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Abstract

This paper analyses the effect of using different
random number generators (RNG) in a hardware
implementation of Genetic Programming using
Field Programmable Gate Arrays. Hardware sys-
tems have typically used RNGs based on Logical
Feedback Shift Registers or Cellular Automata.
Different configurations of these generators are
evaluated as well as using a source of true ran-
dom numbers and a standard multiply/add gener-
ator. The results show that using a more sophisti-
cated generator than a simple LFSR slightly im-
proves the performance of GP.

1 Introduction

Previous work [11] described an implementation of Ge-
netic Programming using a Field Programmable Gate Ar-
ray (FPGA) and a high level language to hardware compi-
lation system called Handel-C. Subsequent work [12] de-
scribed a pipelined implementation that improved the per-
formance and demonstrated that the technique could be
used to solve the artificial ant problem . In both cases the
work concentrated on the implementation issues and im-
proving the clock speed of the implementation, but put to
one side the performance of the system with respect to its
ability to solve GP problems. Now that the raw through-
put issues have been addressed it is time to look at how
good the hardware implementation performs, in particular
the effectiveness of the Random Number Generator (RNG)
used.

A comment often made about Genetic Programming and
other stochastic search methods is that a good random num-
ber generator is needed. The evidence so far is that the
quality of the RNG is probably not as important as often
stated. Nevertheless, it is important to consider the effect of

design decisions and to investigate alternatives where prac-
ticable.

In the hardware implementation of GP, the random num-
ber generator is implemented using a Logical Feedback
Shift Register (LFSR) which has a number of known weak-
nesses. This suggests that other random number generators
should be investigated. This paper begins with a brief de-
scription of the hardware GP system and Handel-C. This
is followed by a review of previous work on random num-
ber generation that has been implemented in hardware. We
then present an analysis of the pseudo random number gen-
erator used in the original design, and investigate other ran-
dom number generators. We finish with a discussion of the
results and draw some conclusions.

2 A Hardware Implementation of GP using
FPGAs

Implementing GP in hardware is motivated by the potential
speedups that can be obtained. The platform chosen is an
FPGA which is a reconfigurable logic circuit than can be
programmed to perform a wide range of logic functions. A
typical FPGA is arranged as an array of configurable logic
cells, input-output circuits and programmable interconnec-
tions. A typical FPGA architecture is shown in Figure 1.

Traditionally FPGAs have been programmed using hard-
ware design languages such as VHDL1, but an alternative
approach using high level language to hardware compila-
tion techniques has been developed, which allows a high
level imperative language to be used to generate the con-
figuration information for the FPGA. Handel-C is one ex-
ample of this technology, and has been used for the work
described in this paper.

1VHDL is a standard hardware design language. It stands
for VHSIC Hardware Design Language. VHSIC itself stands for
Very High Speed Integrated Circuit.



Figure 1: Typical FPGA architecture. The CLBs are
the configurable logic blocks, IOBs are the Input Output
Blocks and the RAMs are on-chip Random Access mem-
ory blocks.

Handel-C is a high level language that is at the heart of a
hardware compilation system known as Celoxica DK1 [4]
which is designed to compile programs written in a C-like
high level language into synchronous hardware. The out-
put from Handel-C is a file that is used to create the con-
figuration data for the FPGA. A description of the process
used by Handel-C to transform a high level language into
hardware and examples of the hardware generated can be
found in [19]. The C-like syntax makes the tool appealing
to software engineers with little or no experience of hard-
ware. They can quickly translate a software algorithm into
hardware, without having to learn about VHDL or FPGAs
in detail.

2.1 Target Hardware

The target hardware for this work is a Celoxica RC1000
FPGA development board fitted with a Xilinx XCV2000E
Virtex-E FPGA having 43,200 logic cells and 655,360 bits
of block ram. The board also has a PCI bridge that commu-
nicates between the RC1000 board and the host computer’s
PCI bus, and four banks of Static Random Access Memory
(SRAM). Fast switches isolate the FPGA from the SRAM,
allowing both the host CPU and the FPGA to access the
SRAM, though not concurrently.

2.2 Program Representation

The lack of a stack in Handel-C means that a standard tree
based representation is difficult to implement because re-
cursion cannot be handled by the language. An alternative
to a tree representation is a linear representation which has
been used by others to solve some hard GP problems [18].
Using a linear representation, a program consists of a se-

quence of words which are decoded by the problem specific
fitness function.

2.3 Previous work using FPGAs in Evolutionary
Computing

A detailed review of previous work using FPGAs in Evolu-
tionary Computing can be found in [11].

3 Previous Work on Pseudo Random
Numbers for Genetic Programming and
Hardware

This section reviews the types of random number genera-
tors that have been used by hardware implementations of
GA, GP and other applications of hardware to probabilistic
algorithms.

Linear Feedback Shift Register (LFSR) or Tauseworth gen-
erators have been used by Maruyama et al [14]. In their
paper they referred to the generator as a m-sequence, or
maximal sequence. This means that the generator of length
n generates 2n

� 1 numbers. Graham [5] implemented a
single cycle LFSR.

An interesting hybrid approach was used by Tommiska and
Vuori [23] where three coupled LFSRs were used to pro-
vide a random sequence. An interesting feature of this
work is that the RNG was combined with a source of noise.
The amplified noise from a diode was fed into an analogue
to digital converter, and the resulting digital values were
used to seed the RNG, and also added to the LFSR at inter-
vals.

The manufacturers of FPGAs provide example designs of
LFSRs to be used as random sequence generators. For ex-
ample Xilinx [25], and Altera [2] provide Hardware Design
Language (HDL) code for LFSRs.

Aporntewan [3] used a one dimensional 2-state Cellular
Automata (CA). Shackleford et al [21] implemented a CA
based on the work by Wolfram [24].

In the field of GP, the behavior of GP and GAs has been
investigated using different RNGs. Meysenburg and Foster
considered the effect of different RNGs on GAs [16] and
GP [15]. Their conclusions were that there were no statis-
tically significant differences in the performance of GA or
GP when different RNGs were used.

4 Experimental setup

The performance of the various RNGs was evaluated using
three methods. Firstly, the Diehard test suite maintained
by Marsaglia [10] was used to gauge the general perfor-



mance of the RNG. This suite consists of up to 15 tests that
are modeled on applications of random numbers. All the
RNGs considered in this paper were implemented in ISO-
C and were submitted to all 15 tests. The test method for
Diehard is similar to that described in Meysenburg and Fos-
ter [15]. Each RNG was used to generate a binary file of
about 10 MiB2. Each Diehard test produces one or more p-
values. A p-value can be considered good, bad, or suspect.
Meysenburg used a scheme by Johnson [6] which assigns
a score to a p-value as follows. If p� 0:998 then it is clas-
sified as bad. If 0:95 � p < 0:998 then it is classified as
suspect. All other p-values are classified as good. Every
bad p-value scores 4, every suspect p-value scores 2 and
good p-values score zero. For each RNG, the scores for
each test were summed, and the total for each RNG is the
sum of all the test scores for that RNG. Using this scheme,
high scores indicate a poor RNG and low scores indicate a
good RNG. The results for each test are given in Appendix
A.

Each RNG was then implemented using Handel-C and used
in the hardware implementation of the artificial ant prob-
lem [8][12]. In the hardware implementation the function
set differs from the standard example in only having two
functions: F = fIF_FOOD; PROGN2gwhere IF_FOOD
is a two argument function that looks at the cell ahead and
if it contains food it evaluates the first terminal, otherwise
it evaluates the second terminal. PROGN2 evaluates its
first and second terminals in sequence. The terminal set
T = fLEFT; RIGHT; MOVE; NOPg, where LEFT and
RIGHT change the direction the ant is facing, MOVE
moves the ant one space forwards to a new cell, and if
the new cell contains food, the food is eaten. NOP is a
no-operation terminal and has no effect on the ant but is in-
cluded to make the number of terminals a power of 2, which
simplifies the hardware logic. Each time LEFT; RIGHT or
MOVE is executed, the ant consumes one time step. The
run stops when either all the time steps have been used, or
the ant has eaten all the food. All the experiments use the
Santa Fe trail, which has 89 pellets of food. Each experi-
ment was run 500 times and the total number of 100% cor-
rect programs recorded. This is used as a measure of how
well the RNG performs. In all cases the population size is
1024, the maximum program length is 31 and all experi-
ments were run for 31 generations. The ant was allocated
600 timesteps. The probability of selecting crossover was
67%, mutation 10% and reproduction 23%. The crossover
operator used the truncating method of limiting the maxi-
mum program length, as described in [13].

Each RNG was also implemented as a stand alone appli-
cation for an FPGA using Handel-C, and the number of
slices used and the maximum attainable clock frequency

2The notation MiB indicates 220 (1048576) bytes. This paper
uses the binary prefixes from the NIST.[17]

was recorded. This gives a measure of the hardware re-
sources needed to implement the RNG, and also an indica-
tion of the logic depth required.

5 Random Number Generator
Implementations

5.1 LFSR RNG

Figure 2 shows a schematic of the LFSR used in this work.
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Figure 2: Logical Feedback Shift Register Random Num-
ber Generator

The random number is read from the highest bits as re-
quired. The obvious weakness of this type of RNG is that
sequential values fail the serial test described by Knuth [7,
pp 55-56]. At any time step t there is a 50% probability that
the value at time t +1 can be predicted. If for an LFSR of
length n at time t the value is v, then at time t+1 the value
will be v=2 or v=2+2n�1. This is shown in Figure 3 where
pairs of values vt and vt+1 are plotted.
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Figure 3: Serial test of a simple LFSR RNG

It can be seen that for any value vt there are only two pos-
sible values of vt+1. Though the random number generator
runs in parallel with the main GP machine, it is possible to
access sequential values when creating an initial program,
or when choosing crossover points. There is then a possi-
bility of a potentially degrading bias by using such an RNG.



5.2 Multiple LFSRs

One method of obtaining better serial test results for the
LFSR of length n is to allow the LFSR to run for n cycles
before reading another number. Since this would limit the
rate at which random numbers could be generated in the
present design it is not explored any further. However, an
equivalent result can be obtained by implementing n LF-
SRs of length m and using a single bit from each LFSR at
each time step. This can also be done using a single long
LFSR of n�m bits, [22] effectively implementing n par-
allel LFSRs. However, implementing a long shift register
in a Xilinx Virtex FPGA is not efficient because the look
up tables can implement a 16 bit shift register very easily,
but longer shift registers require more extensive routing re-
sources.

The effect of using a better RNG was investigated by im-
plementing 32 16 bit LFSR machines that run in parallel,
and initializing each LFSR to a different value. Bit32 from
each LFSR is used to construct a 32 bit random number.
The serial test result is shown in Figure 4, which shows
the serial test result for 32 LFSRs is better than the single
LFSR. This generator is referred to as the 32LFSR.
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Figure 4: Serial test for an RNG using 32 parallel LFSRs

5.3 Cellular Automata RNG

Another popular RNG for hardware implementations is
based on Cellular Automata (CA). A one-dimensional (1D)
CA consists of a string of cells. Each cell has two neighbors
- left and right, or in some literature west and east respec-
tively. At each time step, the value of any cell c is given by a
rule. For this implementation, rule 30 is used, which states
that for any cell c at time t, ct+1 = ((westt +ct)� eastt),
where� denotes the exclusive OR function. In practice the
CA is implemented using a single 32 bit word, and for cell
0, its right-hand neighbor is cell 31, and similarly for cell
31 its left hand neighbor is cell 0. Figure 5 shows the result

of running this RNG using the serial test. As in the simple
LFSR RNG there is a distinct pattern to the numbers, but
for most values of vt there are several possible values for
vt+1. This generator is referred to as 1DCA.
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Figure 5: Serial test for a 1DCA RNG

5.4 Multiple CA generators

As in the case of the LFSR RNG, if several CAs are com-
bined, the results should be much better. For this test, 32
CAs were implemented, and by taking one bit from each
CA, a 32 bit random number can be generated. The serial
test appears to be much more random, as shown in Figure
6. Each CA is initialized with a different pattern. This gen-
erator is referred to as the 32CA
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Figure 6: Serial test for a 32CA

