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ABSTRACT

Genetic Programming in Hardware

This thesis describes a hardware implementation of a complete Genetic Programming (GP) system

using a Field Programmable Gate Array, which is shown to speed-up GP by over 400 times when

compared with a software implementation of the same algorithm. The hardware implements the

creation of the initial population, breeding operators, parallel fitness evaluations and the output of

the final result.

The research was motivated by the observation that GP is usually implemented in software and

run on general purpose computers. Although software implementations are flexible and easy to

modify, they limit the performance of GP thus restricting the range of problems that GP can solve.

The hypothesis is that implementing GP in hardware would speed up GP, allowing it to tackle

problems which are currently too hard for software based GP.

FPGAs are usually programmed using specialised hardware design languages. An alternative

approach is used in this work that uses a high level language to hardware compilation system, called

Handel-C.

As part of this research, a number of general GP issues are also explored. The parameters of GP

are described and arranged into a taxonomy of GP attributes. The taxonomy allows GP problems

to be categorised with respect to their problem and GP specific attributes. The role that the GP

algorithm plays in problem solving is shown to be part of a larger process called Meta-GP, which

describes the overall process of developing a GP system and evolving a viable set of parameters to

allow GP to solve a problem. Three crossover operators are investigated and a new operator, called

single child limiting crossover, is presented. This operator appears to limit the tendency of GP to

suffer from bloat. The economics of implementing GP in hardware are analysed and the costs and

benefits are quantified. The thesis concludes by suggesting some applications for hardware GP.
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Chapter 1

Introduction

It has long been a goal of computer scientists to automatically translate a problem statement

directly into a computer program without having to explicitly describe how the program should

be created. This has often been referred to as automatic programming. The mechanics of how it

might be achieved were hinted at by Alan Turing in his essay “Computing Machinery and Intelli-

gence” [Turing 50]. He suggested that a machine, seeded with random elements, could monitor the

results it generated and subsequently modify itself in the light of those results. The idea of adopting

automatic computer program generation is also of great interest to the general software engineer-

ing community. In the early 1980’s this idea was considered interesting but “somewhat beyond the

current frontier of the state of the art” ( [Boehm 81, Chapter 33]).

Evolutionary techniques in general, and Genetic Programming (GP) in particular, have brought

this goal closer to reality. Several researchers, for example [Friedberg 58, Friedberg 59, Fogel 66,

Smith 80,Cramer 85,Hicklin 86,Fujiki 87,Schmidhuber 87], have used evolutionary techniques for

this problem, with varying degrees of success, but it was not until the early 1990’s, when John Koza

coined the term Genetic Programming [Koza 90b] [Koza 90a], that a robust evolutionary method

for automatic program creation became available. Since then, Genetic Programming has grown into

a distinct research field with several major conferences and over 2000 published papers, reports and

books.

GP systems are generally realised as programs running on general purpose computers. Most of

the earliest GP systems were implemented in LISP. More recently, GP systems have been imple-

mented in C, C++, Java and other languages. However, even with modern processors running at

1
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over 2 GHz, and the use of massively parallel computers, using GP still requires large amounts of

time and computer resources to tackle some of the harder problems.

This research was motivated by the observation that tackling some problems using GP is not

practical because of the very long execution time required. One way of reducing the execution time

of an algorithm is to implement some, or all, of the algorithm in hardware rather than software. This

led to the hypothesis that implementing GP in hardware will reduce the time needed to run the GP

algorithm. A reduced run time for GP would then allow the detailed operation of GP to be explored

in ways that previously would have required an uneconomic investment in time and equipment.

Reducing the running time of GP would also allow GP to be applied to problems that to date have

been hard or impossible for GP to solve.

Reducing the running time of the GP algorithm is of interest to two different groups of GP users.

The first group are the practitioners who are using GP for solving problems. If the run time of the GP

algorithm can be reduced, then more difficult problems could be tackled using GP. Faster execution

of the GP algorithm, in particular the fitness evaluation part of the algorithm, also opens up the

possibility of using GP in real-time applications, for example signal processing. Secondly, reduced

running time would be of benefit to the researcher who is investigating the theoretical operation of

GP by, for example, allowing the dynamics of GP to be explored in ways that previously would

have required an uneconomic investment in time and equipment.

1.1 Contributions

This thesis makes 3 main contributions:

1. It shows that a complete GP system can be designed and implemented in hardware. This is in

contrast to all previously reported work involving hardware which implemented only parts of

the GP algorithm in hardware, or that only demonstrated the idea using software simulations.

2. It explores the role that the GP algorithm plays in the larger process of problem solving. This

is called Meta-GP.

3. It gives an empirical analysis of the behavioural aspects of the system, by considering the

population dynamics. This shows that the length distribution of GP is important when choos-

ing appropriate operational parameters. From this analysis, an alternative crossover operator
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is presented. The new crossover operator – called single child limiting crossover – has the

effect of reducing the impact of bloat for the two problems which were investigated.

This thesis also makes 4 secondary contributions:

1. A taxonomy of the attributes of GP is presented which allows a GP problem to be categorised

with respect to its problem–specific and GP–specific attributes.

2. It shows how a high level language to hardware compilation system allows a software ap-

proach to the hardware design of GP.

3. A comparative analysis of different random number generators for hardware platforms is

presented.

4. An economic analysis of implementing GP in hardware is given.

1.2 Organisation

Following this introductory chapter, Chapter 2 introduces GP and identifies the attributes of GP. A

taxonomy of the attributes is then presented. From the data collected during the construction of

the taxonomy of attributes, a number of niches can be identified which merit further research, in

particular, implementing a complete GP platform in hardware. Chapter 2 also considers GP as part

of a problem solving process, called Meta-GP. Because Meta-GP uses the GP algorithm repeatedly

in the search for solutions to a problem, the importance of reducing the execution time of the GP

algorithm is shown.

Chapter 3 reviews the main hardware and software technologies that are available to implement

a GP system in hardware. In particular it looks at Application Specific Integrated Circuit (ASIC)

and Field Programmable Gate Array (FPGA) technologies and reviews work that has used these

devices in the general field of evolutionary computing. The languages and tools that are used to

program these devices are then examined. Traditional approaches that use hardware design lan-

guages are compared to high level languages. Chapter 3 then describes a high level language to

hardware compilation system called Handel-C that can be used to translate C-like programs into

the configuration data for a FPGA. The features of Handel-C that were of importance to this work
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are highlighted, together with a comparative analysis of Handel-C and other high level language to

hardware compilation systems.

Chapter 4 describes an implementation of GP in hardware that was designed to prove the general

concept of using an FPGA for GP. This implementation is deliberately limited in its scope in order

to explore the essential characteristics of such a system. Two simple example problems are then

shown which illustrate the principles. A quantitative performance comparison is made between the

hardware implementation and a traditional software implementation of the same algorithm using

a microprocessor emulator. The limitations of this initial design are analysed and a number of

alternatives are suggested.

Chapter 5 builds on the results in Chapter 4 and describes a more general solution that supports

larger populations by exploiting the on-chip memory of the FPGA and by using external memory.

A pipeline is also implemented in this revised design that enables the design to achieve a higher

level of throughput. The performance of this design is illustrated using three problems.

Chapter 6 presents a behavioural analysis of two of the experiments from Chapter 5, focusing

on the crossover operator. A new crossover operator is presented that appears to reduce the effects

of bloat. Chapter 6 also analyses the behaviour of the random number generator used in the design,

and compares it to a number of alternative random number generators, including a source of true

random numbers. It shows that there are better generators than the generator used in Chapters 4 and

5.

Chapter 7 considers the economics of implementing GP in hardware and suggests some appli-

cation areas that would be appropriate for such an implementation. The process of using Handel-C

to implement GP is reviewed in the light of the experience gained while doing this research.

Chapter 8 summarises the work and presents the main conclusions of the work. Finally, a

number of suggestions for future research are discussed and some possible applications, some of

which are only made possible by implementing GP in an FPGA, are outlined.

The main body of the thesis is followed by 4 appendixes:

� Appendix A gives a detailed problem description for the experiments in Chapters 4, 5 and 6.

It uses the format developed for the GP taxonomy in Chapter 2.

� Appendix B provides details of the data used to construct the taxonomy, giving the problem

category, title, author and a subset of the problem specific data.
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� Appendix C describes the details of the hardware and software tools used for the experimental

work.

� Appendix D gives a detailed set of results from the random number generator analysis given

in Chapter 6.

The first implementation of GP in hardware, described in Chapter 4, originally appeared in Genetic

Programming and Evolvable Machines, volume 2, number 4 [Martin 01]. The optimised design was

described in the proceedings of EuroGP’2002 [Martin 02b], while the results in Chapter 6 appeared

in the proceedings of GECCO 2002 [Martin 02c] and [Martin 02a].



Chapter 2

Genetic Programming: A Survey and

Taxonomy

This chapter surveys the literature in the field of Genetic Programming (GP). It begins with a

brief historical overview of the precursors to GP and then reviews the general principles of stan-

dard GP. The review shows that before GP can find solutions to a problem the user of GP must

choose many parameter settings. The individual parameters, or attributes, are reviewed, categorised

and presented as a framework for categorising GP. The chapter concludes by suggesting that the

GP algorithm is part of a more general process of problem solving, called Meta-GP. A common

theme from the review and the idea of Meta-GP is the problem of long running times for GP when

implemented in software. The possibility of speeding up GP by implementing GP in hardware is

therefore of great interest.

2.1 Genetic Programming - A Historical Perspective

Genetic Programming is a stochastic search technique used to find computer programs to solve a

given problem. GP is sometimes described as an extension of Genetic Algorithms (GAs) which

were first proposed by Holland [Holland 75]. In GP the individuals that make up a population

are not fixed length(1) , limited alphabet, strings but structures that represent programs. To put GP

(1)This is a generalisation used in the GP literature. It is recognised that GAs can and do use variable length represen-
tations, for example messy GAs by Goldberg et al. [Goldberg 89] and the work by Smith [Smith 80].

6
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into its proper context though it is instructive to look further back. Angeline [Angeline 98] gives a

comprehensive historical perspective of GP – what he calls Executable Structures – and Banzhaf et

al. [Banzhaf 98] also traces the history of GP. The following is a brief history of GP presenting the

phylogeny of GP as a timeline.

In 1958 and 1959 Friedberg [Friedberg 58] [Friedberg 59] introduced the idea of a computer

that could write programs without being told precisely how. Samuel, in his work on machine learn-

ing [Samuel 59], recognised the potential of automatic programming and suggested that “Program-

ming computers to learn from experience should eventually eliminate the need for much of this de-

tailed programming effort”. In 1965 Rechenberg [Rechenberg 65] suggested that evolution could be

used to help find solutions to problems. In 1966 Fogel, Owens and Walsh [Fogel 66] described Evo-

lutionary Programming, that solved problems using a finite state machine. At around the same time

Rechenberg [Rechenberg 73] was developing Evolutionary Strategies (ES). In 1975 Holland [Hol-

land 75] (revised in [Holland 92]) introduced GAs which had two important characteristics: the use

of fixed length binary strings, and the adoption of crossover as the predominant breeding operator.

Smith [Smith 80] developed the fixed length chromosome GA to use variable length chromosomes.

Forsyth [Forsyth 81] evolved programs, represented as tree structured Boolean rules, using a GA-

like algorithm. Cramer in 1985 [Cramer 85] used both linear and tree representations of the genome

to evolve programs in a simple language. Hicklin [Hicklin 86] and Fujiki and Dickinson [Fujiki 87]

used GAs to evolve LISP programs and Schmidhuber [Schmidhuber 87] developed a form of GP

using PROLOG. Koza in 1989 [Koza 89] used LISP and a tree based representation to solve sev-

eral problems including sequence induction, linear equations, Boolean problems and others. This

work formed the basis for what was termed Genetic Programming in 1990 [Koza 90b], and which

is described in detail in [Koza 92].

Figure 2.1 presents the phylogeny of GP as a timeline beginning with the first reported exper-

imental work until the publication of Koza’s book [Koza 92] in 1992 which described what has

become known as the standard form of GP. The development of GP since 1992 forms part of the

review in the next section.
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1958
1959

1965

Freidburg (Learning machine)
Samuel (rule based classifiers)

Fogel,Owens & Walsh 
(Evolutionary 
Programming)

Holland 
(Genetic Algorithms)

1975

Smith (Classifier Programs)

Cramer (Tree based approach)
Hicklin (LISP)

Koza (LISP, Tree based, Genetic Programming)1992

Holland & Reitmann 
(Genetic Classifier)

1985

Koza (LISP, Tree based)

Fujiki & Dickinson (LISP)

Rechenberg 
(Evolutionary strategies)

Schmidhuber (PROLOG)

1960

1970

1980

1990

Forsyth (structured boolean expressions)

Figure 2.1: The phylogeny of GP as a timeline.
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2.2 Principles of Genetic Programming

This section reviews the canonical or standard form of GP as described in [Koza 92]. This review

provides a basis on which to build a more detailed parameter review later in this chapter. The basic

components of GP – the tree representation and the components of the tree – are described first

followed by the steps used by GP to solve a problem.

2.2.1 Program Representation

A distinguishing feature of standard GP is that the executable structures, or programs, are repre-

sented as trees. An example program tree is shown in Figure 2.2. This tree represents the expression

y � �
a � � b � 2 ����� c, where a 	 b and c are variables. The nodes labelled a 	 b 	 c and 2 are called the

leaf nodes, and the nodes labelled +,* and / are called non-leaf nodes.

Figure 2.2: Example tree for an evolving program in standard GP.

2.2.2 Function and Terminal Sets

In standard tree based GP, each program consists of one or more nodes. The nodes are chosen from

one of two sets – the function set F and the terminal set T . The non-leaf nodes are taken from the

function set F � { f1 	 f2 	�
�
�
�	 fn f } and have arity (that is can take a number of arguments) of one or

greater. The leaf nodes are taken from the terminal set T = {t1 	 t2 	�
�
�
�	 tnt } and have arity of zero.

If the members of T are considered as functions with arity zero then the total set of nodes is:

C � F � T . The search space is the set of all possible compositions of the members of C . This set

must exhibit the two properties of closure and sufficiency.

Closure requires that each member of C can accept as its arguments any other member in C .

This property is required to guarantee that programs will operate without run time errors, because
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the members of C can be used in any arbitrary combination. Closure can be achieved in several

ways. Koza [Koza 92] restricts the types of arguments and function return types to compatible

types. For example, all floating point types as in the symbolic regression examples or logical types

in the Boolean examples. For simple problems with single data types this is sufficient.

Where the problem requires more than one type, a typing mechanism can be employed. Strongly

typed approaches such as those described by Montana [Montana 95] and Haynes et al. [Haynes 96]

impose constraints on the creation of individuals to satisfy the type rules. Clack and Yu [Clack 97b]

extended this work to show that expression based parse trees yield more correct programs, and

introduced the idea of polymorphism into the data types.

The sufficiency property requires that the set of functions in C is sufficient to express a program

capable of solving the problem under consideration. This is a problem specific property and must be

determined before GP will successfully solve a problem. This together with determining a suitable

fitness test requires the most effort by a user of GP.

2.2.3 The Genetic Programming Algorithm

GP uses four steps to solve a problem:

1. Initial population creation. An initial population of programs is created by randomly selecting

nodes from the function set and terminal set.

2. Fitness evaluation. Each program is evaluated to measure how fit it is.

3. Breeding. The current population is then used to form a new population by selecting the better

programs and using the following operators to propagate and modify the programs:

(a) reproduction

(b) crossover

(c) mutation.

4. The new population is then re-evaluated.

Steps 3 and 4 are repeated until either a pre-determined number of generations have been processed

or an individual meets a pre-determined level of fitness. The GP algorithm is illustrated as a flow
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chart in Figure 2.3. This cycle differs from the typical GA cycle where mutation is applied after

crossover or reproduction.

Start

Create Initial
Population

Termination
criteria?

Evaluate fitness of
each individual

Select operator

Add to next generation

Processed all 
individuals?

Select best
individual

End

Reproduction

Crossover

Mutation

No

Yes

No Yes

Select individual Select two individuals Select individual

Perform mutationPerform crossoverPerform reproduction

Figure 2.3: Flow chart of standard Genetic Programming algorithm.
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Initial population creation

To create the initial population, randomly selected nodes from the function set F are used to build

trees according to the arity of the function. Leaf nodes from T are inserted according to certain

criteria. Two main methods are described by Koza as the full and the grow methods.

The full method selects nodes from F until the tree reaches a pre-determined depth then it

selects from T . This results in trees with uniform depth.

The grow method differs in that a node is selected from C if the depth is less than a pre-

determined maximum, else a node is selected from T .

A third method combining the full and grow is called ramped half and half. Ramped half and

half operates by creating an equal number of trees with a depth between 2 and a pre-determined

maximum. That is if the maximum depth is 10, then 1/9 will have depth 2, 1/9 depth 3 and so

on up to depth 10. Then for each depth, 50% of the trees are created using the full method and

50% using the grow method. This is claimed by Koza to offer a wider variety of shapes and size

in the initial population. The difference in performance between the three methods is documented

in [Koza 92], with ramped half-and-half yielding higher probabilities of success. Therefore this is

the method used by most GP work. Other initialisation strategies have been proposed, including

two probabilistic tree creation methods (PCT1 & PCT2) by Luke [Luke 00b], which allow the user

to bias the tree creation so that nodes have a guaranteed probability of appearing.

Fitness evaluation

The programs that have been created during the initial population phase, and later after the breeding

phase, are ultimately expected to provide a solution to the problem being solved. The programs

therefore need to be evaluated or tested against the problem specification. How well they perform is

termed the fitness of the program. Standard GP used LISP which allowed the direct interpretation

of the trees as programs. This was possible because LISP makes no distinction between programs

and data. Other methods of evaluating the fitness are reviewed in Section 2.4.4.

Evaluating the fitness is highly problem dependent and is usually the most computationally

expensive stage in the GP algorithm.
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Breeding the next generation

When all the programs in the population have been evaluated and their absolute fitness is known, a

number of programs are selected to be used to breed the next generation. There are two principal

methods of selecting individuals from a generation: fitness proportionate and tournament. When

using the fitness proportionate method an individual is selected with a probability proportionate to

its fitness. From [Koza 92], if f
�
si
�
t ��� is the non-zero fitness of individual si at time t, then the

probability that individual si will be selected from a population of size M for breeding is:

f
�
si
�
t ���

∑M
j 
 1 f

�
s j
�
t ��� (2.1)

A refinement on this is rank selection [Baker 87] which reduces the influence of single highly

fit individuals.

In tournament selection, n individuals are chosen at random from the population and the individ-

ual with the highest fitness is propagated to the next generation. The value of n can be any number

greater than one. The winning individual can be left in the donor population, resulting in so called

over selection, where it stands a chance of being reselected by subsequent tournaments. Blickle and

Thiele [Blickle 95b] provide a comprehensive comparison between different selection schemes for

GAs. An interesting feature of their work is that it used GP to derive approximation formulas.

One of three operators are used to construct each individual of the next generation: reproduction,

crossover and mutation.

Reproduction is the straightforward copying of an individual to the next generation, otherwise

known as Darwinian or asexual reproduction. This is also referred to as cloning in some GA work.

Crossover, or sexual recombination, is illustrated in Figure 2.4 and consists of taking two indi-

viduals A and B and randomly selecting a crossover point in each. The two individuals are then split

at these points creating four subtrees A1 	 A2 	 B1 	 B2 and two new individuals C and D are created by

combining A1with B2 and B1 with A2. The choice of crossover point is not always uniform. For

example, in [Koza 92, page 114] the choice of crossover points is biased so that 90% of crossovers

choose internal points (non terminals) and the remaining 10% choose external points (terminals).

This is claimed to promote the swapping of larger structures, whereas a uniform crossover point se-

lection would merely swap terminals, effectively causing crossover to degenerate to point mutation.
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Figure 2.4: Crossover operating on two trees.

Mutation consists of randomly selecting a mutation point in a tree and substituting a new ran-

domly generated sub tree at that point.

Standard GP processes all the individuals in a population during the breeding phase, creating a

new population each time the breeding phase is executed. This strategy is called generational, and

a straightforward implementation requires sufficient storage to maintain two complete populations.

In some situations providing the storage for the second generation is not possible, so an alternative

called the steady-state strategy [Syswerda 89] can be used. In steady-state GP a single population

is maintained and a small number of individuals are replaced during each breeding phase.

2.3 Attributes of Genetic Programming

From the review of standard GP in the previous section it is evident that the user of GP must specify

what primitives are going to be used to build the programs, what types of data the system is going

to utilise, as well as run-time parameters such as population size and the number of generations to

run the system for. The user also needs to select one or more operators to create new generations.

Finally, a fitness measure is required to drive the selection process, together with appropriate stop-

ping criteria for the runs. Further decisions need to be made in the light of experience to optimise

the search process, or simply to get the search process to yield up a viable individual. In addition

to standard tree based GP there have been many variations on the GP theme, each variation mod-
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ifying one or more of the standard attributes, and a decision needs to be made whether any of the

modifications would be appropriate.

In this section the attributes of GP are organised into four categories. The motivation for this

arrangement is that by placing the attributes into groups, a clearer picture of the different types of

attributes and their relationships will emerge. Presenting the attributes in this way also allows a

more detailed description of a problem to be given in a compact form and this will allow a detailed

comparison to be made between problems.

2.3.1 Existing Taxonomies

Several categorisations of particular aspects of GP have been made in the past. These fall into one

of two broad categories: the topics of research into GP, and the problem types that have been tackled

by GP.

Research topics

In the research topics category, Langdon [Langdon 98a] proposed a simple taxonomy based on a

classification of the research topics that were of interest at the time, identifying the seven categories

shown in Table 2.1.

Table 2.1: Langdon’s taxonomy of GP that identifies the research topics in the pub-
lished literature.

Applications
Representation
Fitness functions
Architecture
Search operators
Exotic GA techniques
Implementations

Problem domains

Koza [Koza 94] gives a summary of GP applications. The grouping of applications suggests a

taxonomy of problem types. He suggests the 10 categories listed in Table 2.2.
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Table 2.2: GP applications suggested by Koza [Koza 94].

Art
Databases
Algorithms
Natural language
Modules
Programming methods
Robotic control
Neural networks
Induction and regression
Financial

Banzhaf et al. [Banzhaf 98, (p341)] extends the list in [Koza 94] by further subdividing some

categories and adding some new categories. They list 20 different applications areas, listed in Table

2.3.

Table 2.3: Application areas for GP from Banzhaf et al. [Banzhaf 98, (p341)].

Algorithms
Art
Biotechnology
Computer graphics
Computing
Control (general)
Control (process)
Control (robots and agents)
Control (spacecraft)
Data mining
Electrical engineering
Financial
Hybrid systems
Image processing
Interactive evolution
Modelling
Natural languages
Optimisation
Pattern recognition
Signal processing

Langdon [Langdon 98a] lists 7 categories of GP applications, listed in Table 2.4.
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Table 2.4: GP applications suggested by Langdon [Langdon 98a].

Prediction and classification
Image and signal processing
Design
Trading
Robots
Artificial life
Artistic

2.4 A Taxonomy of Genetic Programming Attributes

Previous taxonomies of GP have considered a single attribute – the research topic, problem domain

or problem type. However, as already highlighted in Section 2.2, using GP requires the user to

consider many different parameters, and there does not appear to be a taxonomy describing the

attributes and parameters of GP. This section therefore sets out to categorise the attributes of GP,

placing the attributes into taxa.

2.4.1 Characteristics of a Good Taxonomy

When constructing a taxonomy, it is useful to consider what characteristics make a good taxonomy

so that the taxonomy can be evaluated. Amoroso [Amoroso 94] suggests that a good taxonomy has

seven important characteristics with regard to its classification categories ;

1. Mutually exclusive - classifying in one category excludes all others because categories do not

overlap,

2. Exhaustive - taken together, the categories include all possibilities,

3. Unambiguous - clear and precise so that classification is not uncertain, regardless of who is

classifying,

4. Repeatable - repeated applications result in the same classification, regardless of who is clas-

sifying,

5. Accepted - logical and intuitive so that they could become generally approved,

6. Useful - can be used to gain insight into the field of inquiry,

7. Expandable - can be extended to contain new categories.
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2.4.2 Principal Taxa

A top level framework was initially devised containing four categories. Because GP has a strong

relationship to traditional software engineering, in that at its most basic level it is designed to au-

tomate the programming activities of humans, the four categories reflect the software development

lifecycle often encountered in software engineering;

1. External. This category lists the externally observed behavioral attributes of the problem

without considering the implementation of the GP system or any solutions found. It is likely

that these attributes could be used to describe any problem regardless of how the problem

was going to be solved. In traditional software engineering these attributes represent the

requirements or the specification of the system.

2. GP specific. These attributes are the values of the parameters used to create the GP system,

such as function sets, terminal sets, whether memory is required and what representations

are used. These attributes represent the design of the system, given the requirements and

constraints.

3. Results. These attributes are derived from the results of running GP. Amongst other things

these provide a picture of the effort required to find solutions. They also give some indication

of the problem specific biases and optimisations that were applied to GP to find a solution.

These attributes represent the quality of the generated solution .

4. Implementation. This category lists the implementation or platform attributes. These de-

scribe the physical implementation of the GP system including the computer platform, imple-

mentation language and whether the fitness function is internal or external to the GP system.

In software engineering these attributes represent the constraints imposed on a design.

An important consequence of this division is that it separates the problem specific attributes from

the GP specific attributes which allows cross-problem analysis to be made independently from the

analysis of GP specific factors. It may be noted here that during the review of problems for which

GP has been used, it became clear that many reports combine the solution of a new problem with

the invention of new GP operators, representations and other GP specific features, making analytical

comparisons difficult.
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Some of the attributes are the standard parameters that are required for any GP system. These

are sometimes described in a tableau after the examples found in Koza’s books. For convenience,

each attribute is given an abbreviated key.

The taxonomy was constructed by carrying out a review of the GP literature, and by collecting

data from published reports of using GP for problem solving. The data collected was stored in a

relational database which allows the data to be analysed using standard database tools. An example

of some analysis is given later in this chapter that demonstrates the utility of this method. The

problems were chosen with care to represent a range of GP applications, therefore the problems

listed do not include every instance of the many test problems such as the Boolean multiplexers,

symbolic regression or the artificial ant problem. Appendix B gives a list of the problems considered

and a selection of the attribute data.

2.4.3 Externally Observable Attributes

These attributes apply to the problem without considering GP as a means of finding a solution. In-

deed, they should be of use when considering any method of finding a solution since these generally

relate to the specification of the problem.

Problem category (Pcat)

This gives a general categorisation of the problem. This is probably the most subjective attribute

with many problems not falling cleanly into a single narrow category. We have already seen three

possible categorisations of the problem description ( [Banzhaf 98] [Koza 92] [Langdon 98a]). A

categorisation that is too finely divided is likely to make it hard to categorise new problems, because

of the subjective and ambiguous nature of this attribute. A finely divided categorisation is also in

danger of degenerating into a simple enumeration. Furthermore, in an invited talk at EuroGP’2002,

Igno Wegener reminded the GP community that there is a distinction between problem types and

instances of problems. Therefore, the number of problem categories has been condensed to 7,

including a category that allows hybrid problems to be considered without having to invent new

categorisations.

Pcat � {Art, Algorithms, Control, Design, Regression, Classification, Hybrid}.
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Formal specification of the problem (Fml)

This attribute describes how the problem is stated. For example, the regression problems can be

expressed as a mathematical formula such as the quartic polynomial y � x4 � x3 � x2 � x [Koza 92, p

164]. Other problem statement techniques such as Message Sequence Charts (MSCs) [Martin 00] or

Boolean Logic statements have been used. In some problem domains no readily accessible methods

of expressing a problem exist, for example when evolving art [Sims 91] or music [Johanson 98].

In these cases the fitness of individuals is judged on a subjective basis. It is interesting to note that

despite the use of formal specification languages such as the Z notation [Spivey 92] [Bowen 02],

VDM [VDM 96] [VDM 02] or LOTOS [LOTOS 00] [Turner 02] in industry, the use of formal

specification methods has not featured in the literature of GP. Many problem statements in the

literature are simply English language descriptions of the problem. The precise meaning of these

statements is often left for the reader to interpret.

This attribute is important because traditional software engineering has consistently made the

case for a clear statement of the requirements of a system. In [Martin 00] it is argued that the fitness

function represents the requirements of the problem, and it would be expected that expressing the

problem in a formal manner would help in determining the fitness function(s) required.

Fml � {Equation, English, Logic, Subjective, Message Sequence Chart (MSC), Exemplars}

Number of fitness cases (Nfit)

Records how many test cases were chosen. This attribute would be expected to help in identifying

problems that require a large processing overhead in evaluating the fitness function.

Class of Computability or language of GP (Lang)

Several authors have already shown that for GP to be truly general, the language that GP uses to

create programs with must have certain features. In this context, the term language refers to the func-

tion set F , terminal set T and the constructs that bind the functions together, such as sequencing,

iteration and conditional execution. In general these features are characterised as making GP Turing

complete. The first explicit mention of this feature in GP was made by Teller [Teller 94c]. Yu has in-

vestigated a functional programming approach to GP that exhibits many of the characteristics of tra-

ditional computer programming languages [Yu 99], and Pringle [Pringle 95] proposed a structured
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programming approach to using GP. However, many problems can be solved using non-Turing com-

plete languages as demonstrated by the examples from the work in [Koza 89] [Koza 92] [Koza 94].

Before we can use GP to try to solve a problem it is important to have some idea which language

is appropriate. Failure to identify the language may result in using a more powerful language than

is strictly needed, leading to poor performance in finding a program because of the overhead of

executing unwanted program structures such as loops or recursion. The converse case of using a

language not powerful enough could lead to the situation of never finding a general solution to a

problem.

The selection of an optimal language is also likely to affect the performance of the GP kernel.

For example, if a Turing complete language is used, then explicit steps need to be taken to ensure

that general recursion is controlled, infinite loops do not compromise the efficiency of the fitness

evaluations and in the case of large problems that memory consumption is not excessive. These extra

steps involve added complexity and run-time overhead and would therefore increase the effort, both

human and machine, required to solve a problem using GP.

From the literature of computer science (eg. [Feynman 96] [Savage 98] [Gruska 97] and others),

four broad classifications of computer languages can be discerned:

1. Memoryless computing devices (ML). These include examples such as Boolean functions

and expressions, combinatorial digital logic circuits and propositional logic. In the context of

GP, common cases such as the continuous functions encountered in the symbolic expression

problems can be added.

2. Finite memory computing devices (FM). This includes finite state machines and regular ex-

pressions.

3. Unbounded memory devices (U). These include recursive functions, random access machines,

and the class of machines known as Turing machines. These can be considered general pro-

grams.

4. Other (O). Grouped in this category are non-deterministic programs and probabilistic pro-

grams. Recent work on Quantum computing [Spector 99] can be categorised in this family.

From this it is proposed that the bipolar view (turing or non-turing) of GP languages is expanded to

consider 4 language types: The set of languages recognised is Lang � {ML, FM, U, O}
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2.4.4 Attributes Specific to Genetic Programming

Function set (F )

The function set is decomposed into two attributes: First, the number of functions (NF) in F .

Second, the degree of abstraction of the function set is evaluated. The following guidelines are used

for this category:� Low abstraction represents a function set that is close to that of primitive computing machines,

for example the arithmetic functions add, subtract, multiply and divide can all be executed by

most processors directly, though with varying degrees of efficiency for some complex data

types. This also includes all logical functions, most test functions (if-then-else constructs)

and examples of machine code as for example in [Nordin 94].� Medium abstraction functions are those that would require several statements in a high level

language.� High level abstraction is found where the functions perform major portions of processing, or

have some major side effect. It is probable that this level would also represent specialised,

problem specific functions.

Abs � {low, medium, high}

Terminal set (T )

This simply records the number of terminals selected for the problem.

Automatic feature discovery and reuse (ADF).

Used to indicate whether some form of automatically defined function was used. This is not re-

stricted to the original automatically defined functions, as described in [Koza 92], but includes other

methods of capturing frequently used features such as automatically defined macros [Spector 95a]

and architecture altering operations [Koza 96a].

Memory (Mem)

Some problems require the use of memory, for example to store internal results or state variables.

Memory can take on many forms, but commonly found examples are indexed memory as described
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by Teller [Teller 94b] as well as more sophisticated data structures such as queues, stacks and

lists [Langdon 98a].

Mem � {none, indexed, structured}

Evolutionary representation (Rep)

Standard GP uses a tree representation because it was argued that traditional programs can be repre-

sented naturally using such a structure. Indeed, compiler technology often uses such structures for

the internal representation of the program. In addition, the LISP language S-expressions can easily

be represented as trees. Most examples of GP have used this same basic structure. However several

researchers have used alternative representations. Perkis [Perkis 94] showed that a stack represen-

tation could be used to evolve programs. Handley [Handley 94b] and Poli [Poli 99] used a directed

graph. A linear representation has been used by other researchers, notably Nordin [Nordin 94] in

his work on evolving machine code programs for a Reduced Instruction Set Computer (RISC). This

work was later extended to a Complex Instruction Set Computer (CISC) [Nordin 99a]. Miller and

Thomson used a method called Cartesian Genetic Programming [Miller 00] in which the program

is represented as an indexed graph, encoded as a set of linear string of integers.

Recently hybrid representations have been investigated. Kantschik and Banzhaf used a linear

tree representation [Kantschik 01], and a linear graph representation [Kantschik 02].

Rep � {tree, stack, graph, linear, hybrid}

Polymorphism and data typing (Typ)

Simple test problems often use only a single data type. However, real world applications are seldom

so regular and need to make use of more than one data type. The treatment of multiple data types,

or polymorphism, can be handled by one of several methods. Koza used constrained syntactic

structures [Koza 92] that employed problem specific syntactic rules to ensure correct programs

were generated. Montana [Montana 95] extended this and described a method of imposing a strong

type mechanism on GP. Clack and Yu [Clack 97b] extended this work. A weak method that did not

constrain the generation or evolution of the trees is described in [Martin 00] which uses polymorphic

data types.
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It has been argued that explicit typing can be considered as a form of language bias [Whig-

ham 95] and this has led to alternative approaches that separate the structures used for evolution and

the structures used for the programs. The alternatives are reviewed in the next sub section.

Typ � {none, weak, strong}

Representation mapping (Map)

A distinguishing feature of standard GP is that the same trees are used to represent the genotype

as well as the program. That is to say, in standard GP the tree structure is used directly by the

fitness evaluation to effectively execute the evolved program, as well as being manipulated and

modified by the breeding operators. Several indirect mappings have also been used in which the

genotype is processed to produce a different phenotype. Banzhaf in [Banzhaf 93] used a standard

fixed length linear GAs to construct programs by using editing and repair to produce variable length

trees. Holmes and Barclay [Holmes 96] describe the Odin Genetic Programming system which

separates the genetic structure from the tree structure of the program. Whigham [Whigham 95]

first introduced the idea of using grammars for specifying the structure of the language for the

evolved programs. More recently, O’Neill [O’Neill 99a] and O’Neill and Ryan [O’Neill 99b] have

developed a technique called Grammatical Evolution in which a variable length binary genome is

translated to a program using a Bakus Naur Form grammar. Similar work called Gene Expression

Programming is reported by Ferreira [Ferreira 01].

One of the major advantages claimed for separating the structures used for evolution and the

structures used to represent programs is that the evolutionary mechanism does not need to be con-

cerned with maintaining closure during crossover, thereby making the crossover operator simpler.

Map � {Direct, Indirect}

Operators (Op)

Crossover, mutation and reproduction are used with many modifications and enumerating them

would be both impractical and not tell us very much about the selection of operators. Instead the

ratios of the basic operators (mutation (M), reproduction (R) and crossover (C)) are given. In addi-

tion, an indication is made if a modified form of an operator is used. For example, the modification
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proposed by Langdon [Langdon 99] called homologous crossover is classified as a modified opera-

tor.

There is still much debate over the usefulness of crossover and/or mutation [GPMail 02]. Koza

in [Koza 92] claims that mutation does not play a large part in finding fit individuals and conse-

quently does not use it in most of his experiments. In contrast, studies by Banzhaf et al. [Banzhaf 96],

Luke and Spector [Luke 97, Luke 98b] show that mutation can be useful in some cases, however

they have not discovered any robust heuristics that allow the selection of optimal settings. Finally,

Angeline [Angeline 97] puts forward some evidence that crossover may be a form of macromutation

and not play any real role in propagating so called building blocks.

Creation methods (Crt)

When trees are used for the program representation, this describes the tree creation method. For

other representations, including linear representations, the populations are usually initialised using

a uniform method.

Crt � {Grow, Full, Ramped, Probabilistic, Uniform}

Seeding (Seed)

Denotes whether the population was seeded or inoculated with known good approximate solutions.

[Ferrer 95] [Grant 00] [Langdon 00] and others have shown that seeding a population can both

improve the search and lead to generalisations of known good solutions.

Population size (M)

Records the size of the population.

Number of generations (G)

Records the number of generations the system was run for.

Selection method (Sel)

Sel � {Proportionate, Tournament, Other}
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Generational method (Gen)

Gen � {Generational, Steady-state}

2.4.5 Attributes Derived From Experimental Results

These are the values of attributes found in the experimental results.

Program size (Size)

Typical size (in nodes) of a representative solution.

Successful outcome (Suc)

Since the principle aim of using GP is to find solutions to problems, it is not surprising that it

is rare to find reports of experiments that have failed to find a solution, though from experience

many experimenters know that the number of unsuccessful runs during the development of a GP

system is usually high. The number of unsuccessful runs is normally reduced by modifying run

time parameters, genetic operators, function sets, or other attributes. Only when the number of runs

that produce an acceptable result is reasonable do any results get published. One notable exception

is found in Langdon [Langdon 98a, (pp 149-154)] where an attempt to evolve a general purpose

program to recognise a Dyck language without using pre-defined stack primitives failed. The dearth

of results for unsuccessful runs rather hampers us in the search for a set of acceptable parameters

since we only have a part of the data needed. This attribute is therefore an indication of whether a

given set of parameters produced a successful run.

Effort required to find a solution (E)

Ultimately, any search method is going to be evaluated on the quality of the result and how much

effort needs to be expended to discover an acceptable result. Clearly no matter how elegant the

search method, if it requires more effort than an alternative method, it will not be favoured. Because

of the wider acceptance of the ’no free lunch theorem’ [Wolpert 97] that says no one search method

will perform better for all problems than any other search method, we need a robust, quantifiable

measure of the effectiveness of GP. GP is a stochastic search method, and so it is likely that any

meaningful measure of effort will need to consider the probability of finding an acceptable solution
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as well as elapsed time. Accordingly, several methods of measuring the effort needed by GP to find

a solution have been used: a prediction of the number of runs required, the actual number of runs

required and the wall clock time.

One method of reporting effort is to predict or measure the number of chromosomes that must

be evaluated to find a solution. Koza gives a method of predicting the number of runs required

to find a solution with a given probability based on measuring the performance of runs that were

successful [Koza 92, page 194]:

R
�
z ��� �

log
�
1 � z �

log
�
1 � P

�
M 	 i ����� (2.2)

where R
�
z � is the number of runs required to find a solution with probability z. In most of the

published work z is assumed to be 0.99. P
�
M 	 i � is the cumulative probability of having found

a solution using a population size of M by generation i. This equation is invalid if all runs are

successful since P
�
M 	 i ��� 1.

The number of chromosomes (individual programs) I that need to be processed to give a proba-

bility z of finding a solution by generation i is:

I
�
M 	 i 	 z ��� M � R � z ��� � i � 1 � (2.3)

This method is useful for comparing results between experiments that use different numbers

of generations or different population sizes. It has been pointed out that this method has some

weaknesses [Christensen 02] when used with a limited number of runs, and that to obtain robust

results, the number of runs used to calculate the probabilities should be increased from the usual 50

by a factor of at least 10.

Miller and Thomson in [Miller 00] argue that the commonly used measure of effort (Equation

2.2) is really a prediction of a future experiment, rather than a measure of an experiment that has

already been performed, and they propose a new method called hit effort. A hit is recorded for a run

of a GP system when the GP system finds a correct solution to the problem. Using this method, an
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experiment is repeated for a number of runs. Over these runs, if n evaluations are performed, and

there are h hits, then the hit effort e is given by:

e � n
h

(2.4)

They show that this measure gave more stable results than Equation 2.2. Clearly this equa-

tion is invalid if no hits are recorded. This method is only useful for comparing results between

experiments that use the same number of generations and population size.

Wall clock time is a measure of the elapsed time needed for a GP run, measured in seconds,

minutes, hours or some other time interval. Most reports of elapsed time emphasise the fact that

hard problems take a long time. Examples include Langdon’s queue problem [Langdon 98a, p269]

taking all day to run on a SUN workstation (speed not specified). Koza and Bennett [Koza 99a]

using a 56 node Beowulf-style [Sterling 95] cluster of 533 MHz DEC Alpha machines reported

that it took 28.4 hours to complete a run with a population size of 1,120,000. In this case the fitness

evaluation took the form of running circuit simulations using a modified version of Spice [Spice 02].

This attribute is recorded as either the predicted number of chromosomes (Predict), actual num-

ber of chromosomes (Actual) or None. The numerical value is also recorded.

2.4.6 Implementation Details

Class of GP platform (Plat)

Almost all GP systems are realised as software running on general purpose computers. A list of

some of the available packages is given in Table 2.5, and a comprehensive review at the Evonet

site [Evonet 02].
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Table 2.5: Popular software implementations of GP systems
Name Language Comments Reference
LISP Kernel LISP The original code from

Koza’s first book.
[Koza 92]

lilgp C A C implementation of the
work described in [Koza 92]
with additions.

[Zongker 02]

Gpc++ C++ A strongly Object Oriented
based implementation.

[Weinbrenner 02]

GP-COM C++, Tcl, Tk Component based system
with GUI.

[Harris 96]

Gpquick C++ Simple GP system written in
C++ by Andy Singleton.

[Singleton 94]

GPDATA C++ Extensively modified version
of GPquick to support data
structures plus much more.

[Langdon 02a]

Gpsys Java A Java 2 based Genetic Pro-
gramming system

[Qureshi 00]

Gpjpp Java A Java implementation of the
Gpc++ kernel

SGPC C Simple Genetic Program-
ming in C. Based on Koza’s
LISP code.

[Tacket 93]

Vienna C++ [Vienna 02]
Gpeist Smalltalk [White 94]
pushgp Java A GP system that evolves

programs in the Push pro-
gramming language.

[Spector 02]

GPSRegress Mathematica Package to perform symbolic
regression

[Nguyen 94]

GPS C/C++ Genetic Programming Stu-
dio. An implementation of
lilgp with a Microsoft Win-
dows GUI interface.

[Campo Novales 02]

GPX/Abstractica Applies GP to the generation
of abstract images.

[Sims 91]

YAGPLIC C Yet another genetic program-
ming library in C

[Blickle 95a]

One alternative to using a standard general purpose CPU is to build a custom CPU that contains

instructions that have been optimised for the task. Koizumi et al. [Koizumi 01] describe a RISC

processor designed for GAs. This processor has been designed using Application Specific Inte-

grated Circuit (ASIC) technology and implements special instructions that perform some common

operations found in GAs, including a single cycle random number generator, instructions for oper-

ating on partial words, and some instructions that operate on more than one operand at a time. The
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latter are called Single Instruction Multiple Data (SIMD) operations. They predict a clock speed

of 100 MHz using a 0.35 µm CMOS process. The predicted speed falls short of modern general

purpose processors that run at over 2 GHz and so it is questionable if this approach would deliver a

useful speedup.

Another approach is the realisation of the evolutionary computation process itself in hardware.

A Very Large Scale Integration (VLSI) system has been proposed by Yoshida et al. [Yoshida 01]

which implements a parallel GA machine using two VLSI devices. Examples of previously reported

GP systems that use custom hardware in the form of Field Programmable Gate Array (FPGA)s are:

Heywood [Heywood 00] where the FPGA is used to accelerate the fitness evaluation of GP and

Sidhu et al. [Sidhu 99]. This is an area that is reviewed in more detail in Chapter 3 and studied in

depth in Chapters 4 and 5 of this thesis.

Plat � {Soft, Hard, Hybrid}.

Fitness case implementation (Fimpl)

There is a range of different fitness case implementations reported. These implementations in-

clude intrinsic (built-in to the Genetic Programming system), extrinsic (external circuit simulators

[Koza 96b], specialised processing devices [Koza 98b] and physical entities such as robots [Lang-

don 01]) or hybrid systems.

Fimpl � {Intrinsic, Extrinsic, Hybrid}.

Parallelisation of GP (Par)

GP may be run on single machines, but it is well known that GP and other evolutionary computing

techniques are highly parallelisable and exploiting this parallelism can result in substantial perfor-

mance improvements. Cantu-Paz [Cantu-Paz 98] surveyed parallel GA algorithms in depth and

proposed four classifications of parallel GAs. A uniform taxonomy of parallel Genetic Algorithms

has been proposed by Nowostawski and Poli [Nowostawski 99], which extended the number of

classes of parallel GAs to eight (Table 2.6):

Various examples of parallel GP exist, for example the work by Andre and Koza [Andre 96]

used a network of Transputers, while Chong and Langdon [Chong 99] explored how the computing

resources that are potentially available on the internet could be exploited. Other examples of paral-
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Table 2.6: A uniform taxonomy of parallel genetic algorithms from Nowostawski
[Nowostawski 99].

master-slave
static subpopulations with migration
static overlapping subpopulations without migration
massively parallel genetic algorithms
dynamic demes
parallel steady-state GAs
parallel messy GAs
hybrid methods

lel GP include the work done by Koza et al. [Koza 00c] which used a thousand standard Pentium

PCs, and the use of a massively parallel SIMD machine by Juille and Pollack [Juille 96]. Fernandez

and Tomassini have explored the use of parallel GP for several applications [Fernandez 99] [Fer-

nandez 00a] [Fernandez 00b]. This attribute uses the eight categorisations from [Nowostawski 99].

Par � {MasterSlave, StaticMigrate, Static, Massive, Dynamic, SteadyState, Messy, Hybrid,None}.

2.5 A Summary of the Taxonomy

All the attributes discussed in the previous section are summarised in Table 2.7 on the following

page which shows the attribute names, the abbreviations used, and the type and range of the data.

This table representation of the attributes of GP also lends itself to describing a GP problem in more

detail than the standard tableau first introduced by Koza in [Koza 92], and has been used to describe

the problems used in the rest of this thesis. The problems are described in Appendix A.
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Table 2.7: Summary of the attributes of GP and their characteristics.
Category Abbreviation Types and range of values

EXTERNAL
Problem category Pcat From the set Pcat
Formal specification Fml From the set Fml
Number of fitness cases NFIT Integer
Language Lang From the set Lang

GP SPECIFIC
Function set size F Integer
Function set abstraction Abs From the set Abs
Terminal set size (T) T Integer
Automatic feature discovery ADF True/False
Memory Mem From the set Mem
Program representation Rep From the set Rep
Polymorphism and data typing Typ From the set Typ
Representation mapping Map From the set Map
Crossover operator X% Real

Xmod True/False
Mutation operator M% Real

Mmod True/False
Reproduction operator R% Real

Rmod True/False
Creation method Crt From the set Crt
Seeding Seed True/False
Population size M Integer
Generations G Integer
Selection method Sel From the set Sel
Generational method Gen From the set Gen

RESULTS
Program size Size Integer
Successful Sucs True/False
Effort Effrt Real
Wall clock time Time Real

IMPLEMENTATION
Class of GP platform Plat From the set Plat
Fitness function implementation Fimpl From the set Fimpl
Model of parallelisation Par From the set Par

The attributes have been used to construct a tree based taxonomy, where the four main categories

of attributes form four principal sub-divisions. The major attributes are then placed within each

subdivision. Where appropriate, the attributes have then been subdivided further into subcategories.

The taxonomy is shown in Figure 2.5 on the next page.
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Figure 2.5: A tree based taxonomy of the attributes of Genetic Programming
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2.6 Results and Discussion

2.6.1 An Analysis of the Raw Data

This section gives five examples of how the data used to build the taxonomy can be used to obtain

quantifiable data on how GP has been used. The raw data has been used to obtain: the distribution

of application areas, a measure of the sizes of typical programs using GP, the number of generations

used, the split between hardware and software implementations, and the range of population sizes.

These were chosen to see how useful these measures were as attributes of a taxonomy.

The distribution of top level problem categories is shown in Figure 2.6. Although there is a bias
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40

Algorithms Art Classification Control Design Regression 

Figure 2.6: Distribution of top level problem categories for 158 examples of GP.

towards the classification, control and regression problems, none of the categories dominate. The

spread of program sizes is shown in Figure 2.7. One conclusion we can draw from this result is that

for the most part GP has been restricted to solving problems that require a modest sized program

and is indicative of the obstacles that face GP when trying to scale up to produce large programs.

The number of generations that the problems were run for is plotted in Figure 2.8. This shows

that the majority of problems analysed required less than 125 generations.

From 131 examples used to construct the taxonomy only three have used hardware for all or

part of the implementation.

The population sizes used in the experiments is shown in Figure 2.9. This shows that almost all

problems have used population sizes 50 000 or less.
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Figure 2.7: Spread of program sizes found in 78 Genetic Programming examples
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Figure 2.8: Number of generations for 120 problems.
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Figure 2.9: Population sizes for 125 problems.
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However, Figure 2.9 does not show the details of the population sizes for the majority of prob-

lems, so Figure 2.10 shows the population size distribution for sizes less than 10 000. This shows

that the majority of population sizes used in the reported experiments are less than 1000.
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Figure 2.10: Population sizes for the 101 problems where the size is less than 10 000.

The examples in this section are by no means exhaustive, but they show the utility of the taxon-

omy when analysing GP.

2.6.2 Conformance to Original Criteria

The taxonomy presented in this chapter has been constructed with the characteristics in Section

2.4.1 in mind. To date, the first four criteria (mutually exclusive, exhaustive, unambiguous and

repeatable) have largely been met, in that the number of categories available covers all examples of

GP that have been analysed. Number 5 (accepted) is for others to judge. Number 6 (useful) can

be judged from the fact that the strong software bias of GP implementations can be quantitatively

shown. Number 7 (expandable) is addressed in Section 2.6.4. It is hoped that the taxonomy will

prove to be useful in identifying other areas of research.

2.6.3 Meta Genetic Programming

Despite the impression given by some of the literature on GP, running an instance of the GP algo-

rithm is only part of a process. Koza [Koza 92, p121] enumerates 5 steps needed to operate GP:

1) determining the set of parameters, 2) determining the set of functions, 3) determining the fitness

measure, 4) determining the parameters and variables for controlling the run, and 5) determining the
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method of designating a result and the criterion for terminating a run. In later work [Koza 94], an

additional step is used: 6) determining the programs’ architecture. In reality however, it is unusual

that using GP would be a linear step by step process. It is likely that for many examples of GP the

parameters have been found by trial and error until the system produced acceptable results, or that

particular parameters were changed to get a particular result. This fact is not always acknowledged

in the reports of running GP experiments, though some authors do explicitly report the fact, for

example [Poli 00].

Despite continuing advances in the theory of evolutionary techniques in general, and GP in par-

ticular, there is a general lack of robust theoretically based rules for determining parameter values.

One exception is the development of general schema theories [Poli 01a] [Poli 01b]. An applica-

tion of the schema theory shows how the choice of breeding operators and their proportions can

be made to meet certain structural goals during a run of GP [McPhee 02]. There is also a limited

amount of cross problem analysis of parameter settings available from experimental results. Most

studies into parameter selection focus on a single problem or a limited set of problems. While this

gives valuable insight into particular aspects of GP, it does not help practitioners who want to apply

GP to hitherto untried problems. One helpful set of guidelines has been provided by Banzhaf et

al. [Banzhaf 98, (pp 334-338)], giving the practitioner a few rules of thumb in choosing function

and terminal sets, mutation and crossover rates and allowable depth of the program trees. One of

the problems faced by practitioners is that the search space of viable parameters is large and that

changing one parameter by a small amount, for example the number of generations to run, will cause

other effects come into play, such as extended run time or a complete failure to find a solution.

The process of modifying the parameters during a GP experiment can be seen as a form of

Meta-GP. In practice, the results of an experiment are used to help modify one or more of the GP

parameters identified in the preceding sections. A flow chart of this meta GP process is shown in

Figure 2.11.

The initial choice of function set, terminal set, fitness function and operational parameters

will probably be based on previous examples of using GP, and on the specialised domain knowl-

edge of the user. After the first experimental run, the choice of which of the many parameters to

change, or whether the function set, terminal set, or fitness function should be modified is driven

by observations about how the population and individuals behave as well as the quality of the re-

sult obtained from the previous runs. In this way, over the lifetime of running a GP experiment,
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Figure 2.11: Flow chart for the meta GP process.



2.6. RESULTS AND DISCUSSION 39

an evolutionary approach is used initially to find the set of primitives needed, and then to tune the

operational parameters.

Generally, Meta-GP takes the form of an iterative process that involves the (human) implementor

of a GP system, but several examples where GP has been used to evolve settings of some of the

parameters have been published. For example, Kantschik [Kantschik 99] used GP to evolve an

improved set of operators, and a precursor to standard GP by Schmidhuber [Schmidhuber 87, (pp

7-13)] used a GP like system that recursively improved its performance.

Of course, the idea of an evolutionary approach to problem solving is not new. Fogel, Owens and

Walsh [Fogel 66] suggested that the scientific method is an evolutionary process, and the adoption

of evolutionary techniques in software engineering is well established, for example [Stevens 98]

and [Somerville 97]. There is a parallel between a mechanical evolutionary system such as GP or

ADATE [Olsson 95] and human centred techniques that use an evolutionary approach, including

Meta-GP. They both share an iterative invent-test-modify cycle that uses feedback from previous

results to refine the search. In the case of GP, promising solutions are identified by their fitness,

and the modify phase is carried out by using one or more of the operators commonly found in GP

such as reproduction, crossover and mutation. In Meta-GP, the identification of promising solutions

is usually the acceptance or rejection of the results of the latest experiment, often by comparing

partial results, analysing population dynamics or considering the rate of convergence towards an

acceptable solution. The modification phase consists of a change to one or more of the attributes

of the system. Despite these similarities, two important differences exist between GP and Meta-

GP. Firstly, in the case of GP, a population of individuals is considered together, while in Meta-GP,

usually only one individual is considered at a time. The second major difference is that repeated

GP runs, given identical starting conditions and a repeatable source of pseudo random numbers,

will always behave the same. However, Meta-GP relies on characteristics that have not yet been

encoded in a computer program – the creative ingenuity and intuitive leaps of the user to select the

initial starting conditions, identify fitness and choose which parameters to change, and so will be

less repeatable.
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2.6.4 Extending the Categories

The taxonomy presented here has attempted to be exhaustive with respect to GP problems, but there

are arguably other attributes that could be added. Examples of these include details of the problem

specification, such as the number of objectives that the problem has to meet or whether the problem

is known to be NP.

Daida et al. [Daida 97], [Daida 99] showed that other parameters such as the range over which

fitness values are spread, or the random number generator algorithm used, can have a large impact

on the performance of GP, and so should also be considered for the taxonomy.

It is recognised that representations and operators are probably the most commonly studied and

reported of the GP specific attributes, and that the proposed classification of these attributes is rather

limited. The taxonomy would benefit from a further refinement of these attributes.

2.7 Summary

Following a historical review of the precursors to GP, this chapter presented a review of standard

GP which showed that GP has many parameters and settings that must be chosen if GP is to find an

acceptable solution to a problem. From the review it is also clear that there have been many modifi-

cations made to standard GP. This prompted a more detailed review of the many attributes associated

with GP with a view to grouping related attributes into a taxonomy. One result of constructing the

taxonomy is that it provides a formalism to describe a GP problem in more detail than the standard

tableau. The data used to construct the taxonomy also allows the discovery of some general fea-

tures of the problems for which GP has been used. Five examples have been presented showing the

spread of applications, the distribution of program sizes, the range of population size, the different

numbers of generations used and the very strong bias towards software implementations of GP.

Practical experience has shown that running GP is not simply a case of choosing a few attribute

values and setting the GP system running. Using GP is part of a larger process, called Meta-GP.

Meta-GP is an iterative and interactive process, so the time needed to execute the core GP algorithm

is important. Because there is always a finite amount of time in which to carry out experiments,

a problem that takes a long time to run means there is less opportunity to modify a GP system.

Speeding up the core GP algorithm should allow more time to find a set of attributes that performs

adequately. Therefore, there is a real incentive to reduce the run time of a GP system. Implementing
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GP in hardware is a way of tackling the problem of long run times, and one that has to date been

rather less well explored than software only GP systems.



Chapter 3

FPGAs and Hardware Compilation

The previous chapter highlighted two aspects of using Genetic Programming (GP). Firstly, some

problems take a long time to execute because the fitness evaluation is computationally expensive.

Secondly, running the GP algorithm is part of a process of experimentation and refinement called

Meta-GP, possibly requiring many GP runs. For some problems, a long running time for GP is a

barrier to exploring and exploiting GP. Therefore, a means of accelerating GP by implementing GP

in hardware should help in the exploration and exploitation of GP.

This chapter reviews the hardware and software technologies that are available for implement-

ing GP in hardware. First, the technology of Field Programmable Gate Array (FPGA) devices is

examined and then the role of FPGAs in evolutionary computing is reviewed. This is followed by

a brief overview of high level language to hardware compilation tools. Finally, one particular high

level language to hardware compilation system called Handel-C is described in more detail.

3.1 Introduction

The survey of GP in Chapter 2 identified two technologies that have been used to implement an

evolutionary computing device; a custom Application Specific Integrated Circuit (ASIC) and un-

committed reconfigurable FPGAs. Both technologies are sometimes referred to as Very Large Scale

Integration (VLSI) devices.

42
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3.1.1 ASIC Implementations

An ASIC is a custom chip, designed for a particular application. They are often designed using

pre-defined libraries of functionality. The work by Koizumi et al. [Koizumi 01] described a Re-

duced Instruction Set Computer (RISC) processor designed for Genetic Algorithm (GA) that is

essentially a general purpose CPU, but with the addition of special instructions designed to speed

up the execution of a GA program. The GA program for this device is written using a standard pro-

gramming language. The program is then compiled using a modified compiler that uses the special

instructions. The instructions chosen were those found to be beneficial during the crossover and

mutation portions of the GA and the Random Number Generator (RNG). They report a three-fold

improvement with their optimised instruction set when compared with an equivalent RISC proces-

sor without the specialised instructions. However, in GP the time needed to evaluate the fitness of

the programs often outweighs the time for crossover and mutation, so it is questionable whether this

approach would produce any great improvement if applied to GP. Other instances of VLSI tech-

nology for GAs include a proposed VLSI architecture by Turton et al. [Turton 94] and a general

purpose, problem independent parallel GA in VLSI by Yoshida et al. [Yoshida 01].

