Skip to main content

Self-Configuring Genetic Programming Feature Generation in Affect Recognition Tasks

  • Conference paper
  • First Online:
  • 812 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13721))

Abstract

Feature extraction is one of the main parts of Machine Learning. Regardless of the nature of solving tasks, developers either need to use standard sets of features for a certain problem or try to generate their own features from raw data. In this paper, we present the genetic programming (GP) algorithm for feature generation issues in affect recognition tasks. We tested this approach in human affect recognition tasks on two corpora the WESAD and the RECOLA. We also used classical methods for feature space reduction Principal Component Analysis (PCA) and Independent Component Analysis (ICA). The results show the effectiveness of the GP approach in comparison with PCA and ICA and its capability to significantly reduce the feature space saving a high performance of classifiers in affect recognition tasks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cummins, N., Amiriparian, S., Ottl, S., Gerczuk, M., Schmitt, M., Schuller, B.: Multimodal bag-of-words for cross domains sentiment analysis. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. vol. 2018-April, pp. 4954–4958. Institute of Electrical and Electronics Engineers Inc. (sep 2018). https://doi.org/10.1109/ICASSP.2018.8462660

  2. Egas López, J.V., Orozco-Arroyave, J.R., Gosztolya, G.: Assessing Parkinson’s disease from speech using fisher vectors. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. vol. 2019-Septe, pp. 3063–3067. International Speech Communication Association (2019). https://doi.org/10.21437/Interspeech. 2019–2217

  3. Eyben, F., Wöllmer, M., Schuller, B.: OpenSMILE - The Munich versatile and fast open-source audio feature extractor. In: MM’10 - Proceedings of the ACM Multimedia 2010 International Conference. pp. 1459–1462 (2010). https://doi.org/10.1145/1873951.1874246

  4. van Gent, P., Farah, H., van Nes, N., van Arem, B.: Analysing noisy driver physiology real-time using off-the-shelf sensors: Heart rate analysis software from the taking the fast lane project. Journal of Open Research Software 7(1), – (oct 2019). https://doi.org/10.5334/jors.241, https://doi.org/10.5334/jors.241

  5. van Gent, P., Farah, H., van Nes, N., van Arem, B.: HeartPy: A novel heart rate algorithm for the analysis of noisy signals. Transportation Research Part F: Traffic Psychology and Behaviour 66, 368–378 (oct 2019). https://doi.org/10.1016/j.trf.2019.09.015

  6. Glasmachers, T.: Limits of End-to-End Learning. In: Zhang, M.L., Noh, Y.K. (eds.) Proceedings of the Ninth Asian Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 77, pp. 17–32. PMLR (2017), http://proceedings.mlr.press/v77/glasmachers17a.html

  7. Gosztolya, G.: Using Fisher Vector and Bag-of-Audio-Words representations to identify Styrian dialects, sleepiness, baby & orca sounds (2019)

    Google Scholar 

  8. Guo, H., Jack, L.B., Nandi, A.K.: Feature generation using genetic programming with application to fault classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 35(1), 89–99 (feb 2005). https://doi.org/10.1109/TSMCB.2004.841426, https://ieeexplore.ieee.org/document/1386429

  9. Kaya, H., Karpov, A.A., Salah, A.A.: Fisher vectors with cascaded normalization for paralinguistic analysis. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. vol. 2015-Janua, pp. 909–913 (2015). https://doi.org/10.21437/interspeech.2015-193

  10. Khedkar, S., Gandhi, P., Shinde, G., Subramanian, V.: Deep Learning and Explainable AI in Healthcare Using EHR. pp. 129–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33966-1_7, https://link.springer.com/chapter/10.1007/978-3-030-33966-1_7

  11. Kirschbaum, C., Pirke, K.M., Hellhammer, D.H.: The ’Trier social stress test’ - A tool for investigating psychobiological stress responses in a laboratory setting. In: Neuropsychobiology. vol. 28, pp. 76–81. Karger Publishers (1993). https://doi.org/10.1159/000119004, https://www.karger.com/Article/FullText/119004

  12. Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection, vol. 1. MIT press (1992)

