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Abstract

This paper analyses the behavior of the crossover
operator in a hardware implementation of Ge-
netic Programming using Field Programmable
Gate Arrays. Three different crossover operators
that limit the lengths of programs are analysed: A
truncating operator, a limiting operator that con-
strains the lengths of both offspring and a limit-
ing operator that only constrains the length of one
offspring. The latter has some interesting prop-
erties that suggest a new method of limiting code
growth in the presence of fitness.

1 Introduction

Previous work has described an implementation of Ge-
netic Programming using a Field Programmable Gate Ar-
ray (FPGA) and a high level language to hardware com-
pilation system called Handel-C [6]. This was tested us-
ing the XOR and symbolic regression problems. Further
work described a pipelined implementation that improved
the performance and demonstrated that the technique could
be used to solve the artificial ant problem [7]. In both cases
the work concentrated on the implementation issues and in-
creasing the clock speed of the implementation, but put to
one side the study of the behavior of the system. Now that
the raw throughput issues have been considered it is time
to look at the behavior, and investigate and analyse some
alternative implementation issues.

Because of limited hardware resources in an FPGA and to
keep the design simple and therefore efficient, the maxi-
mum program size is fixed. To ensure that crossover al-
ways generates programs that are shorter than the maxi-
mum length, the crossover operator limits the program size
by truncating programs that exceed the maximum length.
The effect of this decision is investigated in this paper and
some other alternative methods of limiting program length

are explored.

The paper begins with a brief description of the implemen-
tation of a GP system using FPGAs. This is followed by
an analysis of the crossover operator, with comparisons to
standard tree based GP [3]. We then consider two alter-
native crossover operators and analyse their behavior. The
analysis is then discussed and finally some further work is
suggested and some conclusions are given.

2 A Hardware Implementation of GP using
FPGAs

Implementing GP in hardware is motivated by the potential
speedups that can be obtained. The platform chosen for
this work is a Field Programmable Gate Array (FPGA). An
FPGA is a reconfigurable device than can be programmed
to perform a wide range of logic functions. A typical FPGA
is arranged as an array of configurable logic cells, input-
output circuits and programmable interconnections, and is
shown in Figure 1.

Traditionally FPGAs have been programmed using hard-
ware design languages such as VHDL1, but alternative ap-
proaches using high level language to hardware compila-
tion techniques have also been developed, in which a high
level imperative language is used to generate the configu-
ration information for the FPGA. Handel-C [1] is one ex-
ample of this technology, and has been used for the work
described in this paper.

For a detailed review of previous work using FPGAs in
Evolutionary Computing refer to [6].

2.1 Target Hardware

The target hardware is a Celoxica RC1000 FPGA devel-
opment board fitted with a Xilinx XCV2000E Virtex-E

1VHDL is a standard hardware design language. It stands
for VHSIC Hardware Design Language. VHSIC itself stands for
Very High Speed Integrated Circuit.



Figure 1: Typical FPGA architecture. The CLBs are
the configurable logic blocks, IOBs are the Input Output
Blocks and the RAMs are on-chip Random Access mem-
ory blocks.

FPGA having 43,200 logic cells and 655,360 bits of block
ram. The board also has a PCI bridge that communicates
between the RC1000 board and the host computer’s PCI
bus, and four banks of Static Random Access Memory
(SRAM). Fast switches isolate the FPGA from the SRAM,
allowing both the host CPU and the FPGA to access the
SRAM, though not concurrently.

2.2 Program Representation

Handel-C does not support a stack, which means that a
standard tree based representation is not straightforward
to implement because recursion is not supported by the
language. An alternative to a tree representation is a lin-
ear representation which has been used by others to solve
some hard GP problems, for example [8]. Using a linear
representation, a program consists of a sequence of words
which are interpreted by the problem specific fitness func-
tion. The hardware design uses a linear program repre-
sentation with a fixed maximum size. Choosing a fixed
maximum size made the storage of programs in on-chip
RAM and off-chip RAM efficient and simple to implement.
Consequently a method of limiting the program size dur-
ing crossover was needed. The first implementation used a
truncating crossover. This is compared to a second method
of limiting lengths, called the limiting crossover operator.

3 Analysis of the crossover operator

Two separate implementations were used for the analysis.
Firstly, a simple program that simulated the effects of GP
crossover was used to show the expected program length
distributions in the absence of fitness. We refer to this as
the GP simulator in this paper. Secondly, the hardware im-

plementation was used to obtain results both with and with-
out fitness. The test problem for all the experiments where
fitness is used is the artificial ant problem.

3.1 Artificial Ant

This popular test problem was originally described by Jef-
ferson [2] and in the context of GP by Koza [3]. It in-
volves finding a program for an ant-like machine that en-
ables it to navigate its way round a trail of food on a
32x32 toroidal grid of cells within a fixed number of time
steps. In the hardware implementation the function set dif-
fers from the standard example in only having two func-
tions: F = fIF_FOOD; PROGN2g whereIF _FOOD is a
two argument function that looks at the cell ahead and if
it contains food it evaluates the first terminal, otherwise
it evaluates the second terminal.PROGN2 evaluates its
first and second terminals in sequence. The terminal set
T = fLEFT; RIGHT;MOVE; NOPg, whereLEFT and
RIGHT change the direction the ant is facing,MOVE
moves the ant one space forwards to a new cell, and if
the new cell contains food, the food is eaten.NOP is a
no-operation terminal and has no effect on the ant but is in-
cluded to make the number of terminals a power of 2, which
simplifies the hardware logic. Each timeLEFT; RIGHT or
MOVE is executed, the ant consumes one time step. The
run stops when either all the time steps have been used, or
the ant has eaten all the food. This test problem was chosen
because it is known to be a hard problem for GP to solve
[5].

All the results use the Santa Fe trail, which has 89 pellets of
food. Each experiment was run 500 times and the mean of
all the runs taken. Unless stated otherwise, the population
size is 1024, the maximum program length is 31 and all
experiments were run for 31 generations. The ant was allo-
cated 600 timesteps. The probability of selecting crossover
was 67%, mutation 10% and straight reproduction 23%.

3.2 Behavior Analysis

The measurement of overall GP behavior is frequently lim-
ited to plotting the mean population fitness vs. genera-
tion. This is shown for the artificial ant problem using the
hardware implementation in Figure 2 over 500 runs. This
will be used as a baseline when looking at changes to the
original design. However, when looking for the reasons
to explain why a feature of an operator or representation
has an effect, raw performance gives us a very restricted
view of what is happening, and more analytical methods
are needed. One such method is to consider one or more as-
pects of the internal population dynamics during a run. Re-
cently a lot of work has been done to develop exact schema
theories for Genetic Programming [10][11], which, among
other things, give us a description of the expected changes
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Figure 2: GP Performance of the artificial ant problem us-
ing a hardware GP system. Average of 500 runs.

in the program length distribution during a GP run. The
asymptotic distribution of program lengths is important to
us because it is a way of comparing the sampling behavior
(search bias) of different crossover operators and replace-
ment strategies.

Starting with the GP simulator with a uniform initial length
distribution and ignoring the effects of fitness, Figure
3 shows the expected length distribution for generations
0,1,10 and 31. In this case there is no maximum program
size. This agrees with the results in [11] where the distri-
bution asymptotically converges to a discrete Gamma dis-
tribution.
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Figure 3: Program length distribution for standard GP
crossover using a linear program representation, a global
replacement strategy, non-steady state without fitness.

3.3 Truncating Crossover Operator

This crossover operator ensures programs do not exceed
the maximum program length by selecting crossover points
in two individuals at random and exchanging the tail por-
tions up to the maximum program length. Crossovers that
result in programs exceeding the maximum length are trun-
cated at the maximum length. This crossover operator was
devised to minimize the amount of logic required and the
number of clock cycles needed. This is illustrated in Fig-

ure 4. For two programsa andb that have lengthsla and
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Figure 4: Truncating crossover operator

lb, two crossover pointsxa and xb are chosen at random
so that 0� xa < la and 0� xb < lb. The program size
limit is Lmax. After crossover the new lengths arel 0a =
min((xa+ lb�xb);Lmax) andl 0b=min((xb+ la�xa);Lmax).

When the GP simulator is modified to implement the trun-
cating crossover, the result is shown in Figure 5 without fit-
ness. The behavior of the hardware implementation using
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Figure 5: Program length distribution with truncating
crossover for standard GP without fitness.

the truncating crossover operator is shown in Figure 6. A
feature of these results is that there is initially a large peak
at the maximum program size of 31, but in subsequent gen-
erations the distribution tends to resemble a Gamma distri-
bution like the one in Figure 3. However, it is important to
note that it is not the same Gamma distribution, because the
mean program length tends to decrease with this crossover
operator. The reason is that with the truncation the amount
of genetic material removed from the parents when creating
the offspring may be bigger than the amount of genetic ma-
terial replacing it. The differences between Figures 5 and
6 are believed to arise because the simulator uses genera-
tional GP, while the hardware implementation uses steady
state GP.

When fitness is used, the length distribution changes as
shown in Figure 7, but it still retains some of the features
of a Gamma distribution. The striking feature is the large
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Figure 6: Program length distribution using truncating
crossover using a linear program representation without fit-
ness. From the hardware implementation.

peak at the maximum program length limit which repre-
sents nearly 10% of the total population.
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Figure 7: Program length distribution using truncating
crossover using a linear program representation with fit-
ness. From the hardware implementation.

3.4 Limiting Crossover Operator

An alternative method of ensuring that programs do not ex-
ceed the fixed limit is to repeatedly choose crossover points
until both programs are below the program size limitLmax.
For two programsa and b, with lengthsla and lb, two
crossover pointsxa andxb are chosen so that 0� xa < la
and 0� xb < lb. After crossover the new lengths are sim-
ply l 0a = xa+ lb� xb and l 0b = xb+ la� xa. If l 0a > Lmax

or l 0b > Lmax the selection ofxa and xb is repeated until
l 0a � Lmax AND l 0b � Lmax.

This is the approach taken in lilgp (versions 1.02 and 1.1)
when thekeep_trying parameter is enabled [12] to limit
the tree depth and the total number of nodes in a program
tree during crossover. When this crossover operator is im-
plemented in the GP simulator the program length distribu-
tion changes, as shown in Figure 8. A feature of this result
is that the mean program length moves towards smaller val-
ues. After 31 generations, the population size distribution
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Figure 8: Program length distribution using limiting
crossover operator and a global replacement strategy with-
out fitness.

shape resembles the one produced with standard GP.

When this method of limiting the program length was im-
plemented in the hardware version, we obtained the distri-
bution shown in Figure 9. In contrast to the GP simulator
the program length distribution remains reasonably static
between generations 1 and 31. In an effort to understand
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Figure 9: Program length distribution using limiting
crossover without fitness, from the hardware implementa-
tion.

the different behavior between the results in Figures 8 and
9 it was noted that the hardware implementation required
both of the offspring programsa0 AND b0 to be shorter than
Lmax but that the simulation only considered one offspring
at a time, effectively requiringa0 OR b0 to be shorter. The
latter case is referred to as the single-child variant in the
rest of this paper, and the original the dual-child variant.In
the case of the single-child variant, if one of the programs
was larger than the maximum, it was simply discarded and
the parent substituted in its place, and if both children were
larger than the limit, the two crossover points would be cho-
sen again. If both children were smaller than the limit, they
would both be available as candidates in the next gener-
ation. When the hardware implementation was modified
to incorporate the single-child variant limiting method, the
result shown in Figure 10 was obtained, closely matching



that from the simulation. Again, the difference between
Figure 8 and Figure 10 is believed to be due to the use of
steady-state GP in the hardware implementation. When fit-
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Figure 10: Program length distribution using limiting
crossover without fitness and the single-child variant. From
the hardware implementation.

ness is enabled using the dual-child variant, there is a large
bias in favor of longer programs as shown in Figure 11.
An interesting artifact of this graph is the sharp rise in pro-
gram lengths for generations 10 and 31 above length 15.
This is likely to be due to the distribution of fitness in the
program search space and can be seen as a form of what
is commonly termed bloat. However, when the program
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Figure 11: Program length distribution using limiting
crossover with fitness and the dual-child variant. From the
hardware implementation.

length distribution using the single-child variant was plot-
ted, shown in Figure 12, the length distribution peaks at
around the mean ofLmax. This unexpected behavior is in-
teresting since it appears to have avoided the phenomenon
of bloat.

The effect of using the limiting crossover operator with and
without the single-child variant on the behavior of the sys-
tem is shown in Figure 13 together with the original be-
havior. This graph shows that all three crossover imple-
mentations have a similar rate of improvement, with the
limiting crossover operator with single-child variant maybe
performing slightly better on the ant problem.
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Figure 12: Program length distribution using limiting
crossover with fitness and the single-child variant. From
the hardware implementation.
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Figure 13: Comparative GP behavior of the hardware
implementation for the ant problem using truncating
crossover and limiting crossover.

Finally, the distribution of 100% correct program lengths
was measured for truncating and both limiting crossovers.
The hardware implementation was run 500 times, and if
a 100% correct program was generated, the length was
recorded. These are shown in Figures 14, 15 and 16 re-
spectively.

From these plots we can see that truncating crossover has
allowed GP to find more 100% correct programs than the
limiting crossover using the dual-child variant. However,
when using the single-child variant, limiting crossover
found the most 100% correct programs.

It is interesting to note that the results shown in Figure 13
do not obviously show this difference in the outcome, high-
lighting the weakness of using the standard measure of per-
formance.

The results shown in Figures 14,15 and 16 suggest that for
the artificial ant problem implemented in hardware, pro-
grams of length 4 or 5 are most likely to be correct. It
was then observed that the peak program length in Figure
12 was larger than length 4. From this it was conjectured
that if the maximum program length was reduced from 32,
moving the peak closer to the program length that occurred
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Figure 14: Distribution of lengths of 100% correct pro-
grams using the truncating crossover operator.
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Figure 15: Distribution of lengths of 100% correct pro-
grams using the dual-child variant limiting crossover op-
erator.

most frequently, that GP may find even more successful
programs. Two further experiments were therefore per-
formed using maximum lengths of 16 and 8. The results
of running the hardware implementation with these modi-
fied lengths is shown in Figures 17 and 18.

This confirmed the idea that, by limiting the program
lengths that GP is allowed to create, that GP produced
more 100% correct programs. The corresponding program
length distributions are shown in Figures 19 and 20. These
both have similar characteristics to Figure 12 and show that
the program length distribution peaks close to the peak of
the successful programs.

4 Discussion

The differences between the dual-child and single-child
variants can be explained by considering first the dual-
child case. Starting with a uniform distribution of program
lengths 0< l � Lmax, the average program length is given
by Lavg=

Lmax
2 and the average crossover point isLavg

2 . Ev-
ery crossover produces two offspring, the average length
of which is Lmax

2 , with one smaller and one larger program
produced. When one of the offspring exceedsLmax both
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Figure 16: Distribution of lengths of 100% correct pro-
grams using the the single-child variant limiting crossover
operator.
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Figure 17: Distribution of lengths of 100% correct pro-
grams using the the single-child variant limiting crossover
operator and a length limit of 16

crossover points are re-selected until both programs satisfy
the length constraint. The result is that the average pro-
gram length using this crossover will remainLmax

2 . How-
ever, in the single-child case, only one child needs to meet
the length constraint. With one long and one short off-
spring, the short offspring will be more likely to satisfy the
constraint and so be selected for propagation. Because the
shorter program is preferred, the mean program length will
tend to continually decrease. In summary, in the absence
of fitness, the single-child variant selects programs that are
on average smaller thanLmax

2 . In the presence of fitness
we believe that this pressure to decrease the mean program
length competes with the well documented tendency of GP
programs to grow in the presence of fitness. The result is
that when using the single length constraint and an upper
bound on the program length, the program length distribu-
tion does not have a strong bias to longer lengths.

A side effect of using the single child variant is that when a
long program is rejected, a copy of the parent is propagated
to the next generation. This means that even if crossover is
used as the only operator, a proportion of straightforward
reproduction will be present.
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grams using the the single-child variant limiting crossover
operator and a length limit of 8
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Figure 19: Program length distribution using limiting
crossover with fitness and the single-child variant. Maxi-
mum length limited to 16. From the hardware implementa-
tion.

A practical penalty of the limiting crossover approach
is that multiple passes may be required to obtain two
crossover points that satisfy the length constraints. De-
pending on the implementation this could have an impact
on the time needed to complete a GP run. In practice for
most problems the time required for crossover in a stan-
dard GP system is much smaller than the time for evaluat-
ing programs, and so will only extend the time required by
a small factor. In the hardware implementation, crossover
is performed in parallel with evaluation, so there will be
no impact for most problems where fitness evaluation takes
longer than selection and breeding. For the artificial ant
problem implemented in hardware, the limiting crossover
operators did not have any effect on the overall perfor-
mance of the design, both the clock speed and number of
clock cycles remained the same as the truncating crossover
implementation. It is worth noting that the single-child lim-
iting crossover will need fewer iterations to find a legal off-
spring, so this will have a smaller effect on the overall per-
formance.

The effect of adjusting the program length limit so that the
peak in the length distribution is closer to the peak of opti-
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Figure 20: Program length distribution using limiting
crossover with fitness and the single-child variant. Maxi-
mum length limited to 8. From the hardware implementa-
tion.

mal program lengths suggests that allowing programs to be
unlimited in length may be detrimental to using GP effec-
tively.

5 Further work

From the results in [10] we would expect similar behavior
when these techniques are applied to standard tree based
GP, and this is currently being investigated.

Other techniques have been suggested for controlling the
program size during evolution, such as the smooth oper-
ators [9], homologous and size fair operators [4] which
could also be adapted to a hardware implementation.

So far, only one problem has been analysed using the hard-
ware implementation of GP and to get a more complete
picture of the effects of the design decisions more problems
need to be implemented and analysed.

6 Conclusions

This analysis, based on measuring the program length dis-
tributions was prompted by the results from the work on
a general schema theory of GP. It has led us to an imple-
mentation of crossover that allows us to constrain the max-
imum program lengths. For the ant problem implemented
in hardware we have discovered a mechanism that avoids
the effects of unconstrained program growth, and indeed
allows us to obtain more correct programs.

In conclusion, all three crossover operators are effective
in the hardware implementation when applied to the arti-
ficial ant problem, with the single-child limiting crossover
performing ahead of the other two. The behavior of the
single-child limiting crossover in the presence of fitness is
interesting and suggests another mechanism for controlling
code growth.
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