Current ASIC technology using Complementary Metal Oxide Semiconductor (CMOS) pro-

cesses and standard cell libraries allows designs to be clocked at near GHz rates, so the potential

for performance improvement is good. Nevertheless, the economics of using an ASIC implemen-

tation need to be examined carefully. Designing an ASIC chip, even using standard libraries, is a

specialised task, normally requiring several man-years of effort. The cost of fabricating an ASIC

chip is in the order of $500 000(1) for a prototype run. Therefore, it is seldom economic to use ASIC

technologies for small scale runs. It must also be noted that once it has been committed to produc-

tion, changes to the design are prohibitively expensive. Because of the high initial costs associated

with a custom ASIC chip, and the inflexibility of an ASIC once it has been produced, reconfigurable

devices such as FPGAs and Complex Programmable Logic Device (CPLD)s have become popular

as platforms for experimentation and prototyping, though only FPGAs have featured in previously

reported work on evolutionary computation.

(1)Obtained using the ASIC cost estimator from Altera, at http://www.altera.com/products/devices/cost/
cst-cost_step1.jsp, assuming a 474 K gate device using a 0.18 µm process.
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3.2 Field Programmable Gate Arrays

FPGAs are a class of programmable hardware devices in which the logic is initially uncommitted.

The uncommitted logic is configured by the end user for a particular task. A common architecture

is based on an array of Configurable Logic Block (CLB)s, Input Output Block (IOB)s that connect

the logic to the outside world and configurable interconnections that connect the CLBs to each other

and the IOBs. In the Xilinx [Xilinx 01b] Virtex device used in this work, each CLB contains two

slices, each slice containing two Logic Cells. In addition some devices contain on-chip Random

Access Memory (RAM). A simplified general model of an FPGA is shown in Figure 3.1.

IOB

CLB CLB CLBCLB

CLB CLB CLBCLB

CLB CLB CLBCLB

CLB CLB CLBCLB

CLB CLB CLBCLB

IOB

RAMRAM IOBIOB

Figure 3.1: General model of an FPGA. It consists of an array of Configurable Logic
Blocks (CLBs), Input Output blocks (IOBs) that connect the logic to the outside world
and configurable interconnections that connect the CLBs to each other and the IOBs.

Some devices also contain on-chip RAM.

Figure 3.2 shows a general model of a Xilinx Virtex Slice containing two Logic Cells. Each

Logic Cell consists of a four input function generator implemented as a Look up Table (LUT), a

storage element or Flip Flop (FF) and internal Carry and Control (CC) logic. Some devices also

contain uncommitted RAM. The chip contains a variety of routing resources for both localised and

global chip level routing of signals.

These devices are configured by loading a configuration bit pattern, which in the Virtex device

is loaded into static RAM on the chip. Because the RAM is volatile, this has to be done each time
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the chip is re-powered. For many devices available today, the configuration bit patterns are propri-

etary and are generated using software tools that take a high level description of the configuration

information. Keeping the configuration bit patterns secret has two important consequences. Firstly,

it protects the details of the device configuration from being interpreted, and therefore makes it hard

to reverse engineer the device. This is important for the commercial adoption of these devices.

The second consequence is a limiting one in that only the vendor’s specialised tools can be used to

configure the device, making it hard to dynamically reconfigure the devices.

LUT CC

FF

 D
Q 

Logic Cell

Carry out

LUT CC

FF

 D
Q 

Logic Cell

Slice

Carry in

Figure 3.2: General model of a Configurable Logic Block or Slice. Each Slice contains
two Logic Cells. Each Logic Cell consists of a function generator implemented as a
Look up Table (LUT) a storage element or Flip Flop (FF) and internal Carry and

Control (CC).

3.2.1 Reconfigurability

An early device – the XC6200 series from Xilinx – had an architecture that allowed any arbitrary

configuration pattern to be loaded into the device without the possibility of damaging the device.

This was of great interest to the evolutionary hardware community because it did not constrain

how the devices could be used, and this device was used by many researchers in the field of evo-

lutionary computing. Because the configuration was also accessible to the logic on the FPGA, the

FPGA could dynamically reconfigure itself. Unfortunately, the Xilinx XC6200 series did not find

commercial use and is no longer in production [Alfke 00]. However, more recent devices have an
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architecture that supports many more interconnections between the logic cells and so do not allow

arbitrary configurations since they could damage the chip. The possibility of damage arises because

of the potential for two or more gate outputs to be directly wired together, as illustrated in Figure

3.3. If the output of logic block A is driven to a logic high and the output of logic block B to a logic

low, a large current would flow between the output stages via the routing resources. If many of these

high current paths are created, then the power dissipated by the device may exceed the safe limits

specified by the manufacturer, possibly destroying the device. There is some anecdotal evidence

that devices have been spectacularly destroyed by this process(2) .

High
Current
Flow

Logic
Block A

Logic
Block B

Routing 
resource

logic 1

logic 0

Figure 3.3: Consequences of illegal FPGA gate configuration.

Because current FPGAs cannot accept arbitrary configurations there are two consequences for

the use of standard FPGA devices for evolutionary computation. Firstly, during the creation of bit

patterns for these devices, checks need to be made to eliminate illegal configurations. Secondly, it

hampers the possibility of dynamically reconfiguring the device while it is executing an algorithm.

To some extent these limitations are being addressed by the device manufacturers. For example,

Xilinx provides a Java Application Programming Interface (API) called JBits that allows partial

reconfiguration of some devices. JBits has been used by Levi and Guccione to evolve stable cir-

cuits on standard Xilinx devices [Levi 99]. Hollingworth et al. [Hollingworth 00] have also used

this technique for intrinsic hardware evolution. Another approach to solving the reconfigurability

problem is to synthesise a virtual configurable chip using a standard FPGA that has no restrictions

on the configurations [Sekanina 00].

(2)Discussion between the author and an FPGA applications engineer, and postings to comp.fpga.arch
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3.3 FPGAs and Evolutionary Computing

Chapter 2 cited three examples of using an FPGA to implement part or all of a GP system ( [Hey-

wood 00], [Sidhu 99] and [Koza 97b]). In this section a more detailed review of FPGAs that have

featured in the broader field of evolutionary computing is given.

In Evolutionary Computing, FPGAs have previously been used in three main areas: 1) as a

means of implementing the fitness functions of Genetic Algorithms or Genetic Programming; 2)

as a platform for implementing the Genetic or Evolutionary Algorithm; 3) in relation to evolving

hardware using evolutionary techniques. These three strands are surveyed separately. A common

theme running through previous work is the use of traditional hardware design tools and languages

such as Verilog or VHSIC Hardware Design Language (VHDL) to design the logic for the FPGAs.

3.3.1 FPGAs for Speeding Up Fitness Evaluations.

In this category only the fitness evaluation is performed by an FPGA. The creation of the initial

population and the breeding phases are carried out by a host computer.

Koza et al. [Koza 97b] used an FPGA to speed up the evaluation of fitness of a sorting network

where the FPGA was used solely to perform the fitness evaluation. The initial population was

created by a host computer, and then individuals were downloaded to a pre-programmed FPGA and

the FPGA instructed to evaluate the fitness of the individual. Subsequent selection and breeding

were again performed by the host computer. The configuration of the FPGA remained unchanged

during the experiment. This work used a Xilinx XC6200 device.

Montana et al. [Montana 98] developed a hybrid tool called EvolvaWare (see also [BBN Tech-

nologies 02]) which was designed to generate VHDL circuits using GP. This tool implemented a

number of primitives (functions) on an FPGA. It then used standard GP to evolve programs that

used the FPGA hosted primitives. Although this approach showed some promise, they discovered

that the hybrid software/hardware system had some problems. Notably, the interface between the

software and the hardware was a bottleneck due to the limited number of input/output pins. They

also discovered that the FPGA technology available in 1998 would not allow complex primitives to

be accommodated on the FPGA. They did not report what FPGA was used for this work.

Yamaguchi et al. [Yamaguchi 00] used a Xilinx Virtex XCV1000 FPGA to implement a co-

processor for evolutionary computation to solve the iterated prisoners dilemma (IPD) problem. They



3.3. FPGAS AND EVOLUTIONARY COMPUTING 48

reported a 200 times performance speedup in processing the IPD functions on the FPGA when

compared to a 750 MHz Pentium processor.

Seok et al. [Seok 00](3) used a Xilinx XC6200 series device to implement a robot controller.

The evolution of the FPGA was performed off line and the FPGAs were embedded in a robot.

Harris [Harris 00] used a GA to evolve a 7-input parity function using an FPGA simulation.

3.3.2 Implementing the Logic For Evolution Using FPGAs

In this category the fitness evaluation and breeding, and in some cases the initial population creation,

is carried out on the FPGA.

Scott [Scott 94] implemented HGA: A Hardware-based Genetic Algorithm. The design was

modelled on an existing software GA by Goldberg called SGA [Smith 91] which allowed them

to make meaningful comparisons of the performance between a software and hardware implemen-

tation of similar algorithms. The design allowed limited parameterisation of the population size,

number of generations PRNG seed and the mutation/crossover proportions. Scott used a three stage

coarse grained pipeline in which the selection module, crossover/mutation module and the fitness

module were all active at the same time. In addition, the design allowed for the pipeline to be

replicated so increasing the potential for speeding up the GA. The prototype was realised using on

Xilinx XC4003 FPGA for the PRNG and crossover/mutation module, and three XC4005 devices

that housed the fitness function, selection and memory interface and the population sequencer. The

prototype was built using wire wrap technology which, because of signal distortion and crosstalk

between signals, limited the clock rate to 2 MHz, although the simulation had indicated that 8 MHz

should be possible. The performance of the HGA was compared to the SGA running on a worksta-

tion with four MIPS R3000 CPUs running at 33 MHz. This produced a speedup of approximately

16 times when the number of clock cycles was measured, but no speed up when the wall clock

time was used. However, Scott predicted that if the design was optimised using a PCB layout and

that further paralellisations were added that the design could be clocked at between 30 and 40 MHz

giving a speedup of two orders of magnitude over the SGA running on the MIPS computer.

Graham and Nelson [Graham 96] implemented a complete GA system using four Xilinx XC4010

FPGAs on the Splash-2 board. Each FPGA was programmed to carry out a different function; selec-

tion, crossover, fitness and mutation and finally statistics. Each FPGA passed its results to the next

(3)Additional implementation details obtained directly from the author via email.
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forming a pipeline. The performance of their system was compared with a software implementation

running on a 125 MHz PA-RISC workstation and they showed an improvement of 4 times.

Kitaura et al. [Kitaura 99] implemented a GA machine that was designed to avoid pipeline

stalls using a Lucent ATT2C40 FPGA. They report a speedup of 730 times when compared with an

equivalent software system.

Tufte and Haddow [Tufte 99] implemented a complete evolutionary hardware system based on

a GA – called Complete Hardware Evolution (CHE) – on a Xilinx XC4044XL FPGA that used a

pipeline to evolve hardware. They also demonstrate CHE using a robot controller in [Haddow 99].

Choi and Chung [Choi 00] implemented a steady state GA using two Altera EPF10K100A

devices.

Perkins et al. [Perkins 00] describe a system where a complete GA system was realised on a

single Virtex 300 part. Performance was compared with a C implementation, and they report an

improvement of over 1000 times, though they do not specify the speed of the CPU used for the C

implementation.

Aporntewan and Chongstitvatana [Aporntewan 01] proposed a hardware implementation of a

GA using a Xilinx Virtex XCV1000 FPGA that achieved a 1000 time speedup when compared with

a 200 MHz SPARC 2 workstation.

Shackleford et al. [Shackleford 01] implemented a complete GA system using a Xilinx XCV3200E

chip. Their implementation used extensive pipelines and parallel fitness evaluation to get a per-

formance increase of 320 times when compared with the same algorithm running on a 366 MHz

Pentium CPU.

Finally in this category, FPGAs have been used to implement parts of a GP system. Sidhu

et al. [Sidhu 99] presented a novel approach, that used self-reconfiguration of the FPGA, to im-

plement the fitness evaluation and evolution phases of GP. The initial population was configured

statically. They used a Xilinx XC6264 device, and compared the performance with lilgp running on

a 200 MHz Pentium. They reported a speedup of over 1000 for the Boolean 11 multiplexer problem

implemented using lilgp [Zongker 02], though it is questionable whether a direct comparison to

lilgp, which uses a different internal representation, gives a true picture of the real speedup.

The system described by Heywood and Zincir-Heywood [Heywood 00] was simulated using

traditional FPGA tools. Their proposal used the FPGA for evaluating the individuals and performing
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mutation and crossover. Initial population creation was done off-line and downloaded to RAM for

use by the FPGA.

It is important to note that none of the previously reported work using FPGAs and GP has imple-

mented a complete GP system, that is the initial population creation, fitness evaluation, evolutionary

operators and the production of a program at the end of the run.

3.3.3 Evolutionary Hardware Using FPGAs

FPGAs have featured regularly as platforms for evolutionary hardware research. Higuchi et al.

[Higuchi 93] showed the feasibility of hardware evolution using Hardware Design Language (HDL)

to evolve combinatorial logic circuits. They used GP to evolve the HDL.

Thompson suggested that FPGAs could be used to evolve hardware circuits [Thompson 95].

This was demonstrated using a simulation of the evolution of an FPGA configuration to evolve an

oscillator. Thompson [Thompson 96] also demonstrated, for the first time, a physical FPGA being

used as the target for evolutionary hardware. His work is interesting for several reasons: Firstly, it

used an FPGA – the Xilinx XC6200 – that supported direct reconfiguration of its logic cells. Sec-

ondly, his work relied on the asynchronous behaviour of the FPGA to obtain the results, in contrast

to much of the current work using FPGAs which is very firmly focussed on the synchronous use

of FPGAs. Thirdly, the evolutionary approach discovered an analogue behaviour of the FPGA that

resulted in the circuit operating correctly, but only within a limited temperature range. Subsequent

work by Thompson and Layzell [Thompson 99] describes the physics of this behaviour. Thompson

also demonstrated how a miniature Khepera robot, fitted with a Xilinx XC6216 FPGA, could evolve

wall-avoiding behaviour [Thompson 97]. In this case the evolutionary algorithm was executed on

an external PC connected using a serial cable.

The work by Fogarty et al. [Fogarty 98] described how logic circuits could be evolved directly

on a Xilinx XC6000 FPGA without having to place and route a netlist(4) first. Levi and Guccione

[Levi 99] described a method of generating the FPGA configuration data for Xilinx XC4000EX and

XC4000XL devices that avoids illegal FPGA configurations and ensures the FPGAs are stable.

Kajitani et al. [Kajitani 98] described a simulation of an evolvable hardware system using a

single LSI chip that contained the GA operations as well as a Programmable Logic Array (PLA).

(4)A netlist is a formal description of the gates and their connections.
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This work uses traditional GA techniques to evolve the circuits which are executed on the integrated

PLAs meaning that the chip can autonomously synthesise hardware circuits.

Jamro and Wiatr [Jamro 01] investigated the use of GP to evolve optimised adders for use in im-

age convolution on FPGAs. Once the adders had been evolved the tool generated optimised VHDL

for the required convolver. However, they discovered that Simulated Annealing (SA) performed

better than GP in this application.

3.4 Configuring FPGAs and Hardware Compilation

FPGAs have traditionally been configured by hardware engineers using a Hardware Design Lan-

guage (HDL). The two principal languages being used in 2002 are Verilog [Verilog 01] and VHDL

[VHDL 93]. Both languages are similar, and the choice of which one to use is often based on per-

sonal preferences, tool availability, or business and commercial issues [Smith 97]. VHDL has been

used to implement hardware GAs and GP ( [Scott 94], [Graham 96]„ [Perkins 00], [Heywood 00],

and [Shackleford 01]). Both languages support a behavioural or algorithmic modelling capabil-

ity, but the majority of tools cannot translate a behavioural model directly into hardware. Instead,

the designer must create a structural model that maps to the hardware. Verilog and VHDL are spe-

cialised design techniques that are not immediately accessible to software engineers, who have often

been trained using imperative programming languages. Consequently, over the last few years there

have been several attempts at translating algorithmic oriented programming languages directly into

hardware descriptions. These have taken a number of different approaches to this problem and these

are briefly reviewed in this section.

Synopsis [Synopsis 02] produce a product called System Level Design that models the hardware

using a set of C++ classes. Frontier Design [A|RT 02] produce a product called A|RT (Algorithm

to Register Transfer) which allows the designer to use a C style language to express the algorithm.

However, the designer of the C code is forced to use a particular coding style that uses register

transfer semantics. CynApps [CynApps 02] produce a tool called Cynthesis in which the designer

needs to re-write algorithmic C code to reflect the hardware architectural view.

Another approach is to use a high level language to target part of the system implemented

in an FPGA, typically as a co-processor. Clark [Clark 96] used the freely available C compiler

lcc [Fraser 95] to compile specific instructions that targeted pre-compiled hardware functions in a
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co-processor. Callahan and Wawryzynek [Callahan 98] also used a C compiler to target a custom

processor built using FPGAs. Wirth [Wirth 98] suggested how parts of a C program could be

compiled into programmable hardware.

A third method is to include the algorithm to hardware mapping in the compilation process.

This approach does not require substantial changes to the underlying algorithm when compared

with the previous approaches. The transmogrifier work by Galloway [Galloway 95] used this ap-

proach. Maruyama and Hoshino [Maruyama 00], demonstrated how loops and recursion could

be implemented directly. Page [Page 91] [Page 96] recognised the need for a formalism to map

between algorithmic constructs and hardware. The early work used Communicating Sequential

Processes (CSP) and Occam. However, because Occam was regarded as an academic language, the

work was extended to use a C like language, called Handel-C, thereby making it more appealing to

industrial users. Handel-C is now a commercial product produced by Celoxica [Celoxica Ltd 01e].

Because Handel-C uses a C like language and because it does not force the designer to adopt

a structural approach to coding, it is accessible to software engineers. For these reasons Handel-C

was used for implementing GP on an FPGA. The next section describes Handel-C in greater detail.

3.5 Handel-C

This section is not intended to be a full description of the tool and language, but it does describe the

most important features, especially those that influence the design decisions described later in this

thesis. For full details of the language and development environment the reader is referred to the

user guides and reference material from the manufactures [Celoxica Ltd 01a]. Handel-C has been

used in a number of applications including the rapid implementation of a RISC microprocessor core

[Sulik 00], the implementation of video algorithms [Page 97] and an SS7 transceiver [Marconi 00].

Other examples of applications can be found in [Celoxica 02].

3.5.1 Parallel Hardware Generation

One of the advantages of using hardware is the ability to exploit parallelism directly. This is in

contrast to the simulated software parallelism that is found on single Central Processing Unit (CPU)

computers achieved using time-slicing. Note that although modern processors found in standard

PCs and workstations have multiple pipelines that attempt to execute more than one instruction
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simultaneously, they are only able to process one instruction sequence at a time. Consequently,

Handel-C has additional constructs to support the parallelisation of code using the par statement.

For example, the block

par {
a=10;
b=20;

}

generates hardware to assign the value 10 to a and 20 to b in a single clock cycle. Using this

statement, large blocks of functionality can be generated that execute in parallel. Hardware can be

replicated using the construct

par (i=0;i<10;i++) {
a[i] = b[i];

}

which results in 10 parallel assignment operations. Multiple copies of functions may be created by

using the macro language of Handel-C, by using the inline keyword which instantiates a copy

of a function every time it is referenced or by explicitly defining an array of functions as in the

following fragment that defines 32 instances of a function:

void evaluate[32](unsigned int population)
{

...
}

3.5.2 Efficient Use of FPGA Resources

To make efficient use of the hardware, Handel-C requires the programmer to declare the width of

all data, for example,

int 5 count;

is a signed integer that is 5 bits wide, and so will be able to represent the values � 16 � count ��� 15.

Handel-C has a single native Integer data type, but fixed and floating point data types are supported

by means of a library.
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3.5.3 Bit Level Operators

Handel-C provides a number of bit manipulation operators that are not available in ISO-C. The

following bit operators are provided:

y = x <- n Takes the n least significant bits from x

y = x \\ n Drops the n least significant bits from x

y = x @ z Concatenates the bit patterns that represent x and z

y = x[5:3] Selects bits 3,4 and 5 from x

The width operator returns the number of bits in an expression.

3.5.4 Simple Timing Semantics

According to the Handel-C documentation, the simple rule about timing of statements is that “as-

signment takes 1 clock cycle, the rest is free”. In practice this means that expressions are constructed

using combinatorial logic, and data is clocked into a register only when an assignment is performed.

For example, Handel-C would generate hardware for the following statement that executed in a sin-

gle clock cycle.

y = ((x*x)+3*x);

This feature makes it straightforward to predict the number of clock cycles a section of code will

require. However, the more complex the expression, the deeper the logic required to implement the

expression. This in turn limits the maximum clock rate at which the design can be run because of

the propagation delays associated with deep logic. In practice this means that the designer needs to

trade clock cycles against clock rate, and this is typically an iterative process.

3.5.5 External Communication

Communication between the hardware and the outside world is performed using interfaces. These

may be specified as input or output, and, as with assignment, a write-to or a read-from an interface

will take one clock cycle. The language allows the designer to target particular hardware, assign

input and output pins, specify the timing of signals, and generally control the low level hardware

interfacing details. Macros are available to help target particular devices.
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3.5.6 Some Restrictions When Using Handel-C and FPGAs

Because Handel-C targets hardware, it imposes some programming restrictions when compared to

a traditional ISO-C compiler. These need to be taken into consideration when designing code that

can be compiled by Handel-C. Some of these restrictions particularly affect the building of a GP

system.

Firstly, there is no stack available, so recursive functions cannot be directly supported by the

language. This in turn means that standard tree based GP, which relies heavily on recursion, cannot

be implemented without some modification. A solution to this restriction is discussed in Section

4.1.1.

Secondly, the size of memory that can be implemented using standard logic cells on an FPGA

is limited, because implementing memory is an inefficient use of FPGA resources. However, some

FPGAs have internal RAM that can be used by Handel-C. For example, the Xilinx Virtex and

Spartan series support internal memory that Handel-C allows the user to declare as RAM or Read

Only Memory (ROM). For example the definition

ram int 8 mem[128];

declares a RAM block of 128 cells, each 8 bits wide, which can be accessed as a standard array.

A limitation of using RAM or ROM is that it cannot be accessed more than once per clock cycle.

This restricts the potential for parallel execution of code that accesses RAM or ROM.

Thirdly, expressions are not allowed to have side effects, since this would break the single cycle

assignment rule. Therefore code such as

a = ++b; is

is not allowed and needs to be re-written as:

b = b + 1;
a = b;

3.5.7 Targets Supported by Handel-C

Handel-C supports two targets. The first is a simulator target that allows development and testing

of code without the need to use any hardware. This is supported by a debugger and other tools.

The second target is the synthesis of a netlist for input to place and route(5) tools. This allows the

(5)Place and route is the process of translating a netlist into a hardware layout.
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design to be translated into configuration data for particular chips. An overview of the process

is shown in Figure 3.4. When compiling the design for a hardware target, Handel-C emits the

design in Electronic Design Interchange Format (EDIF) format. A cycle count is available from the

simulator, and an estimate of gate count is generated by the Handel-C compiler. To get definitive

timing information and actual hardware usage, the place and route tools need to be invoked.

Source
Code

Compile
for

Simulator

Simulate
and debug

Compile to
netlist

Place and
Route

Program
FPGA

EDIF
Timing

Analysis
&

Gate Usage

Cycle
Count

Gate
Estimation

Figure 3.4: Overview of the process of translating code into hardware using Handel-C
and the critical outputs for analysis of the solution

3.5.8 Translating ANSI-C to Handel-C and Code Portability

With care it is possible to re-use the same code for a design implemented in hardware, and a design

realised as a traditional software program. The differences in syntax and the various extensions can

be made portable using the C pre-processor. For example, the need to supply a width specifier and

par block statements for Handel-C can be hidden from an ANSI C compiler as follows:
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#if defined HANDELC
typedef unsigned int 5 Uint_5;
#define PAR par
#else
typedef unsigned int Uint_5;
#define PAR
#endif
...
Uint_5 x;
...
PAR {

// parallel statements
}

The issue of code portability is of interest when it comes to testing new ideas. The time required

by Handel-C to compile an algorithm for an FPGA can be measured in tens of minutes to many

hours, depending on the complexity of the algorithm and the level of optimisation specified. In

contrast, a standard ISO-C compiler on a 1.4 GHz Athlon based PC can recompile an application

in the lilgp suite [Zongker 02] in a little over 10 seconds. Clearly, testing an algorithm is much

easier and more productive using standard programming techniques. Having proved the algorithm,

it is usually advantageous to reuse the algorithm directly in the hardware implementation, thereby

reducing the potential for errors in transcription or translation that would occur if the two environ-

ments were different. This issue is examined in more detail in Chapter 7 where the economic and

software engineering issues are discussed.

3.6 Summary

This chapter has surveyed two technologies that have previously been used to implement GAs and

GP in hardware. Because ASICs are usually considered to be faster than FPGAs, a custom VLSI

implementation using ASIC technology would appear to be highly desirable, but because of the cost

implications of using a custom designed VLSI chip, the use of uncommitted reconfigurable devices

is a preferred route for experimentation and prototyping.

Because traditional methods of programming FPGAs require a structural approach and because

they use specialised languages, the direct use of FPGAs has been inaccessible to software engineers.

To remedy this, high level language to hardware design tools have been developed. The use of these

tools is appealing to the software engineering community because it allows a traditional imperative
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programming style to be used to design and implement algorithms in hardware. Handel-C is one of

the high level languages available. It provides an algorithmic route to hardware design, allows code

to be ported between software and hardware environments and enables the parallelism inherent in

hardware to be exploited. Handel-C has an established track record, having been used to implement

other algorithms. For these reasons Handel-C was the tool chosen for the implementation of GP in

hardware.



Chapter 4

Implementing GP in Hardware

This chapter describes the general design decisions taken to implement Genetic Programming

(GP) in hardware using a Field Programmable Gate Array (FPGA) as the platform, and Handel-C

as the software environment used to program the FPGA.

4.1 A Complete GP System On a Chip

The principal aim of the work described in this chapter was to explore the feasibility of imple-

menting a complete GP system in hardware, that is initial population generation, fitness evaluation,

breeding and the delivery of the final result. This is in contrast to all other examples of using FP-

GAs with Genetic Programming reviewed in Chapter 3, Section 3.3.2, which only implemented the

fitness evaluation and possibly some of the other stages of GP. This high level aim guided many

of the design decisions. As the aim was to explore the feasibility of using Handel-C and FPGAs,

the work focused on the functionality of the GP system. Consequently, it was accepted that there

were probably going to be limitations imposed by Handel-C and the use of FPGAs with regard to

program and population sizes. It was also recognised that some compromises would be need to be

made with regard to the throughput of the system. In the light of the experience gained during this

work a number of improvements were identified to increase the program and population sizes and

increase the throughput. These improvements are described in Chapter 5.

59
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4.1.1 Internal Program Representation

Tree based GP normally uses recursion to traverse the tree, but the lack of a built-in stack when using

Handel-C precludes the use of recursion. Although there are well known methods of removing

recursion from algorithms (eg. [Sedgewick 84]), a stack of some form is still required to store

intermediate results. Tree representations also have a storage overhead because of the need to store

the links from a node to its children. Because FPGAs have a limited amount of storage available

when compared with a modern computer that has many megabytes of RAM, the use of tree based

GP was considered to be too expensive in terms of silicon real estate. However, the survey of GP

in Chapter 2, Section 2.4.4, showed that internal representations other than trees have been used

for GP. One alternative to the standard tree representation is the linear GP system, examples of

which were used by Nordin and Banzhaf [Nordin 95b], Banzhaf et al. [Banzhaf 98] and others, in

which a linear string of machine code instructions was executed directly by a Reduced Instruction

Set Computer (RISC) CPU. Subsequent work extended this to Complex Instruction Set Computer

(CISC) CPUs [Nordin 99a] and [Kuhling 02]. Other examples of linear GP include Atkin and

Cohen [Atkin 94], Bhattacharya et al. [Bhattacharya 01] and Deschain et al. [Deschain 01].

A linear structure was chosen for implementing GP in an FPGA because the representation

is simple to implement, and requires very little overhead for representing a program. A further

argument for using a linear structure is that it has been shown to be able to solve hard problems.

Some examples of the use of a linear structure for hard problems include the evolution of a hand-eye

controller for a robot [Langdon 01], data mining [Deschain 00] and real-world design simulation

[Deschain 01]. The internal program representation is a linear string of nodes which can be thought

of as primitive instructions. The details of the internal representation depend on the word size,

number of functions and number of terminals used, and these are dependent on the problem being

tackled.

A general purpose load-store register architecture [Patterson 96] was chosen for its simplicity

and because it is similar to the work done by Nordin and others using RISC instruction sets, though

a load-store register machine is by no means the only machine that could be used. Alternatives to a

general purpose register machine include single register or accumulator machines, register (register-

memory) and memory-memory machines in which the instructions address memory directly without

the use of registers . If the storage concerns can be addressed then stack machines could also be used.
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Other possibilities include implementing a high level language virtual machine in hardware, such

as a Forth language machine [Moore 70], [Moore 01] and [Koopman Jr. 89], the p-code machine

[Clark 81] used by the Pascal language, or even a Java virtual machine [Lindholm 99]. GP using

the Java virtual machine has been investigated by Lukschandl et al. [Lukschandl 98] and Klahold et

al. [Klahold 98]. The ability to tailor the machine is explored later in this chapter (Section 4.9.4 on

page 81) and is exploited in the next chapter when the artificial ant problem is implemented in

hardware.

A program consists of an array of instructions and some control information. The programs

have a fixed maximum size, which simplifies the storage of individuals. A general layout of an

instruction is shown in Figure 4.1.

bit1bit2bit3bit4bit5bit6bit7

Opcode.Encodes the operation
required 

Effective address 1. The primary 
source operand and destination address.
Always a register.