    Google Scholar 

  13. Malik, M., John Camm, A., Thomas Bigger, J., Breithardt, G., Cerutti, S., Cohen, R.J., Coumel, P., Fallen, E.L., Kennedy, H.L., Kleiger, R.E., Lombardi, F., Malliani, A., Moss, A.J., Rottman, J.N., Schmidt, G., Schwartz, P.J., Singer, D.H.: Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 93(5), 1043–1065 (mar 1996). https://doi.org/10.1161/01.cir.93.5.1043, https://www.ahajournals.org/doi/abs/10.1161/01.CIR.93.5.1043

  14. Mamontov, D., Polonskaia, I., Skorokhod, A., Semenkin, E., Kessler, V., Schwenker, F.: Evolutionary Algorithms for the Design of Neural Network Classifiers for the Classification of Pain Intensity. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11377 LNAI, pp. 84–100 (2019). https://doi.org/10.1007/978-3-030-20984-1_8, http://link.springer.com/10.1007/978-3-030-20984-1_8

  15. Nikitin, N.O., Polonskaia, I.S., Vychuzhanin, P., Barabanova, I.V., Kalyuzhnaya, A.V.: Structural Evolutionary Learning for Composite Classification Models. In: Procedia Computer Science. vol. 178, pp. 414–423. Elsevier B.V. (2020). https://doi.org/10.1016/j.procs.2020.11.043

  16. Pokorny, F.B., Graf, F., Pernkopf, F., Schuller, B.W.: Detection of negative emotions in speech signals using bags-of-audio-words. In: 2015 International Conference on Affective Computing and Intelligent Interaction, ACII 2015. pp. 879–884. Institute of Electrical and Electronics Engineers Inc. (dec 2015). https://doi.org/10.1109/ACII.2015.7344678

  17. Ringeval, F., Sonderegger, A., Sauer, J., Lalanne, D.: Introducing the RECOLA multimodal corpus of remote collaborative and affective interactions. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013 (2013). https://doi.org/10.1109/FG.2013.6553805

  18. Russell, J.A.: A circumplex model of affect. Journal of Personality and Social Psychology 39(6), 1161–1178 (dec 1980). https://doi.org/10.1037/h0077714, /record/1981-25062-001

  19. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the fisher vector: Theory and practice. International Journal of Computer Vision 105(3), 222–245 (dec 2013). https://doi.org/10.1007/s11263-013-0636-x

  20. Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., Van Laerhoven, K.: Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection. In: Proceedings of the 20th ACM International Conference on Multimodal Interaction. pp. 400–408. ACM, New York, NY, USA (2018), https://doi.org/10.1145/3242969.3242985

  21. Semenkin, E., Semenkina, M.: Self-configuring genetic programming algorithm with modified uniform crossover. In: 2012 IEEE Congress on Evolutionary Computation, CEC 2012 (2012). https://doi.org/10.1109/CEC.2012.6256587

  22. Smith, M.G., BULL LarryBull, L.: Genetic Programming with a Genetic Algorithm for Feature Construction and Selection. Genetic Programming and Evolvable Machines 6, 265–281 (2005). https://doi.org/10.1007/s10710-005-2988-7, http://www.ics.uci.edu/

  23. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection in classification on high-dimensional data. Memetic Computing 8(1), 3–15 (2015). https://doi.org/10.1007/s12293-015-0173-y

    Article  Google Scholar 

  24. Tran, B., Xue, B., Zhang, M.: Genetic programming for multiple-feature construction on high-dimensional classification. Pattern Recognition 93, 404–417 (sep 2019). https://doi.org/10.1016/j.patcog.2019.05.006

Download references

Acknowledgments

Work of A. Karpov is supported by the RSF (project No. 22-11-00321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danila Mamontov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mamontov, D., Minker, W., Karpov, A. (2022). Self-Configuring Genetic Programming Feature Generation in Affect Recognition Tasks. In: Prasanna, S.R.M., Karpov, A., Samudravijaya, K., Agrawal, S.S. (eds) Speech and Computer. SPECOM 2022. Lecture Notes in Computer Science(), vol 13721. Springer, Cham. https://doi.org/10.1007/978-3-031-20980-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20980-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20979-6

  • Online ISBN: 978-3-031-20980-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics