness
Defined in: TournamentGP.pm
Mainly called by: tournament()
Usually calls: Individual::evaluateOutput(), fitnessFunction()
Relevant attributes: WorstPossibleFitness, AlarmTime

This method just runs individual->evaluateOutput() on inputdata and
then runs fitnessFunction() on the returned output. There are a few extra
details; firstly, if AlarmTime is non-zero, a system alarm call is set for AlarmTime

17

seconds. The call to evaluateOutput() is protected within an eval{ } block,
so that run-time errors or alarm calls do not terminate the entire GP run, but
just the evaluation within the block. The call to evaluateOutput() is also
timed using the times() Perl function/system call, which gives precision to
around 0.01s. The elapsed time is passed to fitnessFunction(). The result of
individual->getSize() is also passed to fitnessFunction().

3.1.11 makeFamilies()

Arguments: arrayref cohort, arrayref families
Return value: void (but families is filled)
Defined in: TournamentGP.pm
Mainly called by: tournament()
Usually calls:
Relevant attributes: TournamentParents, MateChoiceRandom

The argument cohort is a reference to an array of Individuals (which are
presumably sorted by fitness and age). This method generates “families” con-
taining two potential parents and two Individuals which will be replaced by
their offspring. First we remove the first TournamentParents elements from
cohort and put them in an array called parents. Likewise we take the last
TournamentParents elements from cohort and put them in an array called rip
(from Rest In Peace). Then while these two arrays each contain at least two
elements, we generate families as follows:

• take Parent 1 from top of parents

– default: take Parent 2 from top of parents

– if MateChoiceRandom is non-zero: take Parent 2 from any top-
biased position in parents (using the rand(rand()) approach, see
source code for details).

• take (potential) Child 1 from top of rip

• take Child 2 from top of rip

The array pointed to by families is filled with references to four-member
arrays containing Parents 1&2 and Children 1&2. This routine does not check
that families is empty.

3.1.12 crossoverFamily()

Arguments: arrayref family
Return value: void
Defined in: TournamentGP.pm
Mainly called by: tournament()
Usually calls: Individual::crossover(), Individual::mutate()
Relevant attributes:

This method takes a single family (generated by makeFamilies()) and ini-
tiates the crossover mechanism (which is a method in the Individual class).

18

The two offspring from the crossover overwrite the two Individuals which were
selected to “die” and mutate() is called on each offspring.

However, crossover is not performed if the fitnesses of the two parents are
numerically identical. If they are identical then the second parent is subjected
to mutation, and the two Individuals that would have been replaced by offspring
survive.

3.1.13 decideBetterFitness()

Arguments: number fitness1, number fitness2
Return value: boolean
Defined in: TournamentGP.pm
Mainly called by: tournament()
Usually calls:
Relevant attributes: FitnessDirection

A simple wrapper which returns true if fitness1 is greater than fitness2 if
the FitnessDirection is ‘up’. If the direction is ‘down’ then less-than is used.

3.1.14 stopCondition()

Arguments: none
Return value: boolean
Defined in: TournamentGP.pm
Mainly called by: run()
Usually calls:
Relevant attributes:

As supplied, this method always returns false, so a run will continue until
Tournaments have been completed. If you override it to perfom some check,
perhaps on BestFitness, then you can cleanly stop the run when some criteria
have been met. Make sure you are not running perlgp-run.pl with the -loop
option, or it will just start again!

3.1.15 extraLogInfo()

Arguments: none
Return value: string text
Defined in: TournamentGP.pm
Mainly called by: tournament()
Usually calls:
Relevant attributes:

If you need need more info about the progress of your Algorithm in ‘re-
sults/tournament.log’, then override this method to return a string which will
be printed out in the log. See parseExtraLogInfo() before you implement this
function.

3.1.16 parseExtraLogInfo()

Arguments: string lastline
Return value: void

19

Defined in: Tournament.pm
Mainly called by: TournamentGP:: init()
Usually calls:
Relevant attributes:

If you have restartable runs and you have special variables/attributes that
need to persist between restarts, then you can re-initialise them from the values
last written to ‘results/tournament.log’ by overriding this method. First make
sure that the attributes are written to ‘results/tournament.log’ by overriding
extraLogInfo(), but make sure each value is preceded by a unique string.
Then implement parseExtraLogInfo() to recover those values from the last
line of the log file as in the example below:

sub extraLogInfo {
my $self = shift;
return sprintf "SpecialAttrib %3d", $self->SpecialAttrib();

}

sub parseExtraLogInfo {
my ($self, $lastline) = @_;
if ($lastline =~ /\s+SpecialAttrib\s+(\d+)/) {
$self->SpecialAttrib($1);

}
}

See Section 6.1.2 on the dual use of attribute names as method names if the
use of SpecialAttrib() is not clear to you.

3.2 Attributes & Variables

Attributes marked with * must be defined in Algorithm:: init() for each new
application/experiment.

3.2.1 TrainingSet*

Data type: string
Default: none
Defined in: Algorithm.pm
Mainly used in: loadData()
See also: TestingSet

This is the name of the file which contains the training data and is eventually
passed to loadSet().

3.2.2 TestingSet*

Data type: string
Default: none
Defined in: Algorithm.pm
Mainly used in: loadData()
See also: TrainingSet

20

This is the name of the file which contains the testing data and is eventually
passed to loadSet().

3.2.3 FitnessDirection*

Data type: string
Default: none
Defined in: Algorithm.pm
Mainly used in: tournament()
See also: WorstPossibleFitness

May take the values ‘up’ or ‘down’ depending how your fitness measure
works. Set it to ‘up’ if a big number means good fitness, and ‘down’ otherwise.

3.2.4 WorstPossibleFitness

Data type: number
Default: 0 or 1e99
Defined in: TournamentGP.pm
Mainly used in: tournament(), calcFitnessFor()
See also: FitnessDirection

This is set automatically in TournamentGP:: init() if you don’t provide a
value for it. See Section 3.1.2.

3.2.5 Population

Data type: object
Default: none
Defined in: perlgp-run.pl
Mainly used in: tournament()
See also:

Each Algorithm object has a Population object, and this is where it is stored.

3.2.6 Tournament

Data type: number
Default: 1
Defined in: TournamentGP.pm
Mainly used in: run(), tournament()
See also: Tournaments

This variable contains the current tournament number. In the case
of restarted runs, it is initialised to the value in the last line of ‘re-
sults/tournament.log’ (see Table 1), otherwise it defaults to 1. It is incremented
in run().

21

3.2.7 Tournaments

Data type: number
Default: 1000
Defined in: TournamentGP.pm
Mainly used in: run()
See also: Tournament

This is the number of tournaments that run() tries to run, regardless of the
initial value of Tournament (in the case of a restart).

3.2.8 TournamentsSinceBest

Data type: number
Default: 0
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: BestFitness

This is a counter, like Tournament which is incremented every tourna-
ment, however this is reset to zero when a new best-of-run (fitness better than
BestFitness) Individual is found.

3.2.9 BestFitness

Data type: number
Default: value of WorstPossibleFitness
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: WorstPossibleFitness

This variable holds the fitness of the best-of-run Individual and is used for
checking to see when a new best-of-run Individual is found. On restarts it is
reinitialised from ‘results/tournament.log’. The term “best-of-run” may not
always mean exactly that; if for example the refresh() routine is used to
dynamically change the training data.

3.2.10 TournamentSize

Data type: number
Default: 50
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: TournamentParents

The number of Individuals chosen for each tournament.

3.2.11 TournamentParents

Data type: number
Default: 20
Defined in: TournamentGP.pm

22

Mainly used in: makeFamilies()
See also: TournamentSize

The number of parents given the chance to reproduce during a tournament.
It’s a good idea if this is an even number, and is less than or equal to half of
TournamentSize.

3.2.12 TournamentKillAge

Data type: number
Default: 2
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also:

Individuals in a tournament which have taken part in TournamentKillAge or
more tournaments are not sorted on fitness, but are automatically placed at the
bottom of the list. This ensures constant turnover and is the opposite of elitism.
If you find that your population is never “getting off the ground”, consider
raising this to 4 or maybe more. You can think of TournamentKillAge as the
number of attempts allowed for each Individual to produce viable offspring.

3.2.13 AlwaysEvalFitness

Data type: boolean
Default: 0
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also:

When true, forces re-evaluation of fitnesses every tournament (and does not
take the value from memory to save time).

3.2.14 MateChoiceRandom

Data type: boolean
Default: 0
Defined in: TournamentGP.pm
Mainly used in: makeFamilies()
See also:

When true, the second parent (the first is always taken from the top of the
fitness-sorted list of Individuals) is taken from a random position in the list, but
this position is biased towards the top.

3.2.15 TournamentLogFile

Data type: string
Default: ‘results/tournament.log’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: LogInterval

The name of the main log file.

23

3.2.16 LogInterval

Data type: number
Default: 10
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: TournamentLogFile, FitnessesFile, RecentTrainingOutputFile,
RecentTestingOutputFile, RecentCodeFile

How often TournamentLogFile, FitnessesFile and some other log files are
written.

3.2.17 FitnessesFile

Data type: string
Default: ‘results/fitnesses’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: LogInterval

The log file where the sorted fitnesses of the Individuals in the last tourna-
ment are saved. The file does not contain the fitnesses of the Individuals older
than TournamentKillAge.

3.2.18 ComplexityLogFile

Data type: string
Default: ‘results/complexity.log’
Defined in: TournamentGP.pm
Mainly used in: run()
See also: ComplexityInterval

The log file where population complexity information is saved.

3.2.19 ComplexityInterval

Data type: number
Default: 50
Defined in: TournamentGP.pm
Mainly used in: run()
See also: ComplexityLogFile

How often ComplexityLogFile is written.

3.2.20 RefreshInterval

Data type: number
Default: 0
Defined in: TournamentGP.pm
Mainly used in: run()
See also: refresh()

If non-zero, how often the refresh() method is called.

24

3.2.21 RecentTrainingOutputFile

Data type: string
Default: ‘results/recent.training.output’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: LogInterval

The file where the training data output from the recent best-of-tournament
Individual is written (using the saveOutput() method).

3.2.22 RecentTestingOutputFile

Data type: string
Default: ‘results/recent.testing.output’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: LogInterval

The file where the testing data output from the recent best-of-tournament
Individual is written (using the saveOutput() method).

3.2.23 RecentCodeFile

Data type: string
Default: ‘results/recent.pl’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: LogInterval

The file where the Perl code of the recent best-of-tournament Individual is
written.

3.2.24 BestTrainingOutputFile

Data type: string
Default: ‘results/best.training.output’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also:

The file where the training data output from the best-of-run Individual is
written (using the saveOutput() method).

3.2.25 BestTestingOutputFile

Data type: string
Default: ‘results/best.testing.output’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also:

The file where the testing data output from the best-of-run Individual is
written (using the saveOutput() method).

25

3.2.26 BestCodeFile

Data type: string
Default: ‘results/best.pl’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also:

The file where the Perl code of the best-of-run Individual is written.

3.2.27 KeepBest

Data type: boolean
Default: 1
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: KeepBestDir, KeepMax

If non-zero, all the best-of-run Individuals are saved in KeepBestDir.

3.2.28 KeepBestDir

Data type: string
Default: ‘results/keptbest’
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: KeepBest, KeepMax

The directory in which the complete history of best-of-run Individuals may
be saved.

3.2.29 KeepMax

Data type: number
Default: 100
Defined in: TournamentGP.pm
Mainly used in: to0urnament()
See also: KeepBest, KeepBestDir

If non-zero, the maximum number of best-of-run Individuals saved in
KeepBestDir. Older Individuals are removed when the limit is reached (to
save disk space).

3.2.30 PopulationBackupInterval

Data type: number
Default: 0
Defined in: TournamentGP.pm
Mainly used in: run()
See also: environment variable PERLGP POPS

If non-zero, how often is a tar.gz file of the complete population saved to the
directory PERLGP POPS.

26

3.2.31 EmigrateInterval

Data type: number
Default: 0
Defined in: TournamentGP.pm
Mainly used in: run()
See also:

If non-zero, how often Population::emigrate() is called on Population.

3.2.32 ImmigrateInterval

Data type: number
Default: 0
Defined in: TournamentGP.pm
Mainly used in: run()
See also:

If non-zero, how often Population::immigrate() is called on Population.

3.2.33 AlarmTime

Data type: number
Default: 0
Defined in: TournamentGP.pm
Mainly used in: calcFitnessFor()
See also: ForkForEval

If non-zero, the number of seconds that the system alarm() call is set for,
before calling evaluateOutput(). This is a one-size-fits-all alarm time. If
you want the alarm time to be proportional to the amount of training data
you have, you can put alarm calls directly inside the loop (over data-points)
in the evolved evaluateOutput() method. For example, in the sine demo in
Section 9.2 you could put an alarm(1) just before “begin evolved bit” comment
and an alarm(0) just after the “end evolved bit” comment.

3.2.34 ForkForEval

Data type: boolean
Default: 0
Defined in: TournamentGP.pm
Mainly used in: tournament()
See also: AlarmTime

When non-zero, forks the main process before calling evaluateOutput().
This can prevent nasty crashes with “panic: leave scope inconsistency” messages
when you are using non-zero AlarmTime or other alarm() calls. Don’t use it
unless you get these errors.

27

4 Class: Individual

4.1 Methods

There is only one method in this class which must be provided/implemented by
the user, and it is evaluateOutput() (marked with a *).

4.1.1 new()

Arguments: Population => object, ExperimentId => string, DBFileStem
=> string, attribute-hash (optional)
Return value: object
Defined in: PerlGPObject.pm
Mainly called by: perlgp-run.pl, perlgp-rand-prog.pl & other utility scripts
Usually calls: init()
Relevant attributes: all

As with the Algorithm constructor, you probably don’t need to call this
unless you are developing specialist applications. The obligatory arguments
are: Population, ExperimentId and DBFileStem. For some applications it is
OK to give a dummy value for Population.

4.1.2 init()

Arguments: attribute-hash
Return value: void
Defined in: Individual.pm, GeneticProgram.pm, BaseIndividual.pm
Mainly called by: constructor
Usually calls: init() cascade (see below)
Relevant attributes: all

As with Algorithm, this is a cascaded method where the attributes are set.
The defaults are defined in GeneticProgram:: init() and you should cus-
tomise the object by editing attribute/value pairs in Individual:: init() be-
cause these override all defaults.

4.1.3 reInitialise()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: Algorithm::tournament(), mutate(), crossover()
Usually calls: evalEvolvedSubs(), evolvedInit()
Relevant attributes:

This doesn’t do much in itself, but is a very important wrapper method - to
be called whenever evolved Individual-specific methods need to be redefined.

4.1.4 evalEvolvedSubs()

Arguments: none
Return value: void

28

Defined in: GeneticProgram.pm
Mainly called by: reInitialise()
Usually calls: getCode()
Relevant attributes:

This is where the Perl code is actually evaluated, in order to rede-
fine certain Individual-specific subroutines, commonly evaluateOutput() and
evolvedInit(). The code is obtained using getCode() and simply passed to
Perl’s eval() function. Before that, a signal handler is set to filter out “Sub-
routine redefined” warnings.

If an error occurs during the eval(), this usually means that there is a
syntax error in the evolved code (usually just subroutine definitions, nothing
is actually executed), caused by a mistake in the Grammar. Warnings are
printed to STDERR and the Individual is randomly reinitialised with a new
genome before attempting evalEvolvedSubs() again (with a 15 second sleep
in between). The user should fix these syntax errors to make sure valid Perl is
generated in all circumstances.

4.1.5 evolvedInit()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: reInitialise()
Usually calls:
Relevant attributes: all

The supplied method does nothing, but you can provide an evolved version to
set some of the Individual’s attributes. The sine curve demo in Section 9.2 shows
how to have evolvable mutation and crossover rates. Note that reInitialise()
and hence evolvedInit() is called inside mutate() and crossover() in antic-
ipation that you might use evolvable mutation and crossover parameters.

4.1.6 evaluateOutput()*

Arguments: scalar inputdata
Return value: scalar outputdata
Defined in: Grammar.pm or Individual.pm
Mainly called by: Algorithm::calcFitnessFor()
Usually calls:
Relevant attributes:

This is where you should provide the code which works on inputdata and
produces outputdata. Normally you would setup up the Grammar so that
evaluateOutput() is defined in the code-tree and is therefore evolved, but
you could define evaluateOutput() as a non-evolvable function and have it
call other evolved functions.

As discussed in Section 3, the scalar variables inputdata and outputdata
are usually references to arrays or hashes containing multiple data points.
It is entirely up to you how you represent the data, since you are in con-
trol of reading it in (with Algorithm::loadSet()), generating the output (in

29

evaluateOutput()), assessing the fitness (in Algorithm::fitnessFunction())
and writing it out (in Algorithm::saveOutput()).

4.1.7 extraLogInfo()

Arguments: none
Return value: string
Defined in: GeneticProgram.pm
Mainly called by: Algorithm::tournament()
Usually calls:
Relevant attributes:

Here you can specify which extra information about the best-of-tournament
Individual will be saved in ‘results/tournament.log’. The default function just
returns DBFileStem, but you could have it return evolved parameters, for ex-
ample. The sine demo described in Section 9.2 uses this technique.

4.1.8 crossover()

Arguments: object mate, object recipient1, object recipient2,
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: TournamentGP::crossoverFamily()
Usually calls: reInitialise(), tree type size(), start crossover()
Relevant attributes: NodeXoverProb, FixedXovers, FixedXoversProb,
AsexualOnly, XoverDepthBias, XoverSizeBias, XoverHomologyBias,
XoverLogProb

This method finds crossover points between the self object and the mate ob-
ject. If FixedXovers is set and FixedXoverProb is satisfied, then FixedXovers
pairs of crossover points will be selected. Otherwise the default and rec-
ommended behaviour is to use NodeXoverProb to calculated the number of
crossovers to attempt, as described for in the following pseudocode:

crossovers_to_do = 0
for i = 1 to number_of_nodes_in_tree {
if (rand(1) < NodeXoverProb) {
crossovers_to_do++

}
}

Crossover point selection is a little bit complex, so only an outline is given
here. The general approach is to sample pairs of points until they satisfy
certain criteria. To prevent infinite sampling maximum number of samples
are attempted (equivalent to sampling each node 100 times). One node each
from the self and mate genome trees are selected randomly (with depth bias
XoverDepthBias); we will call them mynode and matenode in the following dis-
cussion. They are accepted if all the following conditions are met (in the order
given):

• the nodes have the same nodetypes (e.g. NUM and NUM)

30

• mynode does not exist within the subtrees of any previously chosen
crossover point in self, and likewise matenode not in any crossover point
subtree of mate

• similar-size probability:
(
1−

(
|NA−NB |

max(NA,NB)

)s)
where NA and NB are the

number of nodes in the two subtrees and s is XoverSizeBias

• similar-contents (homology) probability:
(

IA,B+0.1
min(NA,NB)

)h

where IA,B is the
number of identical nodes found when decending the two subtrees in par-
allel (not allowing any insertions or deletions, see tree id()) and h is
XoverHomologyBias

• none of the subtrees of the two crossover points contain previously selected
crossover points

After the crossover points have been selected, they are passed to
start crossover(). If no crossover points were found (or if none were re-
quested) then the two parents are crossed over at the root node, which is equiv-
alent to asexual reproduction. You can also set AsexualOnly to force asexual
reproduction.

With probability XoverLogProb, some information about crossover points is
written to XoverLogFile.

4.1.9 start crossover()

Arguments: object mate, object recipient, hash-ref crossover pairs
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: crossover()
Usually calls: crossover(), retieGenome(), fix nodes()
Relevant attributes:

A wrapper around the recursive crossover() method, which first does a
tieGenome() on the recipient and wipes its genome.

4.1.10 crossover()

Arguments: object mate, object recipient, string mynode, string
matenode, hash-ref crossover pairs,
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: start crossover
Usually calls: recursive
Relevant attributes:

Recursive subroutine which builds up a new genome tree for recipient by
tracing through the self genomes and switching over to the mate genome when
a crossover pair is met. To avoid name clashes mate nodes are copied with
names appended with an “x” (see also xcopy subtree()) and these are tidied
up by fix nodes() on returning to start crossover().

31

4.1.11 mutate()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: Algorithm::crossoverFamily()
Usually calls: reInitialise(), point mutate shallow(), macro mutate(),
initFitness()
Relevant attributes: NodeMutationProb, FixedMutations,
FixedMutationProb, PointMutationFrac, NoNeutralMutations,
MutationLogProb, MutationLogFile

This method does one round of mutation on an Individual. First the num-
ber of mutations to be attempted is calculated according to the following pseu-
docode:

mutations_to_do = 0
for i = 1 to number_of_nodes_in_tree {
if (rand(1) < NodeMutationProb) {
mutations_to_do++

}
}

However if FixedMutations is non-zero and FixedMutationProb is satisfied,
then FixedMutations are attempted.

Each mutation is randomly chosen to be either point mutation (via method
point mutate shallow()) or a macro mutation (via method macro mutate()),
according to the attribute PointMutationFrac.

If NoNeutralMutations is non-zero, then a check is made that the mutation
made a visible (not necessarily functional) change to the Perl code. This is done
by expanding the genome-tree before each mutation, and after each mutation
and comparing the two strings. If the strings are identical then another mutation
is attempted (up to a safety limit of 5000 tries). This feature is turned off by
default.

Note that we say that mutations are attempted rather than performed. That
is because some of the mutation operators fail to find suitable nodes to act on,
and as a result do nothing.

After the mutations are are done, some logging is done with probability
MutationLogProb into a file MutationLogFile, with some simple information
about the nodes that were mutated (if they still exist - when more than one
mutation is attempted, the subsequent mutations can delete the nodes affected
by previous mutations).

If more than one mutation was attempted, then the cached fitness of the
Individual is reset with a call to initFitness().

4.1.12 point mutate shallow()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: mutate()

32

Usually calls: point mutate()
Relevant attributes: PointMutationDepthBias

Simple wrapper to call point mutate() with depth bias
(PointMutationDepthBias) more in favour of leaves.

4.1.13 point mutate deep()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: mutate()
Usually calls: point mutate()
Relevant attributes: MacroMutationDepthBias

Simple wrapper to call point mutate() with depth bias
(MacroMutationDepthBias) more in favour of internal nodes.

4.1.14 point mutate()

Arguments: number depthbias
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: point mutate shallow(), point mutate deep()
Usually calls: random node()
Relevant attributes: NumericMutationFrac, NumericIgnoreNTypes,
NumericAllowNTypes, NumericMutationRegex

Attempts to make a point mutation, that is a change in the genome-tree
which does not affect the branching pattern and involves just one node. The
first thing it does is select a random node with depth bias depthbias.

4.1.15 random node()

Arguments: depth bias => number, start node => string (optional),
not this node => string (optional), not this subtree => string
(optional), node type => string
Return value: string nodekey
Defined in: GeneticProgram.pm
Mainly called by: mutation and crossover operators
Usually calls:
Relevant attributes:

Picks one node from the genome-tree according to the following pseudocode:

N = number_of_nodes_below(root_of_tree)
do {
node = pick_a_random_node_from_tree
S = number_of_nodes_below(node)

} until rand(depth_bias * N) <= S

33

In this way, it is possible to vary the amount of bias towards internal nodes.
With a depth bias of zero, all nodes are selected with equal probability, but
with a depth bias of 1 only the root node will be selected with absolute cer-
tainty. Of course, it is not very time-efficient to sample nodes in this way.

Other optional parameters allow a specific node type to be selected, or nodes
within or outside a certain subtree. If a node cannot be found after 5000 tries,
the routine gives up and returns the empty string.

4.1.16 macro mutate()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: mutate()
Usually calls: macro mutation operators
Relevant attributes: MacroMutationTypes

Picks at random one of the available macro mutation operator names
from the array MacroMutationTypes and invokes the method of that
name (in Perl you can call a method using a string variable like this:
$method = ’swap_subtrees’; $individual->$method()).

4.1.17 replace subtree()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: macro mutate()
Usually calls: random node(), del subtree(), grow tree()
Relevant attributes: NewSubtreeDepthMean, NewSubtreeDepthMax

Picks a random node with MacroMutationDepthBias and deletes the subtree
and “grows” a new subtree in its place.

4.1.18 insert internal()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: macro mutate()
Usually calls: random node(), random function(), grow tree()
Relevant attributes: MacroMutationDepthBias, NewSubtreeDepthMean,
NewSubtreeDepthMax

Inserts a single new function node internally in a tree.
First we pick a random node with MacroMutationDepthBias and copy its

contents to a brand new node. The original node is then replaced with a random
function with at least one branch point of the same type as the original node
(if none exists, then we give up). We link up one of these branch points back to
the new node, and any remaining branch points have new subtrees grown onto
them. Figure 1 illustrates this complicated procedure.

34

+

1 2

*

+

1 2

3

Figure 1: Example of the macro mutation operator insert internal. The ‘+’
node is chosen for mutation, and is moved to a new location. A new node ‘*’ is
inserted in the old position and one of its two branch points is connected back
to the ‘+’. The remaining branch point for the ‘*’ function is filled out with a
new tree, which in this case is just a single node ‘3’.

4.1.19 delete internal()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: macro mutate()
Usually calls: random node()
Relevant attributes: MacroMutationDepthBias

Selects a node with MacroMutationDepthBias, and then, if possible, a sec-
ond node of the same type within the subtree of the first. The two nodes are
reconnected and the intervening nodes are deleted (actually it is implemented
in another way, but the result is the same).

4.1.20 copy subtree()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: macro mutate()
Usually calls: random node(), del subtree()
Relevant attributes: MacroMutationDepthBias

Selects a node with MacroMutationDepthBias, and then, if possible, a sec-
ond node of the same type outside the subtree of the first. Deletes any sub-nodes
belonging to the second node and copy the first node’s subtree to the second
node.

4.1.21 swap subtrees()

Arguments: none
Return value: void

35

Defined in: GeneticProgram.pm
Mainly called by: macro mutate()
Usually calls: random node()
Relevant attributes: MacroMutationDepthBias

Like copy subtree, except that no nodes are deleted, the subtrees exchange
positions.

4.1.22 encapsulate subtree()

Arguments: none
Return value: void
Defined in: GeneticProgram.pm
Mainly called by: macro mutate()
Usually calls: random node(), expand tree(), simplify()
Relevant attributes: MacroMutationDepthBias, EncapsulateIgnoreNTypes,
EncapsulateFracMax
Relevant methods: getSize()

An experimental, not fully tested method which takes a subtree (which rep-
resents not more than fraction EncapsulateFracMax of the whole tree) and
replaces it with a single terminal node containing the expanded code of the
former subtree. The code is passed through simplify() to remove any redun-
dancy (if you implement the method). The new node is tagged with a special
prefix string ‘;;NUM;;’ where ‘NUM’ is the size of the subtree before encapsula-
tion. This number is used in tree type size() (which is sometimes called by
getSize()) during tree size calculation to make it fair when parsimony is used.
As I said, this needs a thorough investigation because things have changed since
I last used encapsulation, and it is a pretty complicated operator with many side
effects.

4.1.23 simplify()

Arguments: string longcode
Return value: string shortercode
Defined in: GeneticProgram.pm
Mainly called by: encapsulate subtree()
Usually calls:
Relevant attributes:

The default method does nothing, but you can define a method to do search-
and-replace-with-eval simplification, for example:

sub simplify {
my ($self, $code) = @_;
my $z = 0;
while ($code =~ s/(\d+ \+ \d+)/eval $1/e) {
last if ($z++ > 1000); # safety measure

}
return $code;

}

36

will simplify ‘1 + 2 + 3 + 4’ to ‘10’. This can be very powerful for creating
human-readable output.

4.1.24 xcopy subtree()

Arguments: string nodekey
Return value:
Defined in: GeneticProgram.pm
Mainly called by:
Usually calls: recursive
Relevant methods: fix nodes()

A helper method which takes a node and generates a copy of its subtree
with new nodekeys which are the same as the original tree plus a trailing ‘x’ (so
‘nodeNUM23’ is copied to ‘nodeNUM23x’). This is a simple way to avoid node
key clashes, as long as you call fix nodes() afterwards...

4.1.25 fix nodes()

Arguments: string nodekey
Return value:
Defined in: GeneticProgram.pm
Mainly called by: delete internal(), copy subtree(), start crossover()
Usually calls: recursive
Relevant attributes:

Recursive method to fix the nodekeys which end in ‘x’ and replace them with
valid nodekeys which don’t end in ‘x’. It searches incrementally for new unused
nodekeys from zero (in other words, ‘nodeNUM14x’ is replaced by ‘nodeNUM0’
and if that already exists, then ‘nodeNUM1’, ‘nodeNUM2’ . . . until a free key is
found).

4.1.26 get subnodes()

Arguments: string nodekey
Return value: array subnodes
Defined in: GeneticProgram.pm
Mainly called by: crossover(), random node(), copy subtree()
Usually calls: recursive
Relevant attributes:

Returns the nodekeys of all subnodes of the given nodekey.

4.1.27 del subtree()

Arguments: string nodekey
Return value:
Defined in: GeneticProgram.pm
Mainly called by: replace subtree(), delete internal(),
copy subtree(), encapsulate subtree()
Usually calls: recursive
Relevant attributes:

37

Recursive method which “on the way out” deletes all the nodes in the given
subtree.

4.1.28 tree type size()

Arguments: string nodekey, hashref sizes (optional), hashref types
(optional), hashref ignore (optional)
Return value: number nodes
Defined in: GeneticProgram.pm
Mainly called by: getSize(), crossover(), mutate()
Usually calls: recursive
Relevant attributes:

This method descends a subtree (usually ‘root’) and fills a number of hashes
(actually the hash references given as arguments: sizes, types) with the size of
the subtree below each node, and the nodetype of each node (the hash keys are
nodekeys).

If the ignore hash reference is defined, then this routine will not descend
subtrees of any nodetype which exists as a key in the ignore hash.

The methods crossover() and mutate() efficiently make use of the cached
size information when sampling nodes and repeated tree recursion is not needed.

4.1.29 display tree()

Arguments: string nodekey
Return value:
Defined in: GeneticProgram.pm
Mainly called by:
Usually calls:
Relevant attributes:

Prints a text dump of the nodes below nodekey to STDERR for debugging
purposes.

4.1.30 saveCode()

Arguments: Filename => string, Tournament => number
Return value:
Defined in: GeneticProgram.pm
Mainly called by: TournamentGP::tournament()
Usually calls: Fitness(), getCode(), getSize()
Relevant attributes:

Prints the Perl code and some other relevant information to Filename for
the user.

4.1.31 saveTree()

Arguments: Filename => string, StartNode => string, HighLight =>
hash-ref
Return value:
Defined in: GeneticProgram.pm

38

Mainly called by: TournamentGP::tournament()
Usually calls:
Relevant attributes:

Prints the genome tree to Filename in a format readable by the third party
program daVinci. The optional hash reference HighLight can be used to give
certain background colours to certain nodes (key = node-id, value = hex colour).

4.1.32 save()

Arguments: FileStem => string
Return value:
Defined in: GeneticProgram.pm
Mainly called by: TournamentGP::tournament(),
GPPopulation::emigrate()
Usually calls: tieGenome(), untieGenome()
Relevant attributes:

Copies the genome hash to a new DB file with FileStem.

4.1.33 load()

Arguments: FileStem => string
Return value:
Defined in: GeneticProgram.pm
Mainly called by: GPPopulation::immigrate()
Usually calls: tieGenome(), untieGenome()
Relevant attributes:

Loads up a genome hash from a DB file with FileStem. Erases the cur-
rent genome, but consider making a call to reInitialise() to update evolved
parameters afterwards.

4.1.34 tieGenome()

Arguments:
Return value: hash-ref
Defined in: GeneticProgram.pm
Mainly called by: tree operating methods
Usually calls:
Relevant attributes: DBFileStem

By default, an Individual is not “connected” to the DBM file which stores the
genome. If it was, then a typical run would have thousands of open filehandles
and would probably crash. This method uses Perl’s tie() to tie the hash
stored in $self->{genome} to the file(s) identified by DBFileStem. This is
done in read/write/create mode. See the Perl documentation for tie() for
more details.

The return value is a reference to the genome hash, or you can use
$self->{genome} if you prefer.

Make sure you always have a corresponding call to untieGenome() to avoid
filehandle overload. Symmetrical nesting of ties and unties is allowed - if the

39

genome is already tied a counter is incremented in tieGenome() which is decre-
mented by untieGenome() - the actual untie is done only at “depth zero”.

Note that you don’t want to have to many tie/untie tie/untie
tie/untie sequences (big performance hit), it’s better to wrap a tie...untie
around them all. This is why there are tieGenome() calls in
TournamentGP::crossoverFamily(). If you can’t figure out where/when/why
various tie/untie calls are not made, you can uncomment the debugging line
and watch STDERR.

If you want to completely wipe the genome, see the source code for
start crossover().

4.1.35 untieGenome()

Arguments: string debug
Return value:
Defined in: GeneticProgram.pm
Mainly called by: tree operating methods
Usually calls:
Relevant attributes:

See tieGenome().

4.1.36 retieGenome()

Arguments:
Return value:
Defined in: GeneticProgram.pm
Mainly called by: start crossover()
Usually calls:
Relevant attributes: DBFileStem

The DBM files seem to grow with time, so this method will copy the genome
hash into memory, and then delete the DBM files, and rewrite a new one.
Obviously this is a bit risky since there is no backup made on disk.

Currently only called in start crossover() on the recipient/child after
wiping the genome.

Does not affect the tie level counter (see tieGenome()).

4.1.37 initTree()

Arguments:
Return value:
Defined in: GeneticProgram.pm
Mainly called by:
Usually calls: init tree()
Relevant attributes:

This is a simple wrapper around init tree() which does tieGenome() first
and untieGenome() afterwards.

40

4.1.38 init tree()

Arguments:
Return value:
Defined in: GeneticProgram.pm
Mainly called by:
Usually calls: grow tree()
Relevant attributes: TreeDepthMax, MinTreeNodes

Initialises the genome hash and starts building a new tree of max depth
TreeDepthMax. Repeats this until the number of nodes is greater than
MinTreeNodes.

4.1.39 grow tree()

Arguments: depth => integer, type => string, TreeDepthMax => integer
Return value: string new nodekey
Defined in: GeneticProgram.pm
Mainly called by: macro mutation operators, init tree()
Usually calls: recursive, random terminal(), random function
Relevant attributes: TreeDepthMin, TerminateTreeProb

Builds a tree or subtree by randomly selecting functions and terminals.
TreeDepthMax is passed as an argument (the object attribute of the same name
is not used) because you might want to use different limits for the whole tree
vs. subtrees. The depth argument is incremented on each recursive call. Usu-
ally a function is chosen during tree building but if the depth is greater than
TreeDepthMax then a terminal is always added. Alternatively you may use
TreeDepthMin and TerminateTreeProb to force termination with some proba-
bility below a vertain depth.

4.1.40 expand tree()

Arguments: string nodekey
Return value: string perl code
Defined in: GeneticProgram.pm
Mainly called by: getCode(), mutate(), encapsulate subtree()
Usually calls:
Relevant attributes: MaxTreeNodes

This method expands the tree below nodekey into a single string which I
presumably Perl code (or at least something that will eval()). It is done with
an iterated search-and-replace. A counter keeps track of how many nodes have
been expanded and if this is greater than MaxTreeNodes then no more tree
expansion is done and random terminals are used to “finish off” the expansion
to generate valid, but presumably unfit, Perl code.

You should probably use the public method getCode(), which wraps this.

4.1.41 tree id()

Arguments: object mate, string mynode, string matenode
Return value: number identities

41

Defined in: GeneticProgram.pm
Mainly called by: crossover()
Usually calls: recursive
Relevant attributes:

Recursive tree-descending method which goes down two subtrees and counts
the number of nodes identical between them at equivalent topological positions.
It stops descending whenever nodes are unequal, therefore it is quite crude and
cannot handle insertions or deletions.

4.1.42 initFitness()

Arguments:
Return value:
Defined in: GeneticProgram.pm
Mainly called by: mutate()
Usually calls:
Relevant attributes:

Deletes the two cached copies of the fitness (one in the genome, one in
memory).

4.1.43 eraseMemory()

Arguments:
Return value:
Defined in: GeneticProgram.pm
Mainly called by: start crossover()
Usually calls:
Relevant attributes:

Deletes all contents of the $self->{memory} hash, which contains the cached
fitness value, but you may also store other things here, using the memory()
method.

4.1.44 memory()

Arguments: hash-key or hash
Return value: value
Defined in: GeneticProgram.pm
Mainly called by:
Usually calls:
Relevant attributes:

A get and set method for the $self->{memory} hash. With a single ar-
gument, it returns the value stored with that key. With an even number of
arguments (in other words, a hash) it sets the key/value pairs.

If you prefer, you can use getMemory() and setMemory() which are simply
wrappers to this method.

42

4.1.45 getCode()

Arguments:
Return value: string perl code
Defined in: GeneticProgram.pm
Mainly called by: evalEvolvedSubs(), saveCode()
Usually calls:
Relevant attributes:

This is the main method for getting the Perl code from the genome.

4.1.46 getSize()

Arguments:
Return value: number code size
Defined in: GeneticProgram.pm
Mainly called by: TournamentGP::calcFitnessFor()
Usually calls:
Relevant attributes: GetSizeIgnoreNTypes

This is the method for calculating the size of the genome. If the attribute
GetSizeIgnoreNTypes is used then tree type size() is used to calculate the
number of nodes by descent (ignoring nodes which lie below the nodetypes de-
fined by GetSizeIgnoreNTypes). Otherwise, the number of keys in the genome
hash is returned (which is much quicker of course).

4.1.47 Fitness()

Arguments: number set value (optional)
Return value: number fitness
Defined in: GeneticProgram.pm
Mainly called by: TournamentGP::tournament(),
TournamentGP::crossoverFamily()
Usually calls:
Relevant attributes:

Without an argument routine returns the Individual’s Fitness, first from
the memory hash (see memory()) or if that is undefined, then a tieGenome()
is called and the fitness value is retrieved from disk, assigned into the memory
cache, and returned. Note that “undefined” value for Fitness usually signifies
that that the fitness has not yet been evaluated, but sometimes just means that
the fitness has not been retrieved from disk.

With an argument, a new value for Fitness is stored in memory and on
disk.

4.1.48 Age()

Arguments: number increment (optional)
Return value: number
Defined in: GeneticProgram.pm
Mainly called by: TournamentGP::tournament()
Usually calls:
Relevant attributes:

43

Without an argument, it returns the “age” of an Individual, which usually
means the number of tournaments participated. It is stored only in the memory
cache (see memory(), and not on disk.

4.1.49 random terminal()

Arguments: string nodetype
Return value: string
Defined in: GeneticProgram.pm
Mainly called by: grow tree(), random function()
Usually calls: random existing terminal()
Relevant attributes: Terminals

This routine first calls random existing terminal() and returns its result
if true, otherwise it returns one random element from the array stored in the
hash pointed to by Terminals using the hash-key nodetype.

4.1.50 random existing terminal()

Arguments: string nodetype, boolean encapsulated (optional)
Return value: string
Defined in: GeneticProgram.pm
Mainly called by: random terminal(), random function()
Usually calls:
Relevant attributes: UseExistingTerminalsFrac, UseEncapsTerminalsFrac

If you have numeric mutation switched on, perhaps you want to use existing
refined numeric terminals during the construction of new subtrees. If so, you can
set UseExistingTerminalsFrac to a fraction/probability, then this method will
sometimes return a randomly chosen existing terminal of type nodetype (if one
exists) from the genome tree of this organism. For the random selection, each
unique terminal is counted only once (to prevent saturation of that terminal).

If UseEncapsTerminalsFrac is non-zero and if the optional argument encap-
sulated is true, then with this probability, the method will return only terminals
of the requested type which were generated by encapsulation (these are tagged
with “;;NUM;;”, see encapsulate subtree). If none are found, an empty string
is returned.

4.1.51 random function()

Arguments: string nodetype
Return value: string
Defined in: GeneticProgram.pm
Mainly called by: grow tree()
Usually calls: random terminal(), random existing terminal()
Relevant attributes: Functions, UseEncapsTerminalsFrac

If no set of functions of type nodetype is defined in the Functions, then this
function passes through to random terminal(). Otherwise, with probability
UseEncapsTerminalsFrac a random encapsulated terminal is attempted to be
chosen through a call to random existing terminal().

44

But the default behaviour is, of course, to return a random function of type
nodetype from the Functions hash.

4.2 Attributes & Variables

4.2.1 NodeMutationProb

Data type: number
Default: 1/100
Defined in: GeneticProgram.pm
Mainly used in: mutate()
See also:

The probability that each node in the genome-tree will be subjected to mu-
tation (see mutate()).

4.2.2 FixedMutations

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: mutate()
See also: FixedMutationProb

If non-zero, then a fixed number of mutations (equal to FixedMutations)
will be attempted, regardless of genome size. This attribute overrides any setting
of NodeMutationProb.

4.2.3 FixedMutationProb

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: mutate()
See also: FixedMutations

The probability with which FixedMutations will be performed. A setting
of 0.1 would mean that 10% of the offspring from crossover are mutated.

4.2.4 PointMutationFrac

Data type: number
Default: 0.7
Defined in: GeneticProgram.pm
Mainly used in: mutate()
See also:

A mutation is either a point mutation or a macro mutation, this attribute
controls how much of either. A setting of 1 means all point mutation and 0
means all macro mutation.

45

4.2.5 NumericMutationFrac

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: point mutate()
See also: NumericIgnoreNTypes, NumericAllowNTypes,
NumericMutationRegex

With this probability, point mutations on numbers (satisfying
NumericMutationRegex) will be altered instead of replaced.

4.2.6 NumericMutationRegex

Data type: regex
Default: qr/^[+-]?\d+(?:\.\d+)?([eE][+-]?\d+)?$/
Defined in: GeneticProgram.pm
Mainly used in: point mutate()
See also: NumericMutationFrac, NumericIgnoreNTypes,
NumericAllowNTypes

Numeric mutations will only be done if this pattern matches the terminal
node contents.

4.2.7 NumericIgnoreNTypes

Data type: hash-ref
Default: empty
Defined in: GeneticProgram.pm
Mainly used in: point mutate()
See also: NumericAllowNTypes()

Define the keys in this hash as the nodetypes you don’t want to be numeri-
cally mutated, for example:

NumericAllowNTypes => { ANGLE => 1, INDEX => 1 },

By default, all other terminals which match NumericMutationRegex will be
mutated, with the default change factor of 0.1 (see NumericAllowNTypes).

4.2.8 NumericAllowNTypes

Data type: hash-ref
Default: empty
Defined in: GeneticProgram.pm
Mainly used in: point mutate()
See also: NumericIgnoreNTypes()

Define the keys in this hash as the nodetypes you want to be numerically
mutated, for example:

NumericAllowNTypes => { NUM => 1, CONST => 2 },

46

Where the values indicate how much change occurs on mutation. The change
is calculated as:

if (rand(1)<0.5) {
$num *= (1 + $changefactor);

} else {
$num /= (1 + $changefactor);

}

where $changefactor is the value given in your hash.

4.2.9 NoNeutralMutations

Data type: boolean
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: mutate()
See also:

If true, mutations will be repeated until a visible change in the program
code is observed. This involves tree expansion and is therefore not very efficient.
Effects not properly benchmarked.

4.2.10 PointMutationDepthBias

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: point mutate()
See also: MacroMutationDepthBias, XoverDepthBias

Depth bias for point mutation node sampling. See random node() for de-
tails. The default of 0 means no bias at all (and so terminal nodes are relatively
likely).

4.2.11 MacroMutationDepthBias

Data type: number
Default: 0.7
Defined in: GeneticProgram.pm
Mainly used in: point mutate()
See also: PointMutationDepthBias, XoverDepthBias

Depth bias for macro mutation node sampling. See random node() for
details.

4.2.12 MacroMutationTypes

Data type: array-ref
Default: see below
Defined in: GeneticProgram.pm
Mainly used in: macro mutate()
See also:

47

This array contains the names of the macro mutation operators which may
be used. An example of a name is swap subtrees (do not include the () which
is used in this manual for purposes of clarity only). Choice of operator is done in
macro mutate() by random sampling, so if you want to bias a certain operator,
include its name in this array more than once.

The default array contains a single copy each of: swap subtrees
copy subtree replace subtree insert internal delete internal

Note that encapsulate subtree and point mutate deep are not included
by default.

4.2.13 EncapsulateIgnoreNTypes

Data type: hash-ref
Default: empty
Defined in: GeneticProgram.pm
Mainly used in: encapsulate subtree()
See also: EncapsulateFracMax

Don’t allow these nodetypes (the keys in the hash) to be encapsulated. The
values are not used. Example definition:

EncapsulateIgnoreNTypes => { ADF => 1 },

4.2.14 EncapsulateFracMax

Data type: number
Default: 0.25
Defined in: GeneticProgram.pm
Mainly used in: encapsulate subtree()
See also:

During node sampling in encapsulate subtree(), subtrees are skipped if
they contain more than EncapsulateFracMax of the total nodes in the tree.
This is intended to prevent too much of a program being encapsulated. Not
benchmarked!

4.2.15 UseEncapsTerminalsFrac

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: random function()
See also:

The probability that an already encapsulated subtree will be used instead
of a function, during new subtree growth. Not benchmarked!

4.2.16 MutationLogFile

Data type: string
Default: ‘results/mutation.log’
Defined in: GeneticProgram.pm

48

Mainly used in: mutate()
See also: MutationLogProb

The filename for the mutation log. Relative to the experiment directory.

4.2.17 MutationLogProb

Data type: number
Default: 0.02
Defined in: GeneticProgram.pm
Mainly used in: mutate()
See also: MutationLogFile

The probability with which a log entry is written to MutationLogFile.

4.2.18 NodeXoverProb

Data type: number
Default: 1/50
Defined in: GeneticProgram.pm
Mainly used in: crossover()
See also: FixedXovers, FixedXoverProb

The per node crossover point selection probability.

4.2.19 FixedXovers

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: crossover()
See also: FixedXoverProb

If non-zero, then a fixed number of crossover points (equal to FixedXovers)
will be attempted, regardless of genome size. This attribute overrides any setting
of NodeXoverProb.

4.2.20 FixedXoverProb

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: crossover()
See also: FixedXovers

The probability with which FixedXovers crossover points will be attempted
during reproduction (otherwise no crossovers will be attempted, which is the
same as asexual reproduction).

49

4.2.21 XoverDepthBias

Data type: number
Default: 0.1
Defined in: GeneticProgram.pm
Mainly used in: point mutate()
See also: PointMutationDepthBias, MacroMutationDepthBias

Depth bias for crossover point sampling. See random node() for details.
If the depth wasn’t biased, then too often crossovers would take place between
“uninteresting” leaf nodes and small subtrees.

4.2.22 XoverSizeBias

Data type: number (must not be zero)
Default: 1
Defined in: GeneticProgram.pm
Mainly used in: crossover()
See also: XoverHomologyBias

This controls the strictness of size-equal crossover point selection. By size-
equal, I mean that crossover points are selected with a bias towards similar
sized subtrees. Increase this (say to 2 or 4) and the algorithm described in
crossover() spends longer looking for similar sized subtrees.

4.2.23 XoverHomologyBias

Data type: number (must not be zero)
Default: 1
Defined in: GeneticProgram.pm
Mainly used in: crossover()
See also: XoverSizeBias

This controls the strictness of homologous subtree crossover point selection.
Increase this value to 2 or 4, for example, to tell the algorithm described in
crossover() to spend longer looking for crossover points with similar subtree
contents.

4.2.24 AsexualOnly

Data type: boolean
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: crossover()
See also:

If true, force all crossovers to use the root node, and hence make identical
copies of both parents. All other crossover parameters are ignored.

50

4.2.25 XoverLogFile

Data type: string
Default: ‘results/crossover.log’
Defined in: GeneticProgram.pm
Mainly used in: crossover()
See also: XoverLogProb

The file (relative to the experiment directory) where some information about
crossover point selection is logged.

4.2.26 XoverLogProb

Data type: number
Default: 1/50
Defined in: GeneticProgram.pm
Mainly used in: crossover()
See also: XoverLogFile

The fraction of recombination events for which XoverLogFile is written to.

4.2.27 MaxTreeNodes

Data type: number
Default: 1000
Defined in: GeneticProgram.pm
Mainly used in: expand tree()
See also: MinTreeNodes, TreeDepthMax, TreeDepthMin, TerminateTreeProb

Controls the maximum allowable tree size. The way this works is counter-
intuitive so pay attention... Trees are allowed to be bigger than this size
limit, however when the genome tree is converted into code, only the first
MaxTreeNodes are expanded properly into what the “code for”, all subsequent
nodes are expanded into a randomly picked terminal (see expand tree()). This
probably gives an disfunctional program and so indirectly prevents tree growth
beyond this size. Note that this is really just a safety limit, not a recommended
way to control code growth. Don’t forget about MaxTreeNodes though, one day
you will probably need to raise it.

4.2.28 MinTreeNodes

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: init tree()
See also: MaxTreeNodes, TreeDepthMax, TreeDepthMin, TerminateTreeProb

This attribute defines a minimum tree size (in nodes) for new trees only. If
a brand new random tree (usually made during Population initialisation) has
fewer than this number of nodes, then the tree is discarded and made again (and
repeated until a big enough tree is generated). Currently this is implemented
without a check for infinite looping, so watch out.

This attribute does not affect subtree generation.

51

4.2.29 TreeDepthMax

Data type: number
Default: 20
Defined in: GeneticProgram.pm
Mainly used in: init tree(), grow tree()
See also: TreeDepthMin, TerminateTreeProb, MaxTreeNodes, MinTreeNodes,
NewSubtreeDepthMax

A fixed limit on tree depth for brand new trees only. When a growing
branch of a tree reaches this limit, only terminals are added (like in Koza’s and
other GP implementations). Note that this is different to the implementation
of MaxTreeNodes.

The default is just a safety limit because it is assumed that you are using a
“naturally terminating grammar”.

4.2.30 TerminateTreeProb

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: grow tree()
See also: TreeDepthMin

You may force the choice of terminals during new tree and subtree gener-
ation by setting this probability. It only has an effect at tree depths below
TreeDepthMin. Note the default is zero.

4.2.31 TreeDepthMin

Data type: number
Default: 1
Defined in: GeneticProgram.pm
Mainly used in: grow tree()
See also: TerminateTreeProb

The minimum depth before tree growth is probabilistically terminated with
TerminateTreeProb.

4.2.32 NewSubtreeDepthMean

Data type: number
Default: 20
Defined in: GeneticProgram.pm
Mainly used in: macro mutation operators
See also: NewSubtreeDepthMax

Many of the macro mutation operators need to make new subtrees. They
call grow tree() with a specific tree depth maximum which is generated from
a capped Poisson distribution with the mean parameter NewSubtreeDepthMean,
and cap NewSubtreeDepthMax. The default setting is quite high and assumes
that you have a “naturally terminating grammar”.

52

4.2.33 NewSubtreeDepthMax

Data type: number
Default: 20
Defined in: GeneticProgram.pm
Mainly used in: macro mutation operators
See also: NewSubtreeDepthMean

A hard upper limit on the size of new subtrees (see NewSubtreeDepthMean).

4.2.34 UseExistingTerminalsFrac

Data type: number
Default: 0
Defined in: GeneticProgram.pm
Mainly used in: random existing terminal()
See also: NumericMutationFrac, UseEncapsTerminalsFrac

The fraction or probability with which existing terminals (already in the
genome tree) are used instead of the usual pool of terminals held in Terminals.
Usually you will want to combine this with numeric mutation. See also
point mutate().

4.2.35 GetSizeIgnoreNTypes

Data type: hash-ref
Default: empty
Defined in: GeneticProgram.pm
Mainly used in: getSize()
See also:

If you are using parsimony pressure in your fitness function, you might want
getSize() to ignore the trees below certain nodetypes. In this case you can
specify these nodetypes in this hash.

4.2.36 DBFileStem

Data type: string
Default: none, required attribute
Defined in: GeneticProgram.pm
Mainly used in: tieGenome()
See also: Population::findNewDBFileStem()

This is the file stem for the DBM file where the genome tree is stored. It is
a required attribute. See the program perlgp-rand-prog.pl to see how you can
make a random program using a temporary DBFileStem.

4.2.37 ExperimentId

Data type: string
Default: none, required attribute
Defined in: GeneticProgram.pm

53

Mainly used in: perlgp-run.pl
See also:

This is the name of the current experiment directory (not the full path).

4.2.38 Population

Data type: object
Default: none, required attribute
Defined in: GeneticProgram.pm
Mainly used in: not really used!
See also: perlgp-rand-prog.pl

Each Individual knows to which Population it belongs. Currently this is not
actually used anywhere. Since it is compulsory, you have to proivide a dummy
value in applications such as perlgp-rand-prog.pl, sorry about that - I guess this
will change.

4.2.39 Functions

Data type: hash-ref
Default: \%Grammar::F
Defined in: GeneticProgram.pm
Mainly used in: random function()
See also: Terminals

This is where the non-terminal grammar definitions are stored. In the hash,
keys are nodetypes and the values are anonymous arrays containing different
function options. More details of the format used can be found in Section 7.
Usually this hash is shared between all Individual objects (otherwise memory
usage would be heavy), hence the default is a reference to the hash %Grammar::F.

You could customise the Individual class to dynamically alter Functions
and Terminals if you wanted to.

4.2.40 Terminals

Data type: hash-ref
Default: \%Grammar::T
Defined in: GeneticProgram.pm
Mainly used in: random terminal()
See also: Functions

The terminal node options are stored here, see the entry for Functions, and
also Section 7.

5 Class: Population

5.1 Methods

5.1.1 new()

Arguments: ExperimentId => string, attribute-hash (optional)

54

Return value: object
Defined in: PerlGPObject.pm
Mainly called by: perlgp-run.pl
Usually calls: init()
Relevant attributes: all

The constructor for the Population class. You may customise the object by
setting attributes as arguments to the constructor or edit init() in Popula-
tion.pm.

5.1.2 init()

Arguments: attribute-hash
Return value:
Defined in: GPPopulation.pm
Mainly called by:
Usually calls:
Relevant attributes:

A standard cascading init() routine, which sets attributes. It also creates
PopulationDir if it doesn’t exist. If you want to change the attributes, edit
the hash %defaults in init() in Population.pm.

5.1.3 addIndividual()

Arguments: object individual
Return value:
Defined in: GPPopulation.pm
Mainly called by:
Usually calls:
Relevant attributes:

Adds individual to Individuals.

5.1.4 findNewDBFileStem()

Arguments:
Return value:
Defined in: GPPopulation.pm
Mainly called by: perlgp-run.pl
Usually calls:
Relevant attributes:

Searches the scratch directory (PERLGP SCRATCH) for an unused filename
of the format “Individual-%06d” where the last bit is a serial number. For
speed, instead of checking for the existence of files, a hash table in memory
(%usedfilestems) is used.

5.1.5 repopulate()

Arguments: RandomFraction => number (optional)
Return value:

55

Defined in: GPPopulation.pm
Mainly called by: perlgp-run.pl
Usually calls: addIndividual()
Relevant attributes: PopulationDir

This is called on a newly created Population object in perlgp-run.pl in order
to load up any pre-existing Individuals. First, it looks in PopulationDir for
DBM files. If there are no files and if a gzipped tar file backup exists (see
backup() for this Population, then the tar file is unpacked into PopulationDir.
In other words, the Population directory in PERLGP SCRATCH is recovered
from the backup.

Then all the unique filestems in PopulationDir are used to create new
Individual objects which are passed to addIndividual(). In other words, new
Individuals are made, each one tied to a DBM file in PopulationDir.

5.1.6 backup()

Arguments:
Return value:
Defined in: GPPopulation.pm
Mainly called by: TournamentGP::run()
Usually calls:
Relevant attributes: ExperimentId

This routine simply tars up the entire PopulationDir and saves it in the
directory PERLGP POPS with a name based on ExperimentId. To recover a
population, see repopulate().

5.1.7 emigrate()

Arguments:
Return value:
Defined in: GPPopulation.pm
Mainly called by: TournamentGP::run()
Usually calls: selectCohort(), Individual::save()
Relevant attributes: MigrationSize

This method randomly selects MigrationSize Individuals and saves them
in a temporary directory, which is then tarred up into a file in PERLGP POPS
(the name comes from the method export tar file()).

5.1.8 export tar file()

Arguments:
Return value: string
Defined in: GPPopulation.pm
Mainly called by: emigrate(), immigrate()
Usually calls:
Relevant attributes: ExperimentId

All this does is return the following string:

56

sprintf "%s/%s.export.tar.gz", $ENV{PERLGP_POPS}, $self->ExperimentId();

(Sometimes Perl is easier to understand than English.)

5.1.9 immigrate()

Arguments:
Return value:
Defined in: GPPopulation.pm
Mainly called by: TournamentGP::run()
Usually calls: randomIndividual(), Individual::load()
Relevant attributes:

First, some explanation of a major assumption we make about migrating
populations: that is that mutually migrating populations are assumed to have
the same base ExperimentId followed by a minus sign and an integer, i.e.
pi-01 pi-02 pi-03 pi-04. These directories are made automatically by the
wrapper script perlgp-mrun.pl.

Potential immigrant population samples are gathered by a glob in
PERLGP POPS for ExperimentId-*.export.tar.gz. Then one of these is se-
lected at random (but not a sample exported from this Population, of course),
and is unpacked into a temporary directory. This temporary directory contains
DBM files, and these are loaded up into randomly selected Individuals from this
Population using Individual::load(). Each of the affected Individuals now
has a new genome so its fitness is reset with a call to initFitness() (because
the previous fitness may have been calculated on different training examples in
the other Population).

5.1.10 initFitnesses()

Arguments:
Return value:
Defined in: GPPopulation.pm
Mainly called by:
Usually calls:
Relevant attributes:

A routine to call initFitness() on each Individual in the Population.

5.1.11 countIndividuals()

Arguments:
Return value: number
Defined in: BasePopulation.pm
Mainly called by:
Usually calls:
Relevant attributes:

Returns the number of Individuals in the Population, not to be confused
with PopulationSize.

57

5.1.12 randomIndividual()

Arguments:
Return value: object
Defined in: BasePopulation.pm
Mainly called by: selectCohort()
Usually calls:
Relevant attributes:

Returns one randomly selected Individual from Individuals.

5.1.13 selectCohort()

Arguments: number size
Return value: array
Defined in: BasePopulation.pm
Mainly called by: TournamentGP::tournament(), emigrate()
Usually calls: randomIndividual()
Relevant attributes:

Returns size different, randomly selected Individuals from the Population.

5.2 Attributes & Variables

5.2.1 Individuals

Data type: array-ref
Default: empty
Defined in: BasePopulation.pm
Mainly used in: addIndividual(), countIndividuals(),
randomIndividual()
See also: PopulationSize

The array where the Individuals in the Population are stored.

5.2.2 PopulationSize

Data type: number
Default: 2000
Defined in: BasePopulation.pm
Mainly used in: perlgp-run.pl
See also:

This is the maxium allowed size of the Population, if you use perlgp-run.pl
to start a run. The Population class does not control the number of Individuals
itself.

5.2.3 MigrationSize

Data type: number
Default: 50
Defined in: GPPopulation.pm
Mainly used in: emigrate()
See also:

58

If migration is enabled (in the Algorithm class with EmigrateInterval and
ImmigrateInterval), then this parameter determines how many Individuals
move from one population to another at a time.

5.2.4 PopulationDir

Data type: string
Default: see below
Defined in: GPPopulation.pm
Mainly used in: repopulate()
See also: ExperimentId

The directory where all the per-Individual DBM files are stored. The default
is PERLGP SCRATCH/ExperimentId.

5.2.5 ExperimentId

Data type: string
Default:
Defined in: GPPopulation.pm
Mainly used in:
See also:

The same as the attribute in Algorithm with the same name.

6 Universal Base Class: PerlGPObject

6.1 Methods

6.1.1 new()

Arguments: none
Return value: void
Defined in: PerlGPObject.pm
Mainly called by:
Usually calls:
Relevant attributes:

This is actually where the constructor for all PerlGP classes is defined, but
it has been explained in more detail above.

6.1.2 AUTOLOAD() (get and set attributes)

Arguments: Attribute name or value
Return value: Attribute value or $self
Defined in: PerlGPObject.pm
Mainly called by:
Usually calls:
Relevant attributes: all

Thanks to the magic of Perl’s AUTOLOAD mechanism, we can use all valid
attribute names as methods to get and set their values. So the usage is simply:

59

getting
my $prob = $individual->NodeMutationProb();
my $size = $population->PopulationSize();

setting
$algorithm->TournamentsSinceBest(0);
$individual->Terminals({ NUM=>[0 .. 9], CHAR=>[’a’ .. ’z’] });

However, sometimes it’s not convenient to use this notation, particularly
during string interpolation or with +=, so you will often see direct access to the
attributes in the object hash.

$algorithm->{Tournament}++;
print "my file stem is $self->{DBFileStem}\n";

In order for this to mechanism to work, an object needs to know which
attributes it has. It looks to see if the requested method name is a key in the
object’s hash table. The simplest way to define these is in the %defaults hash in
the top level class definition file (e.g. Algorithm.pm). You can also “reserve” an
attribute for later use with optionalParams(), which is equivalent to initialising
the attribute with an undefined value.

Because the set routine returns $self, you can chain “set” calls like this:

$object->NodeMutationProb(0.01)->NodeXoverProb(0.02);

6.1.3 optionalParams()

Arguments: array attribute names
Return value:
Defined in: PerlGPObject.pm
Mainly called by: init() methods
Usually calls:
Relevant attributes:

See the discussion for AUTOLOAD. Add a call to this method in the init()
routine (after the SUPER:: init() call - see GPPopulation.pm for an example)
to reserve an attribute name so that the AUTOLOAD get/set routines will
recognise it.

6.1.4 compulsoryParams()

Arguments: array attribute names
Return value:
Defined in: PerlGPObject.pm
Mainly called by: init() methods
Usually calls:
Relevant attributes:

If you want to make sure that the user provides values for certain attributes
in the constructor or top level init() routine, then you can use this routine.
See GeneticProgram:: init() for an example.

60

6.2 Attributes & Variables

6.2.1 Class

Data type: string
Default:
Defined in: PerlGPObject.pm
Mainly used in: nowhere, actually
See also:

All objects store their own type in the Class attribute, but this isn’t used
anywhere. Could be useful for debugging, but then you could just print out the
object reference.

