Skip to main content

Improving the Performance of CGPANN for Breast Cancer Diagnosis Using Crossover and Radial Basis Functions

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7833))

Abstract

Recently published evaluations of the topology and weight evolving artificial neural network algorithm Cartesian genetic programming evolved artificial neural networks (CGPANN) have suggested it as a potentially powerful tool for bioinformatics problems. In this paper we provide an overview of the CGPANN algorithm and a brief case study of its application to the Wisconsin breast cancer diagnosis problem. Following from this, we introduce and evaluate the use of RBF kernels and crossover to CGPANN as a means of increasing performance and consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, A.M., Khan, G.M., Mahmud, S.A., Miller, J.F.: Breast cancer detection using cartesian genetic programming evolved artificial neural networks. In: Soule, T. (ed.) Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference (GECCO 2012), pp. 1031–1038. ACM, New York (2012)

    Chapter  Google Scholar 

  2. Bari, A., Bhasin, K., Karnawat, D.N.: Introduction to Neural Network and Improved Algorithm to Avoid Local Minima and Faster Convergence. In: Das, V.V., Thankachan, N. (eds.) CIIT 2011. CCIS, vol. 250, pp. 396–400. Springer, Heidelberg (2011)

    Google Scholar 

  3. Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1580–1587. ACM, New York (2007)

    Chapter  Google Scholar 

  4. DeSantis, C., Siegel, R., Bandi, P., Jemal, A.: Breast cancer statistics. CA-Cancer J. Clin. 61, 408–418 (2011)

    Article  Google Scholar 

  5. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55, 78–87 (2012)

    Article  Google Scholar 

  6. Guo, H., Nandi, A.K.: Breast cancer diagnosis using genetic programming generated feature. Pattern Recogn. 39(5), 980–987 (2006)

    Article  Google Scholar 

  7. Hancock, P.J.: Genetic algorithms and permutation problems: A comparison of recombination operators for neural net structure specification. In: International Workshop on Combinations of Genetic Algorithms and Neural Networks, COGANN 1992, pp. 108–122. IEEE (1992)

    Google Scholar 

  8. Iranpour, M., Almassi, S., Analoui, S.: Breast cancer detection from fna using svm and rbf classifier. In: 1st Joint Congress on Fuzzy and Intelligent Systems (2007)

    Google Scholar 

  9. Jain, B.J., Wysotzki, F.: Efficient Pattern Discrimination with Inhibitory WTA Nets. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 827–834. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Jung, J.-Y., Reggia, J.A.: The Automated Design of Artificial Neural Networks Using Evolutionary Computation. In: Yang, A., Shan, Y., Bui, L.T. (eds.) Success in Evolutionary Computation. SCI, vol. 92, pp. 19–41. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Khan, M., Khan, G.: A novel neuroevolutionary algorithm: Cartesian genetic programming evolved artificial neural network (cgpann). In: Proceedings of the 8th International Conference on Frontiers of Information Technology (FIT 2010), pp. 48:1–48:4. ACM, New York (2010)

    Google Scholar 

  12. Khan, M.M., Khan, G.M., Miller, J.F.: Efficient representation of recurrent neural networks for markovian/non-markovian non-linear control problems. In: 2010 10th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 615–620. IEEE (2010)

    Google Scholar 

  13. Khan, M., Khan, G., Miller, J.: Evolution of neural networks using Cartesian genetic programming. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  14. Manning, T., Walsh, P.: Automatic Task Decomposition for the NeuroEvolution of Augmenting Topologies (NEAT) Algorithm. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds.) EvoBIO 2012. LNCS, vol. 7246, pp. 1–12. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Moriarty, D.E.: Symbiotic evolution of neural networks in sequential decision tasks. PhD thesis, University of Texas at Austin (1997)

    Google Scholar 

  17. Mu, T., Nandi, A.K.: Breast cancer detection from fna using svm with different parameter tuning systems and som–rbf classifier. Journal of the Franklin Institute-engineering and Applied Mathematics 344(3), 285–311 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  19. Quinlan, R.: Bagging, boosting, and c4.5. In: Proceedings of the National Conference on Artificial Intelligence, pp. 725–730. AAAI Press (1996)

    Google Scholar 

  20. Street, N., Wolberg, W.H., Mangasarian, O.L.: Nuclear feature extraction for breast tumor diagnosis. University of Wisconsin-Madison, Computer Sciences Department (1992)

    Google Scholar 

  21. Tetko, I.V., Livingstone, D.J., Luik, A.I.: Neural network studies. 1. Comparison of overfitting and overtraining. Journal of Chemical Information and Computer Sciences 35(5), 826–833 (1995)

    Google Scholar 

  22. Wolberg, W.H., Mangasarian, O.L.: Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proceedings of the National Academy of Sciences 87(23), 9193–9196 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Manning, T., Walsh, P. (2013). Improving the Performance of CGPANN for Breast Cancer Diagnosis Using Crossover and Radial Basis Functions. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2013. Lecture Notes in Computer Science, vol 7833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37189-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37189-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37188-2

  • Online ISBN: 978-3-642-37189-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics