
A New Approach to Evaluate GP Schema in Context

Hammad Majeed
Department of Computer Science and Information Systems

University of Limerick
Limerick, Ireland

hammad.majeed@ul.ie

ABSTRACT
Evaluating GP schema in context is considered to be a com-
plex, and, at times impossible, task. The tightly linked
nodes of a GP tree is the main reason behind its complexity.

This paper presents a new approach to evaluate GP schema
in context. It is simple in its implementation with a poten-
tial to address well-known GP problems, such as identifica-
tion of significant schema, dead code (introns) and module
acquisition to name a few.

It is based on the principle that the contribution of a
schema can be evaluated by neutralizing the effect of the
schema in the tree containing it (container-tree) and then
checking its effect on the container-tree’s fitness. Its useful-
ness is empirically demonstrated along with its limitation.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Genetic Programming

General Terms
Algorithms, Theory

Keywords
Tree Semantics, Module Acquisition, Schema Theory

1. INTRODUCTION
Unlike GA’s linear string chromosome, a GP tree is a set of

tightly linked nodes with many inherent complexities. Two
prominent ones are sub-tree context and tree fragment eval-
uation. Each sub-tree of a GP tree is tightly bound to its
parent node and its meaning is dictated by this node. For
this reason it is impossible to evaluate a sub-tree indepen-
dent of its parent node. If the parent node of a sub-tree is
changed (change of context) then the meaning of the sub-
tree may also change. Look at Fig 1(top) for an example.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

This paper presents a new approach to explicitly look at
the fitness contributions of the schemata within a tree. Cur-
rently, it is a two step offline process. In the first step, a
schema is selected from the final generation and compared
with the entire populations of all the preceding generations.
Every time an individual matches the schema, its fitness is
noted. Then, the sub-tree instantiating this schema is re-
placed by an intron and the individual is re-evaluated. The
difference between the two fitness values gives an idea of the
schema’s contribution in the original individual.

This approach is tested on the problems of module ac-
quisition and dead code identification from GP literature to
demonstrate its usefulness. Its possible use in the existing
approaches is also discussed briefly.

The paper is organized as follows, the next section gives a
brief overview of the existing schema theories. Section 3 dis-
cusses our approach in detail followed by detail description
of the experiments conducted. Section 5 discusses its pos-
sible use in different GP problems. Section 6 concludes the
paper by summarizing our findings and our future course of
action.

2. EXISTING APPROACHES
After the introduction of GP, there have been a number

of attempts to develop a schema theory to help enable us
to analyze it in detail. Like GA, most GP schema work
involves the identification and analysis of sub-trees and tree
fragments. A dont-care(#) is used to generalize schema.
Depending on the definition of a schema this # can match
to any sub-tree [3], rooted sub-tree [6] or to a terminal or a
non-terminal [4][5].

The schema theories defined for GP can be divided into
two broad categories, structural approaches and functional
approaches. Structural approaches focus mainly on the struc-
ture and preservation of these structures in the subsequent
generations, whereas functional approaches do consider the
fitness of the schema to some extent.

2.1 Structural Approach
The most famous structural schema theories were pre-

sented by Koza [2], O’Reily and Oppacher [3] and Whigham.
According to Koza’s definition, a schema is a similarity tem-
plate for tree structures and represents a subspace that com-
prises of all the trees that match it. According to him, a
schema H represents a set of sub-trees. For example the
schema H = [(∗ x y), (− x 1)] represents all the programs
having at least one instance of each of (∗ x y) and (− x 1).
O’Reilly and Oppacher introduced don’t-care(#) nodes in

 −

 1

+

4

2

 +

1

 −

 1

+

4 1

2

 *

 −

 1

2ZERO

Identity node for + and − operations

Can be replaced by − op

 +

 −

 1

2

 *

Identity node for * and / operations

ONE

Can be replaced by / op

Figure 1: TOP: In this example each GP tree has an instance of the schema (+ # 1) (shown shaded). The
left tree evaluates to -6 while the right tree evaluates to -9. To calculate the contribution of the selected sub-
trees, each will be replaced by the corresponding “identity” function. BOTTOM: A sub-tree’s contribution
is calculated by replacing a sub-tree with an identity node. In the left, sub-tree is replaced with a “ZERO”
node due to the presence of the + parent node (can also be -). In the right, the sub-tree is replaced with
“ONE” node due to the presence of the * parent node (can also be /). After replacement with identity nodes
both trees evaluate to -1.

their definition. They define a schema as a set of sub-trees
and tree fragments. A tree fragment is a partial tree with
at least one #. According to them a # can match to any
sub-tree. Whigham’s work involved CFG grammars for the
derivation of a GP tree. He defined a schema to be a par-
tial derivation tree that can be instantiated by applying all
applicable rules from the supplied grammar to the internal
nodes of the selected schema.

2.2 Functional Approach
The functional approaches mostly work by detecting use-

ful blocks (modules). After identification these modules are
propagated to the subsequent generations to achieve bet-
ter performance. The prominent theories include Koza’s
ADFs [2], Angeline’s module acquisition [1] and Rosca’s adap-
tive representation through learning (ARL) [7]. ADFs in-
volve the co-evolution of a solution and a locally defined
function with fixed signatures that can be invoked from
the main program. This has been criticized, in particular
by Angeline who introduced a module acquisition approach
which deviates from a fixed signature by randomly selecting
a block from a tree and collapsing it into a callable subrou-
tine. Rosca and Ballard have criticized random block selec-
tion for subroutine construction. They proposed a heuristic
based identification of blocks that promise to be salient com-
ponents in solution improvement.

This represents a focused effort to find the effective blocks.
In general, most of the encapsulated functions did not gen-
eralize, and so often weren’t useful when used by other in-
dividuals. This was because the new functions were often
used in a different context.

3. OUR APPROACH
In our study a schema is defined as a sub-tree selected

from the final generation and fulfilling following criteria:

(i) it should be present in at least half of the popula-
tion.

(ii) its own depth should at least be equal to a mini-
mum provided depth. As this was an exhaustive search,
all legal depths for each tree were examined.

A schema’s presence in 50% of the population is a good
measure to estimate its significance. Candidate schemata
were searched exhaustively at all the depths within the container-
trees of a population. By specifying the size of a schema the
effect of a schema with different depth(s), hence size(s) can
be studied. Fot this study the selected schema is a com-
plete tree with its root node at a provided depth within a
container-tree.

3.1 Schema Generalization
After the selection of a schema, its nodes are replaced

probabilistically with # nodes with bias towards the lower
nodes. To replace a node, a roulette wheel was constructed.
It helps to mark a depth and then a node for replacement.
Once a depth is selected, the probability of selection of a
node from this depth is uniformly distributed. A # node
can match any sub-tree. In the generalization step all the
constants in the selected schema are replaced with #. This
avoids match failures due to different constants (which is a
common observation).

3.2 Schema Contribution
The contextual analysis in this paper is made possible by

calculating the fitness contribution of any sub-tree within
a tree. This is a three step process. In the first step, an
individual containing the sub-tree is evaluated, before the
sub-tree is replaced with an identity node. The identity
node acts as an intron in the container-tree and cancels the
effect of the sub-tree. After replacement, the individual is
then re-evaluated. The difference of the two fitnesses is the
contribution of the sub-tree in the container-tree (see Fig. 1
where, for simplicity, the fitness of an individual is the value
it returns). In Fig. 1(top) the left and right trees evaluate to
-6 and -9 respectively. In Fig. 1(bottom) the replaced trees
evaluate to value -1. Using the aforementioned definition,
the fitness contribution of left sub-tree will be −6 −(−1) =
−5, whereas the contribution of the right sub-tree will be
−9 − (−1) = −8. This clearly shows the effect of the
context on the fitness values.

The working principle of an identity node is similar to
the identity function in set theory. In our definition, an

-10

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

%
 C

on
tr

ib
ut

io
n

Generations

Contributions of schema (exp #)

fitness contribution
size contribution

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40 45 50

%
 C

on
tr

ib
ut

io
n

Generations

Contributions of schema (exp #)

fitness contribution
size contribution

Figure 2: Fitness and size contribution plots of the schema (exp #) for two independent runs.

identity node always replaces some node or sub-tree. This
replacement cancels out the effect of the replaced node or
sub-tree. For example, in Fig. 1(bottom) the nodes “ZERO”
and “ONE” are identity nodes for addition (or subtraction)
and multiplication (or division) respectively. The parent
nodes of these identity nodes will always return their other
argument. 1

3.3 Limitation of the Proposed Approach
As identity nodes do not exist for all the functions, and

only the binary functions (+, -, *, /) have identity func-
tions, hence identity nodes. Due to non-availability of the
identity nodes for unary operators, it is impossible to apply
this method to the nodes involving unary operators.

4. EXPERIMENTS CONDUCTED
To test our method, we conducted a series of experiments

using Koza’s quartic polynomial symbolic regression prob-
lem, and a population of size 500 was allowed to evolve for
50 generations. Sub-tree crossover with probability 0.9 and
reproduction with probability 0.1 were used. The initial
generation was generated using the ramped half and half
method. The initial tree depth varied from 2-6 while the
maximum depth of the trees was set to 17, and 100 inde-
pendent runs were conducted to note the trend of selected
schemata across different runs. The same function set as
that employed by Koza was used.

We examined three different measurements for this study.
The first was to note the fitness contribution of the se-
lected schema in a run. This was calculated for each gen-
eration by averaging the contribution of all instances of a
schema in that particular generation. Similarly, the size
contribution of each of the identified schema was noted,
and averaged in the same way, while the third measurement,
schema depth, tracked the average depth of each schema.

Due to space limitation we will be showing the result for
only first two experiments.

All the schemata fulfilling the selection criteria laid above
were selected from the final generation and compared against
all other generations of a run. In case of successful match
fitness contribution , fcontrib, of each schema was calculated
by equation 1:

fcontrib = (finc − fexc)/finc ∗ 100 (1)

where finc and fexc are fitnesses of the schema container-
tree with and without schema respectively.

1Note, - and / are special cases of + and * respectively. As
a − b = a + (− b) and a / b = a ∗ (1 / b).

It could be argued that any increase or decrease in fitness
could simply be the result of the removal of a particularly
large or small part of the container-tree. To study that,
the second experiment looked at the percentage size contri-
bution sizecontrib of a schema in the overall size of a tree.
Let sizeinc be the size of the tree including the schema and
sizeexc be the size excluding it. The sizecontrib can then be
calculated using equation 2.

sizecontrib = (sizeinc − sizeexc)/sizeinc ∗ 100 (2)

Note all these tests were conducted offline and in a ret-
rospective manner. These results can not be averaged over
runs because each run is an independent event and may ex-
plore different part of the search space. Therefore, it is possi-
ble for a schema to perform well in one run but poorly in oth-
ers. In one typical run, an instance count of a schema varies
from a few hundred(initial generations) to several thousands
(final generations) in a population of size 500, making our
data sample statistically significant.

4.1 Schema contribution to container-tree
Fig 2 shows size and fitness contribution plots of the schema

(exp #) for two independent runs. Note the very same
schema behaves totally differently in two different runs of a
same problem. In the left figure, the size and fitness contri-
butions of the schema are, in general, inversely proportional
to each other contrary to its behavior in the second run. This
confirms our previously laid hypothesis that each run is an
independent event. It can also inferred from the graphs that
for the left run the schema is acting significantly in the ini-
tial generations, as is contributing 70% to the overall fitness
of the container-trees. In the latter part of the run discovery
of more significant schema(ta) made it less significant and is
evident from the fitness contribution drop of the schema af-
ter generation 33. Whereas in Fig 2(right) the significance
of the schema, in general, remained constant through out
the run.

In Fig. 3 all the schemata found in two independent runs
are plotted and compared. These runs are selected as they
have schemata of varying size and content (operators, termi-
nals) and are representative of others. In the left graph, all
the schemata are behaving similarly, i.e. their contributions
drop with time. The schema (/ (/ X #) #) is an exception.
Its contribution remains zero till 32nd generation. After this
it has started contributing as much as 25% of the fitnesses
of the container-trees. Later, we have discovered that the
best-of-run individual for this run was found in the 32nd gen-
eration. In Fig. 3 (right) the longer schemata fail to have
any instances in the initial generations but, once found, their

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

%
 C

on
tr

ib
ut

io
n

Generations

Aggregate graph for different schemata in a run

(/ X #)
(* (/ X #) (exp #))

(exp #)
(- X #)

(/ (/ X #) #)

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40 45 50

%
 C

on
tr

ib
ut

io
n

Generations

Aggregate graph for schemata found in a run

(sin (sin (- # #)))
(exp #)

(+ X (sin (sin (sin (- # #)))))
(/ (+ X (sin (sin (sin (- # #))))) (/ X X))

(* (/ (+ X (sin (sin (sin (- # #))))) (/ # X)) (* X #))

Figure 3: Comparisons of all the schemata found in two independent runs.

Count Schema
165819 (* # #)
22401 (* X #)
20357 (+ X X)
8256 (* X (exp #))
6876 (+ # #)
6098 (- X X)
6067 (* (exp X) #)

Table 1: Average instance frequency counts of po-
tentially useful schemata that could be encapsu-
lated.

fitness contributions either remain constant or increase with
time. Notice the fitness contributions of schemata can be
negative (look at Fig. 3(right). A schema has a negative fit-
ness contribution when its removal results in an increase of
fitness of the container-tree.

4.2 Identification of Modules
It is reasonable to assume that a schema significant in all

the runs (high instance count and fitness contributions) can
be identified as a candidate schema for encapsulation. To
study this instance counts of potentially useful schemata are
noted and are shown in table 1. For example, by consulting
Fig. 2(left) and table 1 the schema (exp #) can be marked
as a useful candidate for encapsulation.

5. BENEFIT OF THIS STUDY
This study has possible use in the following areas:

• Identification of semantically significant schemata from
a population during online analysis. These modules
can then be used to generate better individuals in the
subsequent generations.

• Improvement in selection methods of the existing theo-
ries. The proposed approach is more informed method
for selection of modules for encapsulation.

• Identification of dead code. Iba and de Garis also cal-
culate the worth of the constituent sub-trees of an in-
dividual by treating each sub-tree as an independent
program. This evaluation ignores the context provided
by the container-tree and, hence, does not inform us
about the worth of a sub-tree towards the main tree.

• Definition of effective crossover for GP. This can be
accomplished by not selecting the nodes involving dead
codes as crossover points.

6. CONCLUSION AND FUTURE WORK
We have proposed a new methodology to evaluate a GP

schema in context and have demonstrated its use in different
GP problems. Its possible use in improving existing schema
theories is also mentioned.

In future we are planning to employ it in module identi-
fication in online GP system along with its application on
different problems.

7. REFERENCES
[1] Peter John Angeline. Genetic programming and

emergent intelligence. In Kenneth E. Kinnear, Jr.,
editor, Advances in Genetic Programming, chapter 4,
pages 75–98. MIT Press, 1994.

[2] John R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[3] Una-May O’Reilly and Franz Oppacher. The troubling
aspects of a building block hypothesis for genetic
programming. In L. Darrell Whitley and Michael D.
Vose, editors, Foundations of Genetic Algorithms 3,
pages 73–88, Estes Park, Colorado, USA, 31 July–2
August 1994 1995. Morgan Kaufmann.

[4] Riccardo Poli and W. B. Langdon. A new schema
theory for genetic programming with one-point
crossover and point mutation. Technical Report
CSRP-97-3, School of Computer Science, The
University of Birmingham, B15 2TT, UK, January
1997. Presented at GP-97.

[5] Riccardo Poli and William B. Langdon. Schema theory
for genetic programming with one-point crossover and
point mutation. Evolutionary Computation,
6(3):231–252, 1998.

[6] Justinian P. Rosca. Analysis of complexity drift in
genetic programming. In John R. Koza, Kalyanmoy
Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic
Programming 1997: Proceedings of the Second Annual
Conference, pages 286–294, Stanford University, CA,
USA, 13-16 July 1997. Morgan Kaufmann.

[7] Justinian P. Rosca and Dana H. Ballard. Discovery of
subroutines in genetic programming. In Peter J.
Angeline and K. E. Kinnear, Jr., editors, Advances in
Genetic Programming 2, chapter 9, pages 177–202.
MIT Press, Cambridge, MA, USA, 1996.