7 Grammar definition

You control the space explored by your evolving programs by specifying a gram-
mar for their construction. This is done in Grammar.pm in a fairly standard
way, except that the production rules are split into functions and terminals.
The following sections explain some of the concepts and how the grammar is
converted into a real Perl program. But first I explain some strange Perl syntax
that you may not have seen before:

$F{ROOT} = [<<’___’,
package Individual;

sub evaluateOutput {
my ($self, $data) = @_;
my ($x, $y, $z, @output);
foreach $input (@$data) {
$x = $input->{x};
begin evolved bit

$y = {NUM};

end evolved bit
push @output, { ’y’=> $y };

}
return \@output;

}

];

The right hand side of this assignment is an anonymous array (or reference
to an array) containing a single string element. The contents of that string are
everything on the lines between the <<’___’ and the following ___. This is
known as here-text, and is often used in shell scripts. In Perl there are different
flavours of here-text, the one used here is single-quoted here-text, which means
things that look like variables (like $x) are not interpolated.

Why not just put single quotes round this string? Well there are some single
quotes in the string and we like those and don’t want to mess around with

61

backslashes. OK, so why not use q() or q//? Then we have to make sure that
the delimiter is not in the string anywhere, which is a pain. Here-text does just
fine thanks, and tends not to mess up emacs colouring too!

Note that the following, with the square brackets closed before the here-text,
is also correct:

$F{FOO} = [<<’___’];
foreach $foo (@foo) {
$foo->{FUNC}();

}

Now read on for a short explanation of what’s going on with hashes and
grammar definition (modified from my EuroGP2003 paper/poster).

7.1 Tree-as-Hash-Table Genotype Representation

Hash tables, also known as associative arrays, can be hijacked to encode string-
based tree structures as explained in the code snippet below. The keys in the
genome hash-tree follow the syntax: nodeTYPExx, where TYPE is replaced by an
all-capitals string describing the type of the node (see Section 7.2), and xx is a
unique identifier (for there may be many nodes of the same type).

$tree{nodeS0} = ’One day in {nodeS1}.’;
$tree{nodeS1} = ’{nodeS2} {nodeS3}’;
$tree{nodeS2} = ’late’;
$tree{nodeS3} = ’August’;
$string = $tree{nodeS0};
do { print "$string\n" } while ($string =~ s/{(\w+)}/$tree{$1}/);

outputs the following:
One day in {nodeS1}.
One day in {nodeS2} {nodeS3}.
One day in late {nodeS3}.
One day in late August.

Tree-as-hash-table explanation. In Perl, the syntax $one{two} = ’three’ means
that in a hash table named ‘one’, the value ‘three’ is stored for the key ‘two’. The
iterated search-and-replace (s/patt/repl/) looks for hash keys contained within

curly braces and replaces them with the contents of the hash.

7.2 Grammar Specification

PerlGP is a strongly typed system. In fact, all evolved code must be syntacti-
cally correct to be awarded fitness. When random individuals or subtrees are
generated, PerlGP follows a grammar (defined by the user). The format of
this grammar is analogous to the tree-as-hash encoding described above, and is
explained in the code below:

$F{ROOT} = [’{STATEMENT}’];
$T{ROOT} = [’# nothing’];

62

$F{STATEMENT} = [’print "{STRING}!\n";’,
’$s = "{WORD}";’,
’{STATEMENT}

{STATEMENT}’];

$T{STATEMENT} = [’# just a comment’,
’chomp($s);’,];

$F{STRING} = [’{STRING}, {STRING}’,
’{WORD}’];

$T{STRING} =
$T{WORD} = [’donuts’, ’mmm’, ’$s’];

Grammar specification as a pair of hashes, %F for functions and %T for terminals. The
keys in the hashes are the user-defined node types (i.e. data types). Node types must
be in capital letters only. The values are anonymous arrays containing the possible

expansions for that type. When another function or terminal is needed, it is signalled
by a node type in curly braces. The ROOT node type must always be defined.

Function definitions are optional (in this example there is no function of type WORD)
but terminals must be defined for every type.

7.3 Random Initialisation of Programs

A random tree is generated simply by starting with a new node of type ROOT,
picking a random element from the array stored in $F{ROOT}, creating new nodes
wherever {TYPE} is seen. This is illustrated below:

1 $genome{nodeROOT0} = ’{nodeSTATEMENT0}’;

2 $genome{nodeSTATEMENT0} = ’{nodeSTATEMENT1} {nodeSTATEMENT2}’;

3 $genome{nodeSTATEMENT1} = ’$s = "{nodeWORD0}";’;

4 $genome{nodeSTATEMENT2} = ’print "{nodeSTRING0}!\n";’;

5 $genome{nodeSTRING0} = ’{nodeSTRING1}, {nodeSTRING2}’;

6 $genome{nodeSTRING1} = ’{nodeWORD1}’;

7 $genome{nodeSTRING2} = ’{nodeWORD2}’;

8 $genome{nodeWORD0} = ’donuts’;

9 $genome{nodeWORD1} = ’mmm’;

10 $genome{nodeWORD2} = ’$s’;

To make a new tree: start with a ROOT node, assign a new genome key nodeROOT0

and pick one of the available ROOT type functions from the grammar (see

63

Section 7.2). In this case there is only one choice (line 1). The contents of the new
node require a new STATEMENT type node to be created, and a random function of
that type is chosen (line 2). Now there are two child nodes to be expanded (lines 3

and 4). The process continues recursively along all branches and when a function can
not be found, a terminal node is used instead.

Here are a few examples of random code generated from the actual grammar
defined in Section 7.2, generated with the utility program perlgp-rand-prog.pl,
each separated by a blank line.

print "$s, donuts, mmm, mmm, $s!\n";
print "$s, mmm, $s!\n";
print "$s!\n";

$s = "$s";

print "mmm, mmm!\n";
$s = "$s";
print "mmm, $s, $s, mmm, mmm, $s!\n";
print "donuts!\n";
$s = "mmm";
print "mmm, donuts, mmm, mmm, mmm, $s, mmm, donuts, $s, mmm, $s, $s, donuts,
donuts, donuts, donuts, mmm, $s, donuts, donuts, donuts, donuts, mmm!\n";
print "$s, $s!\n";

$s = "donuts";
$s = "donuts";
$s = "mmm";
$s = "$s";
print "donuts!\n";

$s = "donuts";

Tree termination and size control can be achieved in three ways. I prefer to
construct the Grammar with biased frequencies of branching and non-branching
functions so that trees terminate naturally.

Whereas the following grammar definition tends to produce very deep trees:
$F{STRING} = [’{STRING}, {STRING}’,’{WORD}’];,

this modification produces more reasonably sized trees:
$F{STRING} = [’{STRING}, {STRING}’,’{WORD}’,’{WORD}’,’{WORD}’];

because the WORD type is non-branching and only terminals are defined for it.
Alternatively or additionally, maximum and minimum tree sizes (number

of nodes) can be imposed, along with an early termination probability and a
maximum tree depth limit.

8 Utility Scripts

8.1 perlgp-run.pl

This is the main program for running a PerlGP experiment. It expects to be
run from the “experiment directory”. The only option available is -loop which

64

causes the program to restart after crashing (with a 60 second sleep). See also
the Algorithm attribute ForkForEval if you are having problems with crashing.

8.2 plot-tlog.pl

This is the script for plotting the tournament log file (explained in Table 1 in
Section 3.1.9). It uses gnuplot, so you will need to install this if you don’t have
it and want to use this (simple to adapt) script.

usage: plot-tlog.pl

The main options are:

-refresh S - sleep for S seconds and then replot

-geometry GEOM - X11 geometry specification for window (e.g. -geometry
400x300-0+0)

-timebased - show the number of hours elapsed since the start of the run on
the x-axis

-logs AXIS - use a logarithmic scale on AXIS (x, y, x2, y2)

-yrange ’RANGE’ - fix the y-axis range, (-yrange ’[0:100]’)

-xrange, -y2range - see -yrange, the program size and complexity values are
plotted against the y2 axis

8.3 perlgp-wipe-expt.pl

When run from inside an experiment directory, it removes the results directory
and also any on-disk populations belonging to this run in PERLGP SCRATCH
and PERLGP POPS.

When run from outside an experiment directory, you can give multiple ex-
periment directory paths on the command line and it will go into each and clean
them as above.

8.4 perlgp-rand-prog.pl

Makes and prints to STDOUT a random program from your grammar definition.
(For the interested: it does this by generating a new Individual object with a
temporary DBFileStem.)

Extremely useful when defining a new grammar. It is recommended to set
MinTreeNodes to zero while experimenting with new grammars (otherwise you
don’t get a proper sense of how the trees are naturally terminating).

8.5 perlgp-sample-pop.pl

usage: perlgp-sample-pop.pl [0.1] | less
(runs inside experiment directory)

Samples a random fraction (default 0.1, but you can give a different value
on the command line) of the Population and prints the Perl code to STDOUT.
It can be useful to pipe the output through grep and sort to give you an idea
of what are the common “genes” (lines of code) in your gene pool.

65

8.6 perlgp-show-prog.pl

usage: perlgp-show-prog.pl db_file_stem

example: perlgp-show-prog.pl results/keptbest/Tournament-0000139

Loads up an Individual from a DBM file, which is not human readable, and
expands the Perl code and prints it to STDOUT.

8.7 perlgp-mrun.pl

A wrapper script for running multiple copies of experiments (in copied direc-
tories). You should make sure that there are no large files in the experiment
directories (use links for large data files) if you cannot afford the disk space.

On a single processor, this script will run jobs in serial. If you have a cluster,
or a multi-processor machine, you can use the -queue option but you must modify
the script to work with your local queueing system.

You run the script from the parent directory of the experiment directory:

usage: perlgp-mrun.pl -num 20 -hours 4 expt_dir_name

The main options are:

-number X - makes X copies of the experiment and runs them

-hours H - runs the jobs for H hours

-mins M - or use this if you count in minutes

-queue - use a queueing system (see above)

-loop - pass the -loop option to perlgp-run.pl

Other options should be self-explanatory in the script itself.

8.8 perlgp-avg-logs.pl

When you’ve run 50 copies of the same job using perlgp-mrun.pl, this script will
take the last line of each ‘results/tournament.log’ file and calculate the means
and standard deviations from each numeric column. For non-numeric columns
it prints the most common string seen in that column.

usage: perlgp-avg-logs.pl label1 ’glob1-??’ label2 ’glob2-??’ label3...

Where each label is an arbitrary identifier for the experiments which the
following shell glob (protected in quotes) expands to. Perhaps this is best ex-
plained with an example. Imagine you are running two symbolic regression
experiments, one with trigonometric functions, one without. Assuming you ran
perlgp-mrun.pl on two experiments named ‘fit-withtrig’ and ‘fit-notrig’, then
you would use this program as follows:

example: perlgp-avg-logs.pl notrig ’fit-notrig-??’ trig ’fit-withtrig-??’

66

When exactly two sets of experiments are given, as above, this program also
prints out the d value from a paired t-test (asks if the means from two assumed
normal distributions are significantly different). Look this up in any statistics
text book, but as a rough guide, if you have done more than 30 replicates of
each experiment and the absolute value of d is greater than 1.96, then the two
means are significantly different at the 5% level.

If you want to do the averaging at a particular tournament number, and
not on the final tournament, add the option -tournament T, where T is the
tournament number. If this tournament is not in the logfile, the last entry in
the log is used.

You can specify logarithm-taking of certain columns in the log file with -
logs COL1 -logs COL2 or -logs 1,5 and set the log base with -base N. Column
numbers start at zero.

9 Demos

9.1 Approximation of pi

Please change directory to ’PERLGP BASE/demos/pi’ and look at the
README file before running this demo.

9.1.1 Problem definition

Find a integer arithmetic approximation to π, for example 3 + 1/7
Arithetic operations allowed: plus, minus, multiply and protected division
Integers allowed: 1,2,3,5,7
Fitness function: absolute error from π defined as 2*atan2(2,0) (small is

good)

9.1.2 PerlGP approach

In this case the training and testing data structures (TrainingData,
TestingData), and the output from evaluateOutput() are simple scalar num-
bers. Usually, as discussed in Section 2.4, they would be scalar references to
larger data structures. There is no input variable in this situation (unlike the
more familiar regression problem). There is also no meaningful concept of “test-
ing”; because no data is sampled, there can also be no out-of-sample data. Hence
loadSet() returns just the “true” value of pi for both training and testing in-
stances. This value is only accessed by fitnessFunction() of course, not by
the evolved code.

There’s not much more to explain, except of course that when the fitness
reaches around 1e-15 it can go no further because the limit of double precision
floating point numbers has been reached.

In this example, self-adapting mutation and crossover probabilities
(NodeMutationProb and NodeXoverProb) are used. You can follow the evo-
lution of these attributes with the gnuplot script plot-evparams.gp.

67

9.2 Symbolic regression of sine function

Please change directory to ’PERLGP BASE/demos/sin’ and look at the
README file before running this demo.

9.2.1 Problem definition

Find an approximation to sin 3x using arithmetic operations plus, minus, mul-
tiply and protected division, and the integers 1,2,3,5,7 and the input x.

The fitness measure is basically the root mean squared error or deviation of
the predicted function from the target function, measured on a set of randomly
sampled points, between -1.0 and +1.0 initially, but the range and number of
points increases during the run (see below).

9.2.2 PerlGP approach

Here, loadSet() reads in data (randomly sampled x values from the files
TrainingSet or TestingSet) which is generated by a simple script ./gener-
ate data.pl (which gets run by the refresh() method, but more on this later).
The general flow of data is discussed in detail in Section 2.4.

Two subtle “hacks” seemed to be needed to get well behaved GP runs on this
problem. Domain specific knowledge was used in both cases. Firstly, the error
function incorporates a cap on the per-sample error. If the squared difference
between the predicted and known y values is greater than 1.0, it is counted as 1.0.
This may not be essential, but with prior knowledge of the Taylor expansions
of trigonometric functions we know that at ± infinity the approximation also
deviates infinitely from the x axis. So this error capping should help not to
punish functions containing high powers of x. The second hack is to start
training on a small range of x values centred around zero and then increase the
range (attribute Range) as the evolved solutions reach a certain target fitness.
Again we are using domain specific knowledge: we know that the early terms
in the Taylor expansion best fit the sine function for values of x around zero.
You can play around with more complex target functions (for example, try
sin(3(x− 1.23))) where there is no trivial solution early on.

Take a look at the refresh() method in Algorithm.pm, this is called on the
first tournament and subsequently every RefreshInterval tournaments. When
the best training fitness goes below a threshold, the Range is increased and the
data is regenerated, and loaded up again (and the whole Population’s fitnesses
are reset). An “anti-stagnation” measure is also implemented in refresh(): if
more than 1000 tournaments go by without an improvement in fitness, the data
is resampled and reloaded (but Range does not increase).

This demo also uses self-adapting NodeXoverProb and NodeMutationProb
attributes.

The various devices employed here may or may not be necessary to get a
good result, but they illustrate some of the ways you can customise PerlGP.

Note: the fitness function and data structures are not really optimised for
speed (wasteful use of hashes and so on). You can read about speed comparisons
against lilgp on the same problem in my EuroGP 2003 paper (available on
request and later on the web). It’s always a good idea to have something else
to do while jobs are running however...

68

9.3 Compound interest

Please change directory to ’PERLGP BASE/demos/interest’ and look at the
README file before running this demo.

9.3.1 Problem definition

Given the initial amount deposited in a bank, a fixed yearly deposit amount,
the interest rate and the number of years invested, what is the final amount
assuming a simple model of compound interest.

The fitness function is the root mean square deviation of the predicted final
amount from the real final amount.

9.3.2 PerlGP approach

This is treated more like a modelling problem than the previous regression
problem. The training data is generated by ./generate data.pl and is read in
with loadSet in the usual way. The grammar is constructed to allow looping
and allows six variables to be manipulated: the four input variables and an
additional two which are initialised to zero. Note how excessive looping is
avoided with the use of the $z variable.

This demo has a nice simple refresh() method that you can look at. It
also uses self-adapting NodeXoverProb and NodeMutationProb attributes.

This appears to be a challenging problem, because it is difficult to get good
results without unfairly biasing the grammar to give the kind of programs you
want to see. For example it is tempting to add a {VAR} += {NUM} statement.
This is a common problem in genetic programming - the search space is large,
local minima are prevalent, and CPU time and memory is limited, so it is
tempting to push the system in the direction you think it should take. Another
temptation is to use huge populations, but that changes the problem to a brute
force search and evolution becomes less important.

69

	Installation
	Versions and Disclaimer
	Prerequisites
	Unpacking
	Environment Variables

	Overview
	Aims of the Project
	Naming and Font Conventions
	Class/Object Hierarchy
	How It All Works
	Step-by-step: perlgp-run.pl
	Step-by-step: Data input
	Step-by-step: Tournaments I, Fitness Evaluation
	Step-by-step: Tournaments II, Selection and Reproduction

	What You Have to Implement

	Class: Algorithm
	Methods
	new()
	_init()
	loadSet()*
	loadData()
	fitnessFunction()*
	saveOutput()*
	refresh()
	run()
	tournament()
	calcFitnessFor()
	makeFamilies()
	crossoverFamily()
	decideBetterFitness()
	stopCondition()
	extraLogInfo()
	parseExtraLogInfo()

	Attributes & Variables
	TrainingSet*
	TestingSet*
	FitnessDirection*
	WorstPossibleFitness
	Population
	Tournament
	Tournaments
	TournamentsSinceBest
	BestFitness
	TournamentSize
	TournamentParents
	TournamentKillAge
	AlwaysEvalFitness
	MateChoiceRandom
	TournamentLogFile
	LogInterval
	FitnessesFile
	ComplexityLogFile
	ComplexityInterval
	RefreshInterval
	RecentTrainingOutputFile
	RecentTestingOutputFile
	RecentCodeFile
	BestTrainingOutputFile
	BestTestingOutputFile
	BestCodeFile
	KeepBest
	KeepBestDir
	KeepMax
	PopulationBackupInterval
	EmigrateInterval
	ImmigrateInterval
	AlarmTime
	ForkForEval

	Class: Individual
	Methods
	new()
	_init()
	reInitialise()
	evalEvolvedSubs()
	evolvedInit()
	evaluateOutput()*
	extraLogInfo()
	crossover()
	_start_crossover()
	_crossover()
	mutate()
	point_mutate_shallow()
	point_mutate_deep()
	point_mutate()
	_random_node()
	macro_mutate()
	replace_subtree()
	insert_internal()
	delete_internal()
	copy_subtree()
	swap_subtrees()
	encapsulate_subtree()
	simplify()
	_xcopy_subtree()
	_fix_nodes()
	_get_subnodes()
	_del_subtree()
	_tree_type_size()
	_display_tree()
	saveCode()
	saveTree()
	save()
	load()
	tieGenome()
	untieGenome()
	retieGenome()
	initTree()
	_init_tree()
	_grow_tree()
	_expand_tree()
	_tree_id()
	initFitness()
	eraseMemory()
	memory()
	getCode()
	getSize()
	Fitness()
	Age()
	_random_terminal()
	_random_existing_terminal()
	_random_function()

	Attributes & Variables
	NodeMutationProb
	FixedMutations
	FixedMutationProb
	PointMutationFrac
	NumericMutationFrac
	NumericMutationRegex
	NumericIgnoreNTypes
	NumericAllowNTypes
	NoNeutralMutations
	PointMutationDepthBias
	MacroMutationDepthBias
	MacroMutationTypes
	EncapsulateIgnoreNTypes
	EncapsulateFracMax
	UseEncapsTerminalsFrac
	MutationLogFile
	MutationLogProb
	NodeXoverProb
	FixedXovers
	FixedXoverProb
	XoverDepthBias
	XoverSizeBias
	XoverHomologyBias
	AsexualOnly
	XoverLogFile
	XoverLogProb
	MaxTreeNodes
	MinTreeNodes
	TreeDepthMax
	TerminateTreeProb
	TreeDepthMin
	NewSubtreeDepthMean
	NewSubtreeDepthMax
	UseExistingTerminalsFrac
	GetSizeIgnoreNTypes
	DBFileStem
	ExperimentId
	Population
	Functions
	Terminals

	Class: Population
	Methods
	new()
	_init()
	addIndividual()
	findNewDBFileStem()
	repopulate()
	backup()
	emigrate()
	export_tar_file()
	immigrate()
	initFitnesses()
	countIndividuals()
	randomIndividual()
	selectCohort()

	Attributes & Variables
	Individuals
	PopulationSize
	MigrationSize
	PopulationDir
	ExperimentId

	Universal Base Class: PerlGPObject
	Methods
	new()
	AUTOLOAD() (get and set attributes)
	optionalParams()
	compulsoryParams()

	Attributes & Variables
	Class

	Grammar definition
	Tree-as-Hash-Table Genotype Representation
	Grammar Specification
	Random Initialisation of Programs

	Utility Scripts
	perlgp-run.pl
	plot-tlog.pl
	perlgp-wipe-expt.pl
	perlgp-rand-prog.pl
	perlgp-sample-pop.pl
	perlgp-show-prog.pl
	perlgp-mrun.pl
	perlgp-avg-logs.pl

	Demos
	Approximation of pi
	Problem definition
	PerlGP approach

	Symbolic regression of sine function
	Problem definition
	PerlGP approach

	Compound interest
	Problem definition
	PerlGP approach

