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Abstract. This paper presents an implementation of Genetic Programming using a Field Pro-
grammable Gate Array. This novel implementation uses a high level language to hardware compila-
tion system, called Handel-C, to produce a Field Programmable Logic Array capable of performing
all the functions required of a Genetic Programming System. Two simple test problems demon-
strate that GP running on a Field Programmable Gate Array can outperform a software version
of the same algorithm by exploiting the intrinsic parallelism available using hardware, and the
geometric parallelisation of Genetic Programming.
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1. Introduction

Genetic Programming (GP) systems are generally realised as programs running
on general purpose computers. This work was motivated by the observation that
as problems get harder, the performance of traditional computers can be severely
stretched. This is despite the continuing increase in performance of modern CPUs,
and the use of multiple processors to exploit the fact that GP can be parallelised.
By implementing a GP system directly in hardware the aim is to increase the
performance by a sufficiently large factor so as to make it possible to tackle harder
problems. Using a high speed hardware GP system opens up the possibility of
using real-time data to drive evolution. Examples of this are robotic control, where
the hardware can interface directly with sensors and motion control, and signal
processing applications where the data for evaluating fitness is a real-time data
stream.

This paper shows how a GP system that includes initial population creation,
fitness evaluation and selection and breeding operators can be implemented in a
Field Programmable Gate Array (FPGA) using a high level language to hardware
compilation technique. The paper begins with a description of the hardware and the
hardware compilation language. Next, a survey of the use of FPGAs in evolutionary
computing is presented. This is followed by a description of the GP system in general
and a discussion of the design decisions that had to be made in order to successfully
fit a GP system into an FPGA. This is followed by some example problems chosen
to exercise the implementation. The results of running the system and comparisons
to a traditional implementation follow and then a discussion of the results is given.
Finally some future work is proposed and some conclusions drawn.



2. FPGAs and the Handel-C Hardware Compilation System

This section gives a brief description of FPGAs, followed by a description of the
high level language to hardware compilation system. This is not intended to be a
full description of the tool, but it describes the most important features, especially
those that influence the design decisions described later in this paper. For full
details of the language and development environment see [4].

2.1. FPGA introduction

FPGAs are a class of programmable hardware devices, consists of an array of Con-
figurable Logic Blocks (CLBs), Input Output blocks (IOBs) that connect the logic
to the outside world and configurable interconnections that connect the CLBs to
each other and the IOBs. In the particular case of the Xilinx [31] Virtex device used
in this work, each CLB contains two Slices, each Slice containing two Logic Circuits
(LCs). In addition some devices contain on-chip RAM. A simplified general model
of an FPGA is shown in Figure 1.
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Figure 1. General Model of an FPGA. It consists of an array of Configurable Logic Blocks
(CLBs), Input Output blocks (IOBs) that connect the logic to the outside world and configurable
interconnections that connect the CLBs to each other and the IOBs.

Figure 2 shows a general model of a Xilinx Virtex Slice containing two logic cells.
Each Logic Cell consists of a function generator implemented as a Look Up Table
(LUT) a storage element or Flip Flop (FF) and internal Carry and Control logic
(CC).

The configuration of these devices is achieved by loading a configuration bit pat-
tern, which in the case of the Virtex is loaded into static RAM on the chip. This
has to be done each time the chip is re-powered. The configuration bit patterns are



proprietary and are generated using software tools that take a high level description
of the configuration information.
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Figure 2. General model of a Configurable Logic Block or Slice. Each Slice contains two logic
cells. Each Logic Cell consists of a function generator implemented as a Look Up Table (LUT) a
storage element or Flip Flop (FF) and internal Carry and Control logic (CC).

2.2. Description of Handel-C

Handel-C is a high level language that is at the heart of a hardware compilation
system known as Celoxica DK1 [5]. It is designed to compile programs written in
a high level language into synchronous hardware. The output from Handel-C is a
file that is used to create the configuration data for the FPGA. A description of
the process used by Handel-C to transform a high level language into hardware and
examples of the hardware generated can be found in [20]. Handel-C has its roots
in CSP and Occam.

Handel-C has a C-like syntax. This makes the tool appealing for software engi-
neers with no experience of hardware, in that they can quickly translate a software
algorithm into hardware, without having to learn about FPGAs in detail, or VHDL.
VHDL is a standard hardware design language. It stands for VHSIC Hardware De-
sign Language and VHSIC itself stands for Very High Speed Integrated Circuit.
Examples of how Handel-C may be exploited can be found in work by Page [21]



where a number of video algorithms were implemented using just an FPGA, and
in work by Sulik et al [27] that describes how a Reduced Instruction Set Computer
core was designed in 48 hours.

2.2.1.  Parallel Hardware Generation One of the advantages of using hardware
is the ability to exploit parallelism directly. This is in contrast to the simulated
software parallelism that is found on single CPU computers achieved using time-
slicing. Handel-C has additional constructs to support the parallelisation of code.
The block

par {
a=10;
b=20;
}

would generate hardware to assign the value 10 to a and 20 to b in a single clock
cycle. Using arrays of functions or by generating inline code, large blocks of func-
tionality can be generated that execute in parallel.

Hardware can be replicated using the construct

par (i=0;i<10;i++) {
ali] = b[il;
}

which would result in 10 parallel assignment operations resulting in copying array
b to array a in one clock cycle.

2.2.2. Efficient use of FPGA resources To make efficient use of the hardware,
Handel-C requires the programmer to declare the width of all data, for example,

int 5 count;

is a signed integer that is 5 bits wide, and so will be able to represent the values
—16 < count < +15.
Handel-C supports only a single Integer data type.

2.2.8. Eaxternal Communication Communication between the hardware and the
outside world is performed using interfaces. These may be specified as input or
output, and, as with assignment, a write-to or a read-from an interface will take
one clock cycle. The language allows the designer to target particular hardware,
assign input and output pins, specify the timing of signals, and generally control the
low level hardware interfacing details. Macros are available to help target particular
devices.



2.2.4. Simple timing semantics According to the Handel-C documentation, the
simple rule about timing of statements is that “assignment takes 1 clock cycle, the
rest is free”. This means that expressions are constructed using combinatorial logic,
and data is clocked only when an assignment is performed. For example, Handel-C
would generate hardware for the following statement that executed in a single clock
cycle.

y = ((x*x)+3%x) ;

This feature makes it easy to predict the performance in terms of clock cycles.
However, there is a penalty in that the more complex the expression, the deeper the
logic required to implement the expression. This in turn limits the maximum clock
rate at which the design can be run because of the propagation delays associated
with deep logic. In practice this means that the designer needs to trade clock cycles
against clock rate, and this is typically an iterative process.

2.8. Some restrictions when using Handel-C and FPGAs

Because Handel-C targets hardware, there are some programming restrictions com-
pared to using ANSI C, and these need to be taken into consideration when design-
ing code that can be compiled by Handel-C. Some of these restrictions particularly
affect the building of a GP system.

Firstly, there is no stack available, so recursive functions cannot be directly sup-
ported by the language. This in turn means that standard GP, which relies heavily
on recursion, cannot be implemented without some modification. A solution to this
restriction is discussed in Section 4.2.

Secondly, there is a limit to the size of memory that can be implemented using
standard logic cells on an FPGA because implementing memory is expensive in
terms of silicon real estate. However, some FPGAs have internal RAM that can
be used by Handel-C. For example, the Xlinx Virtex and Spartan series support
internal memory that Handel-C allows the user to declare as RAM or ROM. The
definition

ram int 8 mem[128];

declares a RAM block of 128 cells, each 8 bits wide, which can be accessed as a
normal array.

A limitation of using RAM or ROM is that it cannot be accessed more than
once per clock cycle, so restricting the potential for parallel execution of code that
accesses it.

Thirdly, expressions are not allowed to have side effects, since this would break
the single cycle assignment rule. Therefore code such as

a = ++b;



is not allowed and needs to be re-written as:

b=>b+ 1;
a = b;

2.4. Targets supported by Handel-C

Handel-C supports two targets. The first is a simulator target that allows develop-
ment and testing of code without the need to use any hardware. This is supported
by a debugger and other tools. The second target is the synthesis of a netlist for
input to place and route tools. This allows the design to be translated into con-
figuration data for particular chips. An overview of the process is shown in Figure
3. Analysis of cycle counts is available from the simulator, and an estimate of gate
count is generated by the Handel-C compiler. Although the estimation tool is use-
ful, to get definitive timing information and actual hardware usage the place and
route tools need to be invoked.
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Figure 8. Overview of the process of translating code into hardware using Handel-C and the
critical outputs for analysis of the solution
2.5. Translating ANSI-C to Handel-C and code portability

With care it is possible to re-use the same code for both a design implemented in
hardware and a design realised as a traditional software program. The differences in



syntax and the various extensions can be made portable using the C pre-processor.
For example, the need to supply a width specifier for Handel-C can be hidden from
an ANSI C compiler as follows:

#if defined HANDELC
#define IW 5

#else

#define IW

#endif

int IW x;

Similar tricks can be used to allow the parallel portions of code to be treated as
normal sequential blocks by the ANSI C compiler, and other Handel-C keywords
to be hidden.

3. Existing GA/GP systems using FPGAs

FPGAs have featured in the field of evolutionary computing in three main areas: 1)
as a means of implementing the fitness functions of Genetic Algorithms or Genetic
Programming; 2) as a platform for implementing the Genetic or Evolutionary Algo-
rithm; 3) in relation to evolving hardware by means of an evolutionary technique.
These three strands are surveyed separately. A common theme running through
previous work is the use of traditional hardware design tools and languages such as
VHDL.

3.1. FPGAs for speeding up fitness evaluations.

In this category only the fitness evaluation is performed by an FPGA. The creation
of the initial population and the breeding phases are carried out by a host computer.

Koza et al. [12] used an FPGA to speed up the evaluation of fitness of a sorting
network, in which the FPGA was used solely to perform the fitness evaluation.
The initial population was created by a host computer, and then individuals were
downloaded to a pre-programmed FPGA and the FPGA instructed to evaluate the
fitness of the individual. Subsequent selection and breeding were again performed
by the host computer.

Yamaguchi et al [32] used an FPGA to implement a co-processor for evolutionary
computation to solve the iterated prisoners dilemma (IPD) problem. They reported
a 200 times performance speedup in processing the IPD functions on the FPGA
when compared to a 750MHz Pentium processor.



3.2.  Implementing the logic for evolution using FPGAs

In this category the fitness evaluation and breeding and in some cases the initial
population creation is carried out on the FPGA.

Graham and Nelson [8] implemented a complete GA system using four FPGAs.
Each FPGA was programmed to carry out a different function; Selection, Crossover,
Fitness and Mutation and finally Statistics. Each FPGA passed its results to the
next forming a pipeline. The performance of their system was compared to a
software implementation running on a 125MHz PA-RISC workstation and they
showed an improvement of 4 times

A GA hardware engine is described by Scott el al [24] that implements the fitness
function, crossover /mutation function and selection function on a number of Xilinx
X(C4005 devices. No direct performance comparisons are given.

Perkins et al [22] describe a system where a complete GA system is realised on a
single Virtex 300 part. Performance is compared to a C implementation, and they
report an improvement of over 1000 times, though they don’t specify the speed of
the CPU used for the C implementation.

Shackleford et al [26] have implemented a complete GA system using a Xilinx
XCV3200E chip. Their implementation uses extensive pipelines and parallel fitness
evaluation to get a performance increase of 320 times when compared to the same
algorithm running on a 366MHz Pentium CPU.

Finally in this category, FPGAs have been been used to implement parts of a
GP system. The system described by Heywood et al [9] was simulated using more
traditional FPGA tools. The proposal in his work was to use the FPGA only for
evaluating the individuals and performing mutation and crossover. Initial popula-
tion creation was done off-line and downloaded to RAM for use by the FPGA.

3.3.  FEwolutionary hardware using FPGAs

FPGAs have featured regularly as platforms for evolutionary hardware research.
Thompson [28] demonstrated for the first time how digital FPGAs could be used
as the target for evolutionary hardware. His work is interesting for a number of
reasons: firstly it used an FPGA - the Xilinx XC6200 - that supported direct
reconfiguration of its logic cells, in contrast to current FPGAs that only support
very limited partial reconfiguration. Sadly this FPGA is now obsolete. Secondly,
his work relied on the asynchronous behaviour of the FPGA to obtain the results,
in contrast to much of the current work using FPGAs which is very firmly focussed
on the synchronous use of FPGAs. Thirdly, the evolutionary approach discovered
an analogue behaviour of the FPGA that resulted in the circuit operating correctly,
but only within a limited temperature range. Subsequent work by Thompson and
Layzell [29] describes the physics of this behaviour.

The work by Fogarty et al. [7] describes how circuits can be evolved directly on
an FPGA without having to place and route a netlist first.



Tufte and Haddow [30] implemented a complete evolutionary hardware system on
an FPGA, which used a pipeline to evolve hardware.

Levi and Guccione [14] describe a method of generating the FPGA configuration
data that avoids illegal FPGA configurations and ensures the FPGAs are stable.

4. Implementation of a GP system using Handel-C

This section describes the general design decisions taken to implement GP in hard-
ware.

4.1. A Complete GP system On a Chip

The primary aim of this work was to realise a complete GP system in hardware.
That is initial population generation, fitness evaluation, breeding and the delivery
of the final result. This is in contrast to all previous examples of using FPGAs with
Genetic Programming. This high level aim guided many of the following design
decisions.

4.2. Internal Program Representation

The lack of a built-in stack when using Handel-C makes the use of recursive func-
tions difficult. Although there are well known methods of removing recursion from
algorithms [25], a stack of some form is still required to store intermediate results.
An alternative to the standard tree representation as introduced by Koza [11] is the
linear GP system as used by Nordin and Banzhaf [18], Banzhaf et al [2] and others.
A linear representation was chosen for this work because of its simplicity and the
fact that a linear representation has been shown to be able to solve hard problems.

The details of the internal representation depend on the word size, number of
functions, and number of terminals used, and these are dependent on the problem
being tackled. For this work, a register like machine was chosen for its simplicity,
though a register machine is by no means the only machine that could be used.
A program consists of an array of instructions and some control information. The
programs have a fixed maximum size to simplify the GP system. A general layout
of an instruction is shown in Figure 4. This shows an example in which there are
eight possible opcodes and each opcode can use zero, one or two effective addresses.
The details of what the opcodes do and the effective addresses is problem specific.
The fields for an instruction are described in Table 1.

The representation of a program is shown in Table 2.
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Figure 4. Layout of an instruction where there are eight possible opcodes and two effective
addresses. The details of what the opcodes do and the effective addresses is problem specific.

Table 1. General layout of an instruction

Field Comments

Opcode The operation being encoded

Effective Address 1  The primary source operand and the destination address. Always a
register.

Effective Address 2  The secondary operand. Can be a register, a new Program counter
or an index into a table of constants.

Table 2. Layout of an individual program

Field Comments

Length The active length of the program,
Raw fitness  The raw fitness of the program
Instructions  An array of instructions

4.3.  Parallelism

When discussing parallelism it is important to distinguish between different forms of
parallelism. Here four types of parallelism are used; intrinsic, geometric, algorithmic
and asynchronous. These will now be explained.

Firstly, the Handel-C language supports parallelism directly as already discussed
in section 2.2.1, enabling efficient implementation of instructions that would nor-
mally be executed serially on a standard microprocessor. This in itself gives a
substantial increase in performance when compared to a standard microprocessor.
Since this form of parallelism is built into Handel-C, I will call this intrinsic paral-
lelism.

The second use of parallelism is in the implementation of the Genetic Program-
ming algorithm. Genetic Algorithms in general are highly parallelisable and exploit-
ing this parallelism can result in substantial performance improvements. Cantu-Paz
[3] surveyed parallel GA algorithms in depth and proposed four classifications of
parallel GA. A uniform taxonomy of parallel Genetic Algorithms has been proposed
by Nowostawski and Poli [19], which extended the number of classes of parallel GAs
to eight:
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1. master-slave in which a single population exists and the fitness evaluation of
multiple individuals is carried out in parallel

static subpopulations with migration

static overlapping subpopulations without migration
massively parallel genetic algorithms

dynamic demes

parallel steady-state GA

parallel messy GA

hybrid methods.

® N ot W N

In the field of GP various examples of parallel GP exist, for example the work by
Andre and Koza [1] used a network of Transputers, while Chong and Langdon [6]
explored how the computing resources that are potentially available on the internet
could be exploited. Probably the most powerful example of parallel GP is the work
done by Koza et al [13] which used a thousand standard Pentium PCs.

The type of parallelism found in all the examples above is geometric parallelism,
where a data set is partitioned into smaller units and the processing is replicated
on many processors.

A third form of parallelism - algorithmic parallelism - occurs where a number
of tasks can be pipelined, so making fuller use of the available resources. This
technique is common in hardware design, and in particular is found in most modern
microprocessors.

Lastly, a form of parallelism called asynchronous or relaxed parallelism occurs
when two or more processes communicate on an occasional basis but operate inde-
pendently without any synchronisation.

4.8.1. Intrinsic Parallelism for a Hardware Implementation The design used in
this work exploits parallel execution of all simple statements where possible. This
is done regardless of the phase of GP (creation, fitness evaluation, selection and
breeding) since there is no penalty in executing two assignments in parallel. In any
case the hardware will be generated for each assignment. This is especially useful
when initialising variables at the beginning of a function.

4.8.2.  Geometric Parallelism for a Hardware Implementation In this work the
master-slave parallel architecture is used where the master stores the population
and the slaves evaluate the fitness of the individuals. This form of parallelism is a
natural fit where the population is a global resource within the FPGA or closely
coupled RAM, and parallel fitness evaluations can be realised by replicating the
fitness evaluating hardware. Since the entire system is realised on a single chip,
the communication overhead between the master and the slaves (the evaluation
functions) which is normally regarded as a bottleneck is almost entirely removed.
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Since it is unlikely that there would be sufficient FPGA resources to be able to
evaluate an entire population at once, the population is divided into a number of
smaller subsets and each subset is evaluated in parallel. To make this as efficient as
possible, and to make the maximum use of the hardware, both the total population
size and the number of individuals in a subset is a power of 2. Parallelisation of the
evaluation is implemented by using the inline keyword in Handel-C which causes
as many copies of the hardware to be generated as required.

4.8.3. Algorithmic Parallelism for o Hardware Implementation Pipelines have
not been used, but the opportunity for using them to speed up the design is clear,
and future work will investigate them.

4.8.4. Asynchronous Parallelism for a Hardware Implementation There is one
task that is ideally suited to an asynchronous implementation - that of the random
number generator. This runs continuously in parallel with everything else, gener-
ating a stream of random numbers which are used as needed by the rest of the
design.

4.4. Generating Pseudo Random Numbers

A random number generator (RNG) is used in two of the major steps in GP. Firstly,
during initial population creation to create a diverse population, and secondly, dur-
ing the breeding phase to select individuals for breeding and to choose a particular
breeding operator from one of crossover, mutation or copy. When using Handel-C,
the use of the standard multiply and divide instructions are inefficient in terms of
silicon because of the deep logic generated. As a consequence of this the usual linear
congruential generators normally found were rejected. Instead, a linear feedback
shift register (LFSR) design was used. A word size of 32 was chosen, as this could
be implemented efficiently on a standard modern CPU, and so the LFSR can be
ported easily to ANSI C. It is important to choose a good polynomial to make sure
that the RNG can generate a maximal sequence of 2" — 1 random numbers, while
keeping the number of taps to a minimum for efficiency. Schneier [23] page 376 gives
a list of such polynomials and for a 32 bit word the polynomial 2°2 427 +z% 4+ 2% +2°
was used. The block diagram of the LFSR is shown in 5. Only 4 taps are shown
since z° is always 1.

The RNG is designed so that a random number is generated in one cycle. The
required number of bits are then read from the 32 bit register, starting at bit 32
to give a random number. For example, if the system has 8 instructions, then
3 bits are needed to encode the instruction. During initial program creation the
random selection of an instruction uses the top 3 bits. Handel-C allows efficient bit
operations, and the code to select the 3 bits is:

unsigned int 3 instruction;
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Figure 5. Linear Feedback Shift Register Random Number Generator for the 32 bit polynomial
232 + 27 + 2% + 22 + 20. The ® symbol is the 4 input logical exclusive OR function (XOR). Only
4 taps are shown since z° is always 1.

instruction = randReg[31:29];

where randReg is the shift register variable.

Seeding of the RNG is done by reading a 32 bit port during the initialisation
phase. This allows the RNG to be seeded from an external source, such as a time of
day clock, or other source of noise. It also allows the RNG to be preset to a known
seed for producing repeatable results.

There is a suspicion that this RNG is not ideal because LFSRs are known to
perform poorly in the serial test described by Knuth [10] and this is an area for
further investigation.

4.5. Breeding Policy and Operators

To conserve memory, a steady state breeding policy was used. Tournament selection
is used with a tournament size of two. Larger tournament selection makes little sense
with very small populations.

The operators were selected using the following probabilities. Mutation 10%,
Crossover 70%, copy 20%.

4.5.1.  Mutation The mutation operator works by reusing the function that gen-
erates a program node during initial program creation. This is done primarily to
economise on hardware. The result is that a mutation can change zero, one or more
of the instruction details. This mutation operator is fairly crude and potentially
destructive and further work needs to be done to evaluate the effect of such a heavy
handed method.

4.5.2. Cross-over Crossover for a linear program representation causes some
problems in that generally we want to avoid performing large block memory moves.
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This work maintains a fixed maximum program size, and copies segments from one
program to another. By exploiting the parallel nature of hardware, the effects of
performing block memory copies can be reduced to an acceptable level. This is an
area that will benefit from further optimisation.

4.5.3.  Copy individual Again by exploiting the parallel nature of the hardware,
a copy of an individual of length [ requires [ + k clock cycles, where k represents
the small overhead to set up the copy, currently 3 clock cycles.

4.6.  Performance Comparison Methodology

As already noted, there are potentially four types of parallelism being used in this
work. To make any performance comparisons meaningful, the different types of
parallelism in operation must be considered when making any comparisons with
other implementations of the same algorithm. For this reason the performance
comparison is made up of two parts. Firstly, a comparison of the design to a
standard microprocessor is made, but without the geometric parallelism. That is,
only a single fitness evaluation is made at any one time. Secondly, a comparison is
made for different degrees of geometric parallelism.

Comparing the performance of the FPGA system without geometric parallelism to
a modern RISC processor is considered reasonable on the grounds this comparison
has been used previously in much of the work reviewed in section 3.1 as well as
literature published by Xilinx and other hardware manufacturers.

4.7.  Other optimisations

The use of the standard C operators *(multiply) /(divide) and %(modulus) oper-
ators was avoided, since they produce deep combinatorial logic with long delays
which in turn severely limits the maximum clock rate at which the design can be
run. Similarly the use of the inequality operators was avoided where possible since
these also generate deep logic. For problems where multiplication or division are
essential, these operators can be implemented using pipelined architectures. These
make efficient use of silicon but require careful design of the fitness cases to exploit
the pipelines efficiently.

Some variables are overloaded. This reduces the logic required to implement
some functions that have a sequential nature, while making the code somewhat less
maintainable.
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5. Experimental Setup

To test the feasibility of implementing a GP system in hardware using Handel-C a
number of experiments were devised. This section describes the environment used
for the experiments.

There were four aims of running these experiments:

1. to determine whether the system could be implemented using Handel-C and to
verify that the design would fit on an FPGA

2. to determine if a limited GP system could solve the problems chosen

3. to obtain some indicative performance comparisons between a traditional C
implementation and a hardware implementation

4. to find out whether the design was realisable as hardware and to implement the
design in hardware.

5.1. Test Environments

To meet the above aims, the problems were run using five different environments.
Firstly, as a standard C application running under Linux. This was to prove the
initial program operation, and to enable the application to be debugged using stan-
dard GNU tools. The program was compiled using gcc v2.95.2 and executed on a
200MHz AMD K6 PC running Linux.

Secondly, the program was compiled using Handel-C and optimisations made to
the code to reduce logic depth and gate count, and to increase parallelism.

Thirdly, the Handel-C implementation was run using the Handel-C simulator.
This gave the number of clock cycles needed to execute the program.

Fourthly, the C code was compiled using a cross compiler and executed on an
instruction simulator for the Motorola Power-PC architecture. This was performed
to obtain a count of instruction and memory cycles needed for a modern processor.
The choice of the Power-PC for this work was made on the basis of a readily available
simulator for the Power-PC. The Power-PC simulation was performed by using gcc
2.95.2 configured as a Power-PC cross compiler. This version of the program was
optimised so as to have a minimal start-up overhead and to not use any I/O.
It is therefore as close to the FPGA program as possible, allowing a meaningful
comparison of performance to be made. The simulator itself was psim [16] which
is built into the GNU debugger (gdb) from version 5.0 onwards. Psim can also be
run as a stand-alone application.

Lastly, the output from Handel-C was used to generate a hardware layout for the
place and route tools which gave the maximum clock frequency the design could
achieve, and an indication of the FPGA resources required.

The design was then transferred to hardware to verify the correct operation of
the program.
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For the Handel-C simulation and hardware implementation, the code was com-
piled using Handel-C v3.0 using maximum optimisation. The final FPGA config-
uration data was produced using Xlinx Design Manager version 3.3i for a Xlinx
Virtex XCV2000e-6 chip hosted on a Celoxica RC1000 development board. A block
diagram of this board is shown in figure 6. This board contains a PCI bridge that
communicates between the RC1000 board and the host computers PCI bus, four
banks of Static Random Access Memory (SRAM) and a Xilinx FPGA. Logic circuits
isolate the FPGA from the SRAM, allowing both the host CPU and the FPGA to
access the SRAM. The SRAM can be configured as either 2Mbytes by 8bits each,
or 512Kbytes by 32bits and for this work, the SRAM was configured as 32bits wide.

The host computer is responsible for downloading the configuration data to the
FPGA. The host can then communicate with the FPGA to control the operation,
send data to and read data from the FPGA. In this work, a program written to run
on the host performed the following operations:

1. initialise the board

2. download the FPGA configuration data to the FPGA
3. set up the random number generator seed in SRAM
4. start the GP run

5. wait for the FPGA to signal that the run has finished
6. read the results back from the GP system

7

display the results on the host terminal.

The problems were run 50 times each, using both the native C implementation and
the FPGA implementation and the results checked against each other. In both
cases the same sequence of random number seeds were used.

The FPGA design wrote its output to an 8 bit output port as a sequence of
key/data pairs. This data was read by the host PC and saved to a disk file for later
analysis. A disassembler was written to decode the output data for analysis.

When measuring the clock counts of both the Handel-C simulation and the Power-
PC simulation, the code was modified to run to the maximum number of genera-
tions. They also both used the same random number seed to ensure that compar-
isons were made using identical conditions.

5.2.  Estimating Power-PC clock cycles

Estimating the number of clock cycles required to execute the Power-PC version of
this program is a complex process. Timing is dependent on how well the compiler
has arranged the instruction flow to avoid pipeline stalls, accurate branch prediction,
how much of the program is in instruction cache and how many external memory
reads/writes are required. It also depends how fast the hardware is, especially the
memory subsystem. From the Motorola data sheet for the MPC860 Users Manual



17

Clocks and
< P! Control < >
] SRAM ] Xilinx
Host PCI Bus 4 P 512kx32 < P M P BGssoFPGA
< p| PCi XCV2000e

Bridge SRAM

{ P € P| 512Kx32 < > < D
SRAM

4P| 512kx32 d P <« D
SRAM

4 P 512kx32 d P <« P

Isolation Isolation |

Auxiliary I/0O

Figure 6. Block diagram of the Celoxica RC1000 FPGA board. It contains a PCI bridge that
communicates between the RC1000 board and the host computers PCI bus, four banks of Static
Random Access Memory (SRAM) and a Xilinx FPGA. Logic circuits isolate the FPGA from the
SRAM, allowing both the host CPU and the FPGA to access the SRAM.

[17], an external load (read) takes 2 cycles when the data is in cache and 3 additional
clock cycles when it is not in cache. A write to memory requires 1 cycle. A best
case instruction when executed from data cache requires 1 cycle for most common
instructions. The number of clock cycles is given by:

Clockiotar = (r x (1 — dhit) x 3) + 1

where:

r = the number of reads from memory.

dhit = the percentage of reads satisfied by the data cache. This is estimated to
be 60%, based on anecdotal evidence.

1 = the number of cycles required to execute the program, including pipeline stalls
and branch prediction failures. This figure includes all writes to memory and all
reads from cache.

The instruction and read counts are taken from the output of the instruction
simulator. The above assume that there are no external memory wait states caused
by slow memory or bus contention, and that instruction scheduling is optimal.

6. Experiment Descriptions and Results

Three experiments were devised to prove the general concept of GP in hardware
using Handel-C and to start to investigate the behaviour of the GP system when
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changing the number of parallel fitness evaluations. The limited memory available,
without using RAM blocks, meant that the problems need to be sufficiently simple
to be solved using a small program size and small population size. During program
development, the population size and program size were modified until reasonable
values were found that a) allowed the problems to be solved, and b) could be
compiled on the workstation using Handel-C. The last point arose because the
Handel-C compiler requires substantial computational resources so that arbitrarily
large designs cannot be compiled successfully. This resulted in a population size
of 16, together with a program size of 8 or 16, depending on the problem chosen.
These figures also allowed up to 4 parallel fitness evaluations to be accommodated.

The two problems chosen were a regression problem and a boolean logic problem.
The regression problem uses integer values, since Handel-C does not support a
native floating point data type. The problem chosen is £ = a + 2b. The boolean
logic problem is the 2 bit XOR function z = a @ b.

The problems were realised as a single source file with preprocessor directives
controlling problem specific sections.

In both problems the raw fitness was arranged to be zero for a 100% correct
program, thereby reducing the amount of logic required to test for fitness.

In both problems, the run was terminated if a 100% correct program was found,
or if the maximum number of generations was reached.

6.1. Regression Problem

6.1.1. Description In common with all GP work, each problem typically requires
the selection of appropriate functions. In this work the functions are implemented
as opcodes for a problem specific processor. For the regression problem using stan-
dard GP, the functions include Addition, Subtraction, Multiplication and Division.
In this implementation eight instructions were chosen, requiring three bits. Each
instruction can specify up to two registers, and there are four registers available,
requiring 2 bits each. Therefore each instruction requires 7 bits of storage.
The instructions for this problem are:

e add(R;,,R;,) adds the contents of R, to the contents of R,, and places the result
back into R,,.

e sub(R,,R,,) subtracts the value in R,, from the value in R, and places the
result back into R,,.

e shl(R,,) shifts the contents of R,, left by one bit, leaving the result in R,,.
e shr(R,,) shifts the contents of R,, right by one bit, leaving the result in R,,.

e nop is a no-operation function. This was included to make the number of
instructions a power of 2.

e halt(R,,) causes the evaluation to finish, returning the value in R,,.

e 1dim(R,,K,) causes the constant K,, to be placed into R,,.
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e jmpifz(R,, R,,) tests the value in R,,. If the value is zero, then jumps to the
location in R,,, modulo program size.

Program termination occurs on the following conditions:

1. a halt instruction is encountered
2. the last instruction in the program is executed

3. a jmpifz instruction has caused a loop to be created, and a predetermined num-
ber of loops have been executed.

The machine that implements these instructions can execute one instruction every
two clock cycles, including instruction fetch, decode, operand address evaluation
and operand read/write. To speed this up even further it would be possible to
build a pipeline, reducing the cycle count to one per instruction.

Four random constants are made available to each individual. These are created
once during the construction of individuals.

Most examples of regression in the literature include the multiply and divide
functions. Since these two functions generate very deep logic using the default
Handel-C operators, these were replaced with single bit shift left and shift right
operators, which generate much shallower and therefore faster logic, and have the
effect of multiply by two and divide by two instructions respectively.

The jump-if-zero opcode was included to allow loops or conditional expressions
to appear.

The full set of parameters for the regression problem are given in Table 3.

The input values a and b were placed in registers Rg and R; before the fitness
evaluation, and the result z read from register Ry if the program was terminated
at the end, or the value in R,, if terminated by a Halt instruction.

The fitness data was pre-computed once at the start of the program and made
available to all copies of the fitness evaluation.

Table 3. Parameters for the regression problem

Parameter Value

Population Size 16

Functions add(R»,Rm), sub(Rn,Rm), shl(R,), shr(R,), nop, halt(Ry),
ldim(Ry,K7) jmpifz(Ry,Rm

Terminals 4 registers

Word size 8 bits

Max Program Size 8

Generations 511

Fitness Cases 4 pairs of values of a and b

Raw Fitness The absolute value of the difference between the returned value

and the expected value
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6.1.2. Regression Problem Results The results from the simulator for this prob-
lem are given in Table 4. The figures for the Power-PC were calculated using
method described in Section 5.2.

Table 4. Results of running the regression problem

Measurement Power-PC Simulation Handel-C (Single fit- Handel-C (4 parallel
ness evaluation) fitness evaluations)

Cycles 16,612,624 351,178 188,857

Clock Frequency 200MHz 25MHz 19MHz

Estimated Gates n/a 142,443 228,624

Number of Slices n/a 4,250 6,800

Percentage of Slices n/a 22% 35%

Used

Speedupcycies 1 47 88

Speeduptime 1 6 8

The estimate of NAND gates is generated by Handel-C as an indication in a vendor
independent fashion of the size of the required FPGA, and while crude, does give
a general picture. The number of slices used is generated by the place and route
tools. The percentage of Slices used is based on the Xilinx XCV2000-BG560-6 chip,
which has a total of 9,600 CLBs, arranged as an 80x120 grid. Each CLB contains
two slices, giving a total of 19,200 Slices.

The speed-up factors are given for two conditions, the raw cycle counts and the
actual time taken to execute the programs. The first is a comparison made in
terms of raw clock cycles. This treats the two implementations as though they were
operating at the same clock frequency. The second is a comparison made using a
typical clock rate for the Power-PC and the fastest frequency the FPGA could be
clocked as reported by the place and route tools.

The speed-up factor for cycles is given by:

Cyclesppe

Speedu, =
p Peycles CyCleSfpga

and the speed-up factor for time is given by:

Freqipga

Speeduptime = Speedupcycles *
Fregpp.

An (annotated) example program from this problem found in generation 16 of
one run is:

shl(rl) // rl = b*x2
add(r1,r2) // nop (all registers = 0 at the start)
add(r0,r1) // r0 = a + (b*2)

halt (x0) // Return the result in r0
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It was found that none of the solutions used the ldim instruction and therefore none
of the random variables.

The difference in the maximum attainable clock frequency between the single
fitness evaluation case and the 4 parallel fitness evaluation case can be explained by
the increased number of logic elements required. This in turn requires more routing
resources and more delays.

6.2. XOR Problem

6.2.1. Description The XOR function uses the four basic two input logic prim-
itives AND, OR, NOR and NAND. Each of these functions takes two registers,
R, and R,,. The result is placed into R,,. These have been shown to be sufficient
to solve the boolean XOR problem [11]. Execution is terminated when the last
instruction in the program has been executed.

The two inputs a and b were written to registers Ryg and R; before the fitness
evaluation, and the result z read from register Rg after the fitness evaluation.

Table 5. Parameters for the XOR problem

Parameter Value

Population Size 16

Functions AND(Ry,Rm), OR(Rn,Rm), NOR(R,,Rm), NAND(R,,Rm)
Terminals 4 registers

Word size 1 bitl

Max Program Size 16

Generations 511

Fitness Cases 4 pairs of values of a and b

Raw Fitness The number of fitness cases that failed to yield the expected result.

The full set of parameters is given in Table 5 With only four functions for this
problem, each instruction requires six bits.

6.2.2. XOR Problem Results The XOR problem was executed using the same
environments as the regression problem. The results are presented in Table 6.

An (annotated) example program from this problem found in generation 86 of
one run is:

or(r3,rl) // r3 =b

or(r3,r0) // r3 =a+b

or(r2,rl) // nop (since r2 is never used)
nand (r0,r1) // r0 = ab

and (r0,r3) // r0 = (a+b)ab

The final result (a+ b)ab is equivalent to (ab) + (@b) which is the more familiar logic
equation for the exclusive OR function.
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Table 6. Results of running the XOR problem

Measurement Power-PC Simulation Handel-C (Single fit- Handel-C (4 parallel
ness evaluation) fitness evaluations)

Cycles 27,785,750 715,506 384,862

Clock Frequency 200MHz 22MHz 18MHz

Estimated Gates n/a 89,205 142,550

Number of Slices n/a 4,630 7,434

Percentage of Slices n/a 24% 38%

Used

Speedupcycies 1 38 72

Speedupiime 1 4 6

6.3. The effect of parallelising the fitness evaluation.

To quantify the benefits of using geometric parallelism, the XOR problem was
re-implemented using four different values for the number of parallel fitness evalu-
ations, and run using the the Handel-C simulator. The purpose of this experiment
was not to successfully evolve programs, but rather to explore how much the par-
allelism affected the performance.

A total population size of 8 was chosen, together with a maximum of 4 nodes
per individual. These values appear to be very low, but they were chosen to allow
the programs to be compiled by Handel-C, since it was found that larger values
caused the compilation of the simulation to fail due to memory exhaustion on the
workstation. The number of individuals processed in parallel was modified each
time, using the values 1, 2, 4 and 8. Data was collected for the number of cycles to
perform the initial population creation, the number of cycles to evaluate the first
generation and the number of cycles to perform the breeding operators on the first
generation. These are shown in tabular form in Table 7.

Table 7. Cycle counts and gate estimates for various stages of the GP and
different numbers of parallel fitness evaluations. Where N = Number of
parallel fitness evaluations. I = Initial population creation (cycles). E =
Evaluation of the first generation (cycles). B = Breeding of first generation
(cycles). T=Total cycles. G=Gate estimate (NAND gates).

N I E B T G

1 214 324 123 6517 35,666
2 214 180 123 4669 43,314
4 214 108 123 3549 58,588
8 214 60 123 2877 89,136

Figure 7 shows the effect on the number of cycles for one fitness evaluation with
different numbers of parallel fitness evaluations. It can be seen from this graph that
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as the number of parallel fitness evaluations increases, so the benefit tails off. This
is due to the constant overhead associated with setting up the fitness evaluations.

Cycleslifitness evaluation

1 2 3 4 5 6 7 8

Number of parallel fitness evaluations

Figure 7. Number of cycles to evaluate one fitness function evaluation for the population with
different numbers of parallel fitness evaluations.

The total number of cycles for the problem is shown in Figure 8. The program
was run for 16 generations. Here the effect of the breeding phase can be seen.
The benefit gained from doubling the number of parallel fitness evaluations from
four to eight only reduces the cycles required by 18%. The contribution of the
initial population is about 7.5% of the total cycles when 8 parallel evaluations were
performed. This shows clearly that performing fitness and breeding serially does
not allow this implementation to exploit parallelism to its best advantage.

Total cycles for run

7000
6000 1—\

5000 AN

4000 S~
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1000

Cycles

1 2 3 4 5 6 7 8

Num ber of parallel fitness evaluations

Figure 8. Total number of cycles for the problem with different numbers of parallel fitness evalu-
ations.
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7. Discussion

7.1. Consequences of using a high level language

The two problems presented here, though trivial when compared to many problems
that have been solved using GP, have proved the general concept of using Handel-C
to produce GP systems that can be run on FPGAs. The use of a C like language
has some valuable properties. Probably the most significant is that the algorithm
can be developed and tested using traditional software tools. This is an impor-
tant consideration for software engineering, in that there is no need for a software
engineer to become proficient in hardware design. This opens up a whole set of
possibilities for implementing critical functions in hardware.

However, the issue of productivity needs to be considered here. Compiling using
gee took around 3 seconds to complete, at which time testing could commence.
When using Handel-C to compile a simulation, the initial compilation phase took
several minutes, and compilation for a host simulation run using Microsoft Visual
C++ V6.0 took around 10 minutes. Finally, targeting the FPGA required about
30 minutes for Handel-C to produce the netlist, and several hours for the place and
route tools to create the FPGA configuration data. Clearly, using Handel-C for this
particular problem needs careful preparation and the judicious use of traditional
software tools during the early development phase. It must be stressed that the
largest bottleneck is the place and route tools, a problem that any user of FPGA
techniques will be familiar with. For reference, all Handel-C and place and route
work was performed on a 500MHz PentiumlII workstation with 384 Mbytes of RAM
running Windows NT4.0. The full capabilities of the FPGA cannot be exploited
using such a workstation since the demands on memory are large, and anecdotal
evidence suggests that at at least 1Gbyte of memory would be required to compile
and place/route a design that would fill a Xilinx XCV2000e part (Virtex-E).

7.2.  The effect of increasing parallelisation of the fitness function

The results shown in section 6.3 show clearly that using the current implementa-
tion and parameter values the benefits of increasing the number of parallel fitness
evaluations falls off above 4. This is due to the breeding phase taking a significant
portion of the cycles when compared to the fitness evaluation. This is a direct
consequence of the linear representation of the individuals, and the unsophisticated
crossover operator. Clearly more work needs to be done in the area of representa-
tion and crossover if the benefits of parallelisation are to be fully realised using this
implementation.
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7.8. Performance considerations and potential improvements

The work reviewed in section 3 indicated that performance improvement over a
software implementation of two or three orders of magnitude can be achieved by
implementing part or all of a GA in hardware. The work described so far has not
achieved that level of improvement. This is probably due to the straightforward
translation of a serial algorithm into hardware without considering algorithmic par-
allelism from the outset, and the limited number of parallel fitness evaluations that
could be accomodated.

To achieve maximum performance algorithmic parallelism or pipelining should be
used to perform the selection, breeding and fitness evaluation phases in parallel. In
the steady state model of GP with a large population, the system could evaluate a
number of individuals, while the breeding of previously evaluated individuals could
be carried out in parallel, effectively forming a pipeline.

An estimate of the worst case performance if the system were implemented using
a pipeline can be made by assuming that:

a) the fitness evaluation will require the most cycles and will therefore
be the slowest stage in the pipeline. This means that we only need to
consider how many cycles will be needed for the fitness evaluation. This
is shown in table 7 as being reasonable.

b) that all stages are fully pipelined, that is to say that creation, selec-
tion, fitness evaluation, random number generation and breeding are all
performed in parallel.

c) that each function or instruction requires one clock cycle

d) all programs are of maximum length

and given that G is the number of generations, [ is the maximum program length, M
is the population size, p is the number of fitness evaluations performed in parallel,
and k is the fixed overhead for startup, general control and generating the final
result. The number of cycles C required is given by:

C:k-i—(GX;XM)

For the XOR problem described in section 6.2 and assuming k =500, G =511,
M =16, p =4 and [ =16, this gives a total cycle count of 33204, a potential im-
provement of over ten times.

Clearly, the implementation of a fully pipelined GP system must be considered
for future work.

A further performance boost is possible by increasing the value of p. When the
population is moved from memory constructed from LUTs and Flip Flops to on-
chip block select RAM and/or external RAM it should be possible to accomodate
more logic to perform the fitness evaluations and therefore increase p from 4 to a
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significantly larger value. A value of 32 for p would yield a cycle count of 4588 which
would mean that Speedupiime for the XOR problem would be over 2000 times.

7.4. The Potential of Problem Specific Op-codes

A key difference between this work and that of Nordin and Banzhaf [18] where a
standard microprocessor was used, is that we are not constrained to a function set
that a microprocessor designer sees fit to implement. That is to say the functions
can be designed to have a higher level of abstraction than machine instructions.
While the experiments presented in section 6 were restricted to fairly standard
microprocessor like opcodes, other problems need not be so restricted.

One example of a problem where the function set is expressed at a high level
of abstraction is the Evolution of Emergent Behavior in [11] page 329. Here the
function and terminal set require several steps to be performed. If implemented
using a Reduced Instruction Set Computer (RISC) or Complex Instruction Set
Computer (CISC) architecture, each step would require several instructions to be
executed and therefore require more than one clock cycle to execute. With Handel-
C the functions could be encoded efficiently and compactly. An example from
the Evolution of Emergent Behaviour work is the implementation of the PICK-UP
operator, which picks up food (if any) at the current position if the ant is not already
carrying food. Using Handel-C the operator can be written so that it requires one
clock cycle:

char grid[32][32];
int x,y,carrying_food;

if (Ycarrying_food && grid[x][yl) {
par {
carrying_food = 1;
grid[x][y]l = 0;
}
}

As a comparison this requires 21 RISC (Power-PC) instructions to be executed
when compiled using gcc.

7.5.  Other applications

An interesting use of using an FPGA is that input and output can be directly
encoded into the function set, thereby opening up the possibility of embedding the
GP system and having it directly control hardware while evaluating the fitness of
the programs. An example of this would be a robotic control that read sensor inputs
directly using some of the I/O pins on the FPGA, and generated control signals
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directly to the robot. Since FPGAs do not need a lot of support circuitry, it would
be possible to embed such a controller directly into even the smallest robot.

Since the FPGA system has the potential to evaluate individuals in a far shorter
time than even the fastest Pentium class computers, there is an opportunity to use
this system for real-time applications, where fitness data are available only as a
real-time data stream, as required for example in signal processing applications.

8. Future work

So far this work has concentrated on the process of using Handel-C to create GP
systems that can be realised in hardware. Some of the rather severe limitations
already discussed need to be explored. The first priority is to extend the system
to handle the larger populations commonly found in real world GP applications.
To this end it is proposed to exploit the on-chip RAM. This will allow the size of
programs and population sizes to be increased. However, a method of circumventing
the restriction of not being able to access a RAM more than once per clock cycle is
needed. An approach using very long word encodings of individuals is one possibility
that will allow efficient single-cycle access to RAM.

To extend the capabilities of this work further a method of storing the population
in external RAM is needed. To accommodate off-chip RAM, which can only be read
or written to once per clock cycle, and which has a limited word size, development
of an efficient coding scheme will need to be devised. It is likely that a pipelined
design would be needed to make the most of using external RAM.

The potential for realising even better performance by using a fully pipelined
design is clear and is currently under investigation, as is increasing the number of
parallel fitness evaluations.

The random number generator should be investigated with respect to its perfor-
mance using well known random number tests such as the Diehard suite maintained
by Marsaglia[15], and alternative implementations evaluated.

Further detailed analysis of the FPGA resources used needs to be done. This
analysis will then help in arriving at better code in critical areas, and help to
increase the clock speed of the design. The standard Xilinx Alliance tool set provides
detailed timing analysis which can be used to identify critical areas. Once these
critical areas have been identified, it is possible to tune the place and route process,
and to tune the Handel-C code to reduce logic depth and therefore increase the
clock rate at which the design can be run.

Finally, the promise of being able to interface directly with real-world signals
needs to be investigated in more detail.

9. Conclusions

This work has presented the initial implementation of a GP system written in
Handel-C which can then be realised on an FPGA. The GP system includes ini-
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tial population creation, fitness evaluation, selection and breeding operators. To
demonstrate the viability of this approach two very simple problems have been
solved. The performance of the FPGA implementation is better than the equiv-
alent software implementation without using parallel fitness evaluations. When
parallel fitness evaluations were used, the performance increased as well. However,
simply translating a serial algorithm into hardware does not exploit the capabilities
of the hardware fully, and to achieve even better performance the system should
make use of pipelining.

Lastly, a number of important areas for future work have been identified that
should extend this work from solving trivial problems to solving more demanding
problems.
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