5.5 Standard C RNGs

Another frequently used RNG is the linear congruential
(LC) generator that is often found in implementations of
the standard C library. The general equation for these is



I j+1 = (aIj + c) mod m, where a;c and m are constants
chosen to produce a maximal length RNG. However, as
pointed out by many authors (eg:[20]) these generators are
not good. Another factor against such a generator for im-
plementing in hardware is that it requires one addition,
one multiplication, and one modulus operator, which in
Handel-C would consume a large amount of silicon and
because of the deep logic produced, would be slow. An
alternative given by [20] avoids the modulus operator, and
is called the Even Quicker Generator (EQG). It is claimed
that this is about as good as any 32 bit linear congruen-
tial generator. Its equation is I j+1 = aIj + c, and values for
a = 1664525 and c = 1013904223 are suggested.

As a sanity check that the experimental method of ranking
the RNGs using Diehard was the same as that used by Mey-
senburg, the generator known as “the mother of all gener-
ators” was also implemented and run against the Diehard
suite. This is a multiply with carry generator and is de-
scribed by Marsaglia [9]. It was not implemented in the
hardware GP system.

5.6 Non random sequences

Until now we have considered pseudo random sequences.
These are sequences where it is hard to guess the next
number in a sequence. As an experiment, a further set of
runs were performed with an obviously non-random num-
ber generator. For this a sequential generator which gen-
erates the sequence n;n+ 1;n+ 2; : : : was used. Rather
surprisingly this also worked to produce 100% correct pro-
grams, though substantially fewer than the other generators
achieved.

5.7 Truly Random Sequences

All the RNGs considered so far are not true random se-
quences, relying on the manipulation of objects of finite
size, and so fail one or more of the Diehard battery of
tests. So a set of random numbers was obtained from a
source generated by using the atmospheric noise captured
by a radio receiver[1]. Each GP run for the ant problem
needs about half a million random numbers, so a block of
10 MiB was downloaded from www.random.org, and a ran-
domly selected 2 MiB block was transferred to one of the
SRAM on the FPGA system using DMA. The FPGA read
this block sequentially to get its random numbers.

As reported in [23], RNGs based on sampling a source of
noise are often slow, so they are not always applicable to
high speed systems.

6 Experimental Results

The results from running the Diehard tests are given in Ap-
pendix A and are summarized in Table 1. This shows the
total results for each test and ranks them according to the
Diehard score.

Table 1: Summary results of running the Diehard tests on
the RNGS.

RNG Score
Mother 20
True 22
32LFSR 162
EQG 288
32CA 640
CA 676
LFSR 756

The number of correct programs that were produced by
running the ant problem on the hardware using each ran-
dom number generator was recorded and is shown in Ta-
ble 2. The results are ranked according to how many cor-
rect programs were found and shows how each RNG per-
formed. The table also shows the slice count for the RNG
implemented using Handel-C and the maximum clock rate
as reported by the place and route tools. The slice count is
a vendor and device dependent measure of the number of
FPGA logic blocks that have been used. The clock rate is
an indication of the logic depth required to implement the
generator, with deeper logic having a greater gate delay,
and therefore a lower maximum clock rate. The slice count
and clock rate for the true RNG assumes that the source of
random numbers is supplied by an external device to the
FPGA, and that the FPGA simply reads the value from a
port and writes it to a register.

Table 2: Summary of GP performance for all random num-
ber generators tested from 500 runs of the artificial ant
problem

RNG Rank Correct Slice Clock
rate Fmax

(MHz)
32CA 1 82 284 105
True 2 81 6 >200
32LFSR 3 79 130 134
EQG 4 78 288 42
ID CA 5 78 22 125
LFSR 6 68 18 188
Sequential 7 39 21 155



7 Discussion

The score obtained by the Mother RNG was close to that
obtained by Meysenburg (19), the difference being ex-
plained by the fact that Meysenburg used the average of
32 runs using 32 different seeds, while the work described
here used only a single run. It is likely that using 32 dif-
ferent seeds, that different scores would be observed. This
confirms that the experimental method used for ranking the
RNGs using Diehard is comparable.

Despite the apparently serious deficiencies found in both
the simple LFSR used in the original implementation and
the simple one dimensional CA random number genera-
tor, the overall effect of implementing a more sophisticated
RNG on the overall GP performance appeared to be small.
This result generally agrees with the work by Meysenburg
and Foster [15], with the exception that they did not con-
sider a single-cycle LFSR or an obviously non-random gen-
erator. The single-cycle LFSR performs the least well of
the RNGs considered in this paper.

A surprising result was the emergence of programs when a
non-random sequence was used. Clearly a non-random se-
quence does not allow GP to operate as efficiently in terms
of producing 100% correct programs, presumably because
of the failure to explore some areas of the search space.

Despite the small differences in performance, from the re-
sults we can say that using a different RNG from the sin-
gle LFSR would improve the performance of the hardware
GP implementation by a measurable and therefore useful
amount, and that an RNG based on multiple LFSRs or mul-
tiple CAs would be a better choice for a hardware GP sys-
tem. The use of a truly random number source did not ap-
pear to improve performance over the 1DCA, 32CA and
32LFSR RNGs. This provides more evidence countering
the notion that GP needs a very high quality RNG.

Table 2 shows that the difference in GP performance be-
tween the 32CA, True, 32LFSR, EQG and 1DCA genera-
tors is small. However, these 5 generators have very dif-
ferent Diehard scores, so there does not appear to be a
straightforward relationship between the Diehard score and
the performance of GP. This raises a question about the role
that RNGs play in GP. Is a RNG that scores well in the stan-
dard tests for randomness the best RNG for GP?

When looking at the FPGA slice counts and maximum
clock rates, it is clear that the 32LFSR uses about half the
FPGA resources of the 32CA, and the 32LFSR exhibits a
smaller delay than the 32CA. As predicted, the EQG uses
the most FPGA resources and has very deep logic, mean-
ing that it can only run at a much slower rate than the other
generators. The EQG RNG could be re-implemented in the
FPGA using pipelines to achieve a higher clock rate, but

since it performed no better than the 32CA and 32LFSR,
this was not investigated any further.

Random numbers are used in several functions within a GP
system: Initial population creation, selection and crossover
point selection. In common with all reported GP systems,
the same RNG is been used for all these functions within
a run. From a practical point of view it would appear that
there is little point in using more than one type of RNG for
different functions, but from the result using a non-random
sequence a question arises about the role that random se-
quences play as opposed to sequences that simply enumer-
ate a set of numbers. From this it follows that different
stages in GP may use random number sequences in differ-
ent ways, and that using an enumeration may be helpful
when investigating the dynamics of GP.

8 Conclusions

The main conclusion from this investigation is that for the
hardware GP system, the simple LFSR used in the original
design can be improved upon by using a generator based on
multiple LFSRs, multiple CAs, or if available, a high speed
source of true random numbers. A secondary conclusion
is that with the exception of the non-random sequence and
the single LFSR, there is no significant difference in GP
performance when different hardware RNGs are used.
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Appendix A

Results of the Diehard Tests

This appendix contains the results of running the Diehard tests for all RNGs in this paper. Max score represents the case
where an RNG fails all the tests.

Table 3: Diehard test results for all RNGs considered in this paper.
Test Max

score
LFSR EQG 32LFSR IDCA 32CA True Mother

Birthday 36 36 8 2 0 8 0 0
Overlapping permutation 8 8 0 4 8 8 0 0
Binary Rank 32x32 8 8 2 8 2 6 0 0
Binary Rank 6x 104 104 40 8 140 70 4 6
Bitstream 80 80 0 0 80 80 4 0
Overlapping pairs tests 328 328 188 94 328 320 6 2
Count the ones (stream) 8 8 8 8 8 8 0 0
Count the ones (specific) 100 100 42 30 100 100 2 4
Parking Lot 44 4 0 0 4 2 0 0
Minimum Distance 4 4 0 4 4 4 0 0
3D spheres 84 4 0 2 4 2 4 4
Squeeze 4 4 0 0 4 4 0 0
Overlapping Sums 44 44 0 0 6 0 2 2
Runs 16 16 0 2 16 8 0 2
Craps 8 8 0 0 8 12 0 0
Total 876 756 288 162 676 640 22 20