Effective address 2. The secondary operand.
Can be a register, new program counter, or
an index into a table of constants.

Figure 4.1: Layout of an instruction where there are eight possible opcodes and two
effective addresses: EA1 and EA2. The details of what the opcodes do and the use of

the effective addresses is problem specific.

The layout shows an example in which there are eight possible opcodes. Each opcode can

use zero, one or two effective addresses. All instructions are the same length which simplifies

the design of the machine. The use of fixed length instructions also makes the crossover operator

straightforward to implement when compared with variable length instructions as found in CISC

machines [Nordin 99a]. The details of what the opcodes do and the effective addresses is problem

specific and the number of functions and effective addresses will vary according to the problem.

The control information for a program consists of the program length and the raw fitness of the

program.
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4.2 Parallelism

When discussing parallelism it is important to distinguish between different forms. Here four types

of parallelism are used; intrinsic, geometric, algorithmic and asynchronous. These will now be

explained.

Firstly, the Handel-C language supports parallelism directly, as already discussed in Chapter

3, enabling efficient implementation of instructions that would normally be executed serially on a

standard microprocessor. This, in itself, gives a substantial increase in performance when compared

to a standard microprocessor. Since this form of parallelism is built into Handel-C, this is called

intrinsic parallelism.

The second use of parallelism is in the implementation of the Genetic Programming algorithm.

Chapter 2, Section 2.4.6, introduced parallelism as an attribute of GP. The type of parallelism found

in all the examples given is geometric parallelism, where a data set is partitioned into smaller units

and the processing is replicated on many processors.

A third form of parallelism – algorithmic parallelism – occurs where many tasks can be pipe-

lined, making fuller use of the available resources. Pipelining is common in hardware design and is

found in most modern microprocessors.

Lastly, a form of parallelism called asynchronous or relaxed parallelism occurs when two or

more tasks communicate on an occasional basis but operate independently, without any explicit

synchronisation.

4.2.1 Intrinsic Parallelism for a Hardware Implementation

Where possible the design exploits parallel execution of all simple statements. This is done regard-

less of the phase of GP (creation, fitness evaluation, selection and breeding) since there is no penalty

in executing two assignments in parallel. An example of intrinsic parallelism is the initialisation of

variables at the beginning of a function.

4.2.2 Geometric Parallelism for a Hardware Implementation

The type of geometric parallelism used is master-slave (Section 2.4.6), where the master stores the

population and a number of slaves evaluate the fitness of the individuals. Geometric parallelism is a

natural fit where the population is a global resource within the FPGA, or closely coupled RAM, and
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parallel fitness evaluations can be realised by replicating the fitness evaluating hardware. Because

the entire system is realised on a single chip, the communication overhead between the master and

the slaves (the evaluation functions), which is normally regarded as a bottleneck, is greatly reduced.

The time needed for communication between the master and the slaves is effectively the propagation

time for a signal from one part of the FPGA to another.

Since it is unlikely that there would be sufficient FPGA resources to be able to evaluate an

entire population at once, the population is divided into a number of smaller subsets and each subset

is evaluated in parallel. To simplify the logic, both the total population size and the number of

individuals in a subset is a power of 2. Parallelisation of the evaluation is implemented by replicating

the fitness function. This is achieved by using the inline keyword in Handel-C, which causes as

many copies of the hardware to be generated as required.

4.2.3 Algorithmic Parallelism for a Hardware Implementation

Pipelines have not been used in this initial feasibility study, though the opportunity for using them

to speed up the design is clear, as shown in some of the previously reported work using hardware to

implement GP and GAs, for example, [Scott 94] [Graham 96] [Kitaura 99] and others. The use of

algorithmic parallelism is explored in more detail in Chapter 5.

4.2.4 Asynchronous Parallelism for a Hardware Implementation

There is one task that is ideally suited to an asynchronous implementation - that of the Random

Number Generator (RNG). The RNG runs continuously in parallel with everything else, generating

a stream of random numbers which are used, as needed, by the rest of the design.

4.3 Random Number Generator.

An RNG, or more correctly a Pseudo Random Number Generator (PRNG), is used in two of the

major steps in GP. Firstly, during initial population creation, to create a diverse population, and

secondly, during the breeding phase, to select individuals for breeding and to choose a particular

breeding operator from one of crossover, mutation or copy. One of the most common PRNGs is a

Linear Congruential generator, often found as part of a computer language run-time library. These

use the multiply and divide operators and are discussed in more detail in Section 6.3. When using
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Handel-C, the use of the standard multiply and divide instructions is inefficient in terms of sili-

con because of the deep logic generated for the single cycle combinatorial circuits. Although the

problem with Handel-C and the multiply/divide logic may in the future be eased by the appearance

of FPGAs with built-in multipliers, because implementing multiply and divide logic using a Xilinx

XCV2000 FPGA requires a large amount of logic, the usual linear congruential generators normally

found were rejected. Instead, a Linear Feedback Shift Register (LFSR) design was used as suggested

by the FPGA manufacturers [Altera 01] and [Xilinx 01a]. A word size of 32 was chosen, as this

could be implemented efficiently on a standard modern CPU, and so the LFSR could also be im-

plemented using ISO-C. Implementing the LFSR in ISO-C was of interest during the development

of the GP algorithm (see Section 4.9.1 on page 79). It is important to choose a good polynomial to

ensure that the RNG can generate a maximal sequence of 2n � 1 random numbers, while keeping

the number of taps to a minimum for efficiency. Schneier [Schneier 96, page 376] gives a list of

such polynomials. For a 32 bit word the polynomial x32 � x7 � x6 � x2 � x0 was used. The block

diagram of the LFSR is shown in Figure 4.2. Only 4 taps are shown since x0 is always 1.

Figure 4.2: Linear Feedback Shift Register (LFSR) random number generator for the
32 bit polynomial x32 � x7 � x6 � x2 � x0. The � symbol is the 4 input logical exclusive

OR function (XOR). Only 4 taps are shown since x0 is always 1.

The RNG is designed so that a random number is generated in one cycle. The required number

of bits are then read from the 32 bit register, starting at bit 32 to give a random number. For

example, if the system has 8 instructions, then 3 bits are needed to encode the instruction. During

initial program creation, the random selection of an instruction uses the top 3 bits. Handel-C allows

efficient bit operations and the code to select the 3 bits is:

unsigned int 3 instruction;
instruction = randReg[31:29];

where randReg is the shift register variable.
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Seeding of the RNG is done by reading a 32 bit port during the initialisation phase. This allows

the RNG to be seeded from an external source, such as a time of day clock or other source of noise.

It also allows the RNG to be preset to a known seed for producing repeatable results.

After the design had been completed and some experiments had been run (Section 4.8), it was

suggested that this RNG is not ideal, because LFSRs are known to perform poorly in the serial test

described by Knuth [Knuth 69]. This prompted an analysis of the RNG, given in Chapter 6, Section

6.3, where it is shown that other RNGs can give better results.

4.4 Initial Program Creation

Programs are created initially by filling the array of instructions with random integers. The length

of the program l is then randomly chosen so that 0 � l � Lmax where Lmax is the maximum program

length. Because the opcode portion of the instruction can have any value from 0 to 2Nopcode � 1,

where Nopcode is the number of bits for the opcode, the function set must implement instructions

for all possible opcodes. That is, there must be 2Nopcode functions in F . This decision simplifies

the design of the program creation algorithm, and allows the mutation operator to be implemented

efficiently. The efficiency is achieved because all bit patterns are treated equally and logic is not

needed to handle special cases of missing instructions. The same principle applies to the register

portion of the instruction. If there are Nea bits for the register addresses, there must be 2Nea registers

or terminals.

4.5 Breeding Policy and Operators

To conserve memory, a steady state breeding policy was used. Tournament selection is used with a

tournament size of two. Larger tournament sizes makes little sense with very small populations.

4.5.1 Mutation

The mutation operator works by replacing one instruction with a new, randomly generated, instruc-

tion. The result is that a mutation can change zero, one or more of the instruction details. This

mutation operator is fairly crude and potentially destructive and further work could to be done to

evaluate the effect of such a heavy handed method.



4.5. BREEDING POLICY AND OPERATORS 66

4.5.2 Crossover

This work maintains a fixed maximum program size and copies segments from one program to

another. By exploiting the parallel nature of hardware, the effects of performing block memory

copies can be reduced to an acceptable level.

The crossover operator ensures programs do not exceed the maximum program length by se-

lecting crossover points in two individuals at random and exchanging the tail portions up to the

maximum program length. Crossovers that result in programs exceeding the maximum length are

truncated at the maximum length. This crossover operator was chosen to minimise the amount of

logic required and the number of clock cycles needed.

For two programs a and b, with lengths la and lb, two crossover points xa and xb are chosen at

random so that 0 � xa � la and 0 � xb � lb. The program size limit is Lmax. After crossover, the

new lengths are la � � min
���

xa � lb � xb ��	 Lmax � and lb � � min
���

xb � la � xa ��	 Lmax � .
This is illustrated in Figure 4.3 for two programs, where Lmax � 16, la � 9, lb � 12, xa � 1 and

xb � 11. This shows that after crossover, program b � has been truncated to length Lmax.
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Figure 4.3: Truncating crossover operator

The behaviour of this crossover operator is examined in detail, and some alternative crossover

operators are investigated in Chapter 6 .
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4.5.3 Reproduction

By exploiting the parallel nature of the hardware, a copy of an individual of length l requires l � k

clock cycles, where k represents the small overhead to set up the copy, currently 3 clock cycles. It

would also be possible to use more of the FPGA resources to perform reproduction in constant time

by copying all the instructions in one individual in parallel.

4.5.4 Calculating Operator Probabilities

The operators in GP are usually selected with fixed probabilities, so an efficient means of obtain-

ing a weighted distribution was required. Using the standard C inequality operators was rejected

because of the deep logic that they produce, and the consequent loss of performance. Therefore,

an alternative method was devised using bit masks. By using a bit mask and logical operators it

is possible to determine if a number lies in a given range. The following example uses an 8 bit

unsigned integer to determine if the value v lies between 0 and 31. i.e. the low 5 bits of v. This

represents 12.5% of the possible values of v.

bool f(unsigned int v)
{

unsigned int mask1, v1;
mask1 = 0xe0;
v1 = v & mask1; // v1 is true if v is greater than 31
return !v1; // returns true if v < 32

}

The operators were selected using the following probabilities. Mutation 12.5%, Crossover 66%,

Reproduction 21.5%. These values were arrived at after experimentation.

4.6 Performance Comparison Methodology

As already noted, there are potentially four types of parallelism being used in this work. To make

any performance comparisons meaningful, the different types of parallelism in operation must be

considered when making any comparisons with other implementations of the same algorithm. For

this reason the performance comparison is made up of two parts. Firstly, a comparison of the design

with a standard microprocessor is made, but without the geometric parallelism. That is, only a single

fitness evaluation is made at any one time. Secondly, a comparison is made for different degrees of

geometric parallelism.
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Comparing the performance of the FPGA system without geometric parallelism to a modern

RISC processor is considered reasonable on the grounds that this comparison has been used previ-

ously in some of the work reviewed in Chapter 3.

4.7 Experimental Setup

To test the feasibility of implementing a GP system in hardware using Handel-C, a number of

experiments were devised. This section describes the environment used for the experiments.

There were four aims of running these experiments:

1. To determine whether the system could be implemented using Handel-C and to verify that the

design would fit on an FPGA.

2. To determine if a limited GP system could solve the problems chosen.

3. To obtain some indicative performance comparisons between a traditional C implementation

and a hardware implementation.

4. To find out whether the design was realisable as hardware and to implement the design in

hardware.

To meet the above aims, the problems were run using five different environments. Firstly, as a

standard ISO-C application running under Linux. This was to prove the initial program operation

and to enable the application to be debugged using standard GNU tools. The program was compiled

using gcc v2.95.2 and executed on a 200 MHz AMD K6 PC running Linux.

Secondly, the program was compiled using Handel-C and optimisations were made to the code

to increase parallelism, reduce logic depth and minimise the gate count.

Thirdly, the Handel-C implementation was run using the Handel-C simulator. This gave the

number of clock cycles needed to execute the program.

Fourthly, the C code was compiled using a cross compiler and executed on an instruction sim-

ulator for the Motorola PowerPC architecture. This was performed to obtain a count of instruction

and memory cycles needed for a modern processor. The choice of the PowerPC was made on the

basis of a readily available simulator for the PowerPC. The PowerPC simulation was performed by
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using gcc 2.95.2 configured as a PowerPC cross compiler. This version of the program was opti-

mised so as to have a minimal start-up overhead and to avoid using any I/O. It is therefore as close to

the FPGA program as possible, allowing a meaningful comparison of performance to be made. The

simulator itself was psim [Meissner 01], which is built into the GNU debugger (gdb) from version

5.0 onwards. Psim can also be run as a stand-alone application. Appendix C gives more details of

how psim was configured and run.

Fifthly, the output from Handel-C was used to generate a hardware layout for the place and route

tools, which gave the maximum clock frequency the design could achieve, as well as an indication

of the FPGA resources required.

The design was then transferred to hardware to verify the correct operation of the program.

For the Handel-C simulation and hardware implementation, the code was compiled using Handel-

C v3.0 using maximum optimisation. The final FPGA configuration data was produced using Xilinx

Design Manager version 3.3i for a Xilinx Virtex XCV2000e-6 chip hosted on a Celoxica RC1000

development board. A block diagram of this board is shown in Figure 4.4 and a photograph of

the board showing the Xilinx FPGA is shown in Figure 4.5. This board contains a Peripheral

Component Interconnect (PCI) bridge that communicates between the RC1000 board and the host

computers PCI bus, four banks of Static Random Access Memory (SRAM) and a Xilinx FPGA.

Logic circuits isolate the FPGA from the SRAM, allowing both the host CPU and the FPGA to

access the SRAM. The SRAM can be configured as either 2 MiB by 8 bits each, or 512 KiB by

32 bits. For this work, the SRAM was configured as 32 bits wide.

The host computer is responsible for downloading the configuration data to the FPGA. The host

can then communicate with the FPGA to control the operation, send data to and read data from the

FPGA. A program written to run on the host performed the following operations:

begin program host-control-1
reset RC1000
configure FPGA
seed the random number generator in SRAM
signal FPGA to start
wait for FPGA to complete
read results from FPGA using status word
search for best individual
output best individual

end
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Figure 4.4: Block diagram of the Celoxica RC1000 FPGA board. It contains a Periph-
eral Component Interconnect (PCI) bridge that communicates between the RC1000
board and the host computers PCI bus, four banks of Static Random Access Mem-
ory (SRAM) and a Xilinx FPGA. Logic circuits isolate the FPGA from the SRAM,
allowing both the host CPU and the FPGA to access the SRAM. The board also con-

tains two PCI Mezzanine Card (PMC) connections to host optional I/O modules.

Figure 4.5: Photograph of the RC1000 development board. The large device near the
centre of the board is the Xilinx FPGA. The SRAM and PCI bridge are located on the

other side of the board. Photograph reprinted with permission of Celoxica Ltd.

The FPGA design wrote its output to an 8 bit output port as a sequence of key/data pairs. This

data was read by the host PC and saved to a disk file for later analysis. A disassembler was written

to decode the output data for analysis.
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When measuring the clock counts of both the Handel-C simulation and the PowerPC simulation,

the code was modified to run to the maximum number of generations.

4.7.1 Estimating PowerPC Clock Cycles

Estimating the number of clock cycles required to execute the PowerPC version of this program

is a complex process. Timing is dependent on how well the compiler has arranged the instruction

flow to avoid pipeline stalls, accurate branch prediction, how much of the program is in instruction

cache and how many external memory reads/writes are required. It also depends how fast the

hardware is, especially the memory subsystem. From the Motorola data sheet in the MPC860

Users Manual [Motorola 98], an external load (read) takes 2 cycles when the data is in cache and

3 additional clock cycles when it is not in cache. A write to memory requires 1 cycle. A best

case instruction when executed from data cache requires 1 cycle for most common instructions. An

estimate of the number of clock cycles required by a program is given by:

Clocktotal � �
r � �

1 � dhit ��� 3 � � i (4.1)

where r is the number of reads from memory, dhit is the percentage of reads satisfied by the data

cache. This is estimated to be 60%, based on anecdotal evidence. i is the number of cycles required

to execute the program, including pipeline stalls and branch prediction failures. The figure for i also

accounts for all writes to memory and all reads from cache.

The instruction and read counts are taken from the output of the instruction simulator. Equation

4.1 assumes that there are no external memory wait states caused by slow memory or bus contention,

and that instruction scheduling is optimal.

4.8 Experiment Descriptions and Results

Three experiments were devised to prove the general concept of GP in hardware using Handel-C

and to start to investigate the behaviour of the GP system when changing the number of parallel

fitness evaluations. Two problems were used for the experiments. The limited memory available,

without using the Block Random Access Memory (BRAM) built into the Xilinx FPGA, means that

the problems need to be sufficiently simple to be solved using a small program size and small
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population size. During program development, the population size and program size were modified

until reasonable values were found that allowed the problems to be solved, and allowed the code

to be compiled on the workstation using Handel-C. The last point arose because the Handel-C

compiler requires substantial computational resources so that arbitrarily large designs cannot be

compiled successfully. The figures arrived at were a population size of 16, together with a program

size of 8 or 16 depending on the problem chosen. These figures also allowed up to 4 parallel fitness

evaluations to be accommodated.

The two problems chosen were a regression problem and a Boolean logic problem. The regres-

sion problem uses integer values, since Handel-C does not support a native floating point data type.

The regression problem chosen is x � a � 2b. The Boolean logic problem is the 2 bit XOR function

x � a � b.

The problems were realised as a single source file with preprocessor directives controlling prob-

lem specific sections.

In both problems the raw fitness was arranged to be zero for a 100% correct program, thereby

reducing the amount of logic required to test for fitness.

In both problems, the run was terminated if a 100% correct program was found, or if the maxi-

mum number of generations was reached.

4.8.1 Regression Problem

The objective of this problem is to find a symbolic expression that fits 4 data points.

Description

In common with all GP work, each problem typically requires the selection of appropriate functions.

The functions are implemented as opcodes for a problem specific processor. For the regression prob-

lem using standard GP, the functions include Addition, Subtraction, Multiplication and Division. In

this implementation eight instructions were chosen, requiring three bits. Each instruction can spec-

ify up to two registers, and there are four registers available, requiring 2 bits each. Therefore each

instruction requires 7 bits of storage.

The instructions for this problem are:

�"!$# # �&%
n 	 % m � adds the contents of Rm to the contents of Rn and places the result back into Rn.
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�('*) + �&%
n 	 % m � subtracts the value in Rm from the value in Rn and places the result back into Rn.

�('*,.- �&%
n � shifts the contents of Rn left by one bit, leaving the result in Rn.

�('*,�/ �&%
n � shifts the contents of Rn right by one bit, leaving the result in Rn.

�103254 is a no-operation function. This was included to make the number of instructions a power

of 2.

�1,.! -56 �&%
n � causes the evaluation to finish, returning the value in Rn.

�"-$#3798 �&%
n 	;: m � causes the constant Km to be placed into Rn.

�=<>8�4?75@BA �&%
n 	 % m � tests the value in Rn. If the value is zero, then jumps to the location in Rm

modulo program size.

Program termination occurs on the following conditions:

1. a halt instruction is encountered;

2. the last instruction in the program is executed;

3. a jmpifz instruction has caused a loop to be created, and a predetermined number of loops

have been executed. The counter is set to zero at the start of the program and is incremented

for every jmpifz instruction.

The machine that implements these instructions can execute one instruction every two clock cycles,

including instruction fetch, decode, operand address evaluation and operand read/write. To speed

this up even further it would be possible to build a pipeline, reducing the cycle count to one per

instruction, if there were no jmpifz instructions.

Four random constants are made available to each individual. These are created once during the

initial construction of individuals.

Most examples of regression in the literature include the multiply and divide functions. Since

these two functions generate very deep logic using the default Handel-C operators, these were re-

placed with single bit shift left and shift right operators, which generate much shallower and there-

fore faster logic, and have the effect of multiply by two and divide by two instructions respectively.

The jump-if-zero opcode was included to allow loops or conditional expressions to appear.
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The full set of parameters for the regression problem are given in Table 4.1.

The input values a and b were placed in registers R0 and R1 before the fitness evaluation. The

result x was read from register R0 if the program was terminated at the end, or the value in Rn if

terminated by a ,.!B-C6 instruction.

The fitness data was pre-computed once at the start of the program and made available to all

copies of the fitness evaluation.

Table 4.1: Parameters for the regression problem

Parameter Value
Population size 16
Functions !$#B# �&%

n 	 % m � , '*)B+ �&%
n 	 % m � , 'D,.- �&%

n � , 'D,�/ �&% n � , 032E4 ,,.!B-C6 �&%
n � , -C#37D8 �&%

n 	9: m � , <�8�4?75@ A �&%
n 	 % m �

Terminals 4 registers
Word size 8 bits
Max. program size 8
Generations 511
Fitness cases 4 pairs of values of a and b
Raw fitness The absolute value of the difference between the returned

value and the expected value

Regression problem results

The results from the simulator for this problem are given in Table 4.2. The figures for the PowerPC

were calculated using the method described in Equation 4.1.

Table 4.2: Results of running the regression problem

Measurement PowerPC Simula-
tion

Handel-C (Single
fitness evaluation)

Handel-C (4 par-
allel fitness evalu-
ations)

Cycles 16 612 624 351 178 188 857
Clock frequency 200 MHz 25 MHz 19 MHz
Estimated gates n/a 142 443 228 624
Number of slices n/a 4 250 6 800
Percentage of slices used n/a 22% 35%
Speedupcycles 1 47 88
Speeduptime 1 6 8
Elapsed time 0.083 s 0.014 s 0.0099 s
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The estimate of NAND gates is generated by Handel-C as an indication in a vendor independent

fashion of the size of the required FPGA. The number of slices used is generated by the place and

route tools. The percentage of Slices used is based on the Xilinx XCV2000-BG560-6 chip, which

has a total of 9 600 CLBs, arranged as an 80x120 grid. Each CLB contains two slices, giving a total

of 19 200 Slices.

The speed-up factors are given for two conditions, the raw cycle counts and the actual time taken

to execute the programs. The first is a comparison made in terms of raw clock cycles. This treats

the two implementations as though they were operating at the same clock frequency. The second is

a comparison between the typical clock rate for the PowerPC and the fastest frequency the FPGA

could be clocked as reported by the place and route tools.

The speed-up factor is given by:

Speedupcycles � Cyclesppc

Cyclesfpga
(4.2)

and the speed-up factor for time is given by:

Speeduptime � Speedupcycles � Freqfpga

Freqppc
(4.3)

An (annotated) example program from this problem found in generation 16 of one run is:

shl(r1) // r1 = b*2
add(r1,r2) // nop (all registers = 0 at the start)
add(r0,r1) // r0 = a + (b*2)
halt(r0) // Return the result in r0

It was found that none of the solutions used the -C#3798 instruction and therefore none of the

random variables.

The difference in the maximum attainable clock frequency between the single fitness evaluation

case and the 4 parallel fitness evaluation case can be explained by the increased number of logic

elements required. This in turn requires more routing resources and more delays.

4.8.2 XOR Problem

The objective of the XOR problem is to find a program that solves the 2-input Boolean exclusive

OR function, using the four 2-input Boolean functions FBGBH?	�I % 	9G�I % and GJF$GBH .
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Description

The XOR function uses the four basic two input logic primitives F$GBH?	�I % 	9G�I % 	KGJF$GBH . Each of these

functions takes two registers, Rn and Rm. The result is placed into Rn 
 These have been shown to

be sufficient to solve the Boolean XOR problem [Koza 92]. Execution is terminated when the last

instruction in the program has been executed.

The two inputs a and b were written to registers R0 and R1 before the fitness evaluation, and the

result x read from register R0 after the fitness evaluation.

Table 4.3: Parameters for the XOR problem

Parameter Value
Population size 16
Functions FBG$H �&% n 	 % m �L	�I %��&% n 	 % m ��	DG�I %��&% n 	 % m ��	MGJF$GBH �&% n 	 % m �
Terminals 4 registers
Word size 1 bit
Max program size 16
Generations 511
Fitness cases 4 pairs of values of a and b
Raw fitness The number of fitness cases that failed to yield the ex-

pected result.

The full set of parameters is given in Table 4.3. With only four functions for this problem, each

instruction requires six bits.

XOR problem results

The XOR problem was executed using the same environments as the regression problem. The

results are presented in Table 4.4.

An (annotated) example program from this problem found in generation 86 of one run is:

or(r3,r1) // r3 = b
or(r3,r0) // r3 = a � b
or(r2,r1) // nop (since r2 is never used)
nand(r0,r1) // r0 = ab
and(r0,r3) // r0 =

�
a � b � ab

The final result
�
a � b � ab is equivalent to

�
ab � � �

ab � which is the more familiar logic equation

for the exclusive OR function.
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Table 4.4: Results of running the XOR problem

Measurement PowerPC Simula-
tion

Handel-C (Single
fitness evaluation)

Handel-C (4 par-
allel fitness evalu-
ations)

Cycles 27 785 750 715 506 384 862
Clock Frequency 200 MHz 22 MHz 18 MHz
Estimated Gates n/a 89 205 142 550
Number of Slices n/a 4 630 7 434
Percentage of
Slices Used

n/a 24% 38%

Speedupcycles 1 38 72
Speeduptime 1 4 6
Elapsed time 0.14 s 0.032 s 0.021 s

4.8.3 The Effect of Parallelising the Fitness Evaluation.

To quantify the benefits of using geometric parallelism, the XOR problem was re-implemented,

using four different values for the number of parallel fitness evaluations, and run using the Handel-

C simulator. The purpose of this experiment was not to successfully evolve programs but rather to

explore how much the parallelism affected the performance.

A total population size of 8 was chosen, together with a maximum of 4 nodes per individual.

These values appear to be very low but they were chosen to allow the programs to be compiled

by Handel-C, since it was found that larger values caused the compilation of the simulation to fail,

due to memory exhaustion on the workstation. The number of individuals processed in parallel was

modified each time, using the values 1, 2, 4 and 8. Data was collected for the number of cycles

to perform the initial population creation, the number of cycles to evaluate the first generation and

the number of cycles to perform the breeding operators on the first generation. These are shown in

tabular form in Table 4.5.

Figure 4.6 shows the effect on the number of cycles for one fitness evaluation, with different

numbers of parallel fitness evaluations. It can be seen from this graph that as the number of parallel

fitness evaluations increases, so the benefit tails off. This is due to the constant overhead associated

with setting up the fitness evaluations.

The total number of cycles for the problem is shown in Figure 4.7. The program was run for 16

generations. Here the effect of the breeding phase can be seen. The benefit gained from doubling

the number of parallel fitness evaluations from four to eight only reduces the cycles required by
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Table 4.5: Cycle counts and gate estimates for various stages of the GP and different
numbers of parallel fitness evaluations. Where N = Number of parallel fitness evalu-
ations. I = Initial population creation (cycles). E = Evaluation of the first generation
(cycles). B = Breeding of first generation (cycles). T=Total cycles. G=Gate estimate

(NAND gates).

N I E B T G
1 214 324 123 6517 35 666
2 214 180 123 4669 43 314
4 214 108 123 3549 58 588
8 214 60 123 2877 89 136
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Figure 4.6: Number of cycles to evaluate one fitness function evaluation for the popu-
lation with different numbers of parallel fitness evaluations.

18%. The contribution of the initial population is about 7.5% of the total cycles, when 8 parallel

evaluations were performed. This shows clearly that performing fitness and breeding serially does

not allow this implementation to exploit parallelism to its best advantage.
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Figure 4.7: Total number of cycles for the problem with different numbers of parallel
fitness evaluations.
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4.9 Discussion

4.9.1 Consequences of Using a High Level Language

The two problems presented here, though trivial when compared to many problems that have been

solved using GP, have proved the general concept of using Handel-C to produce GP systems that

can be run on FPGAs. The use of a C like language has some valuable properties. Probably the

most significant is that the algorithm can be developed and tested using traditional software tools.

This is an important consideration for software engineering, in that there is no need for a software

engineer to become proficient in hardware design. This opens up a whole set of possibilities for

implementing critical functions in hardware.

However, the issue of productivity needs to be considered here. Compiling the ISO-C imple-

mentation using gcc took around 3 seconds to complete, at which time testing could commence.

When using Handel-C to compile a simulation, the initial compilation phase took several minutes,

and compilation for a host simulation run using Microsoft Visual C++ V6.0 took around 10 min-

utes. Finally, targeting the FPGA required about 30 minutes for Handel-C to produce the netlist,

and several hours for the place and route tools to create the FPGA configuration data. Clearly, using

Handel-C for this particular problem needs careful preparation and the judicious use of traditional

software tools during the early development phase. It must be stressed that the largest bottleneck is

the place and route tools, a problem that any user of FPGA techniques will be familiar with. For

reference, all Handel-C and place and route work was performed on a 500 MHz Pentium-II work-

station with 384 MiB of RAM running Windows NT4.0. The full capabilities of the FPGA cannot

be exploited using such a workstation since the demands on memory are large, evidence suggests

that at at least 1 GiB of memory would be required to compile and place/route a design that would

fill a Xilinx XCV2000e part (Virtex-E) (see Appendix C).

When using VHDL to design the hardware it is possible to use the FPGA vendor’s analysis and

simulation tools to get an accurate picture of how the hardware will behave and get an indication

of the expected performance. For example, Scott [Scott 94] shows how by using the simulation

tools, the design could improved. However, when using Handel-C it is slightly more difficult to get

detailed information on how the design will operate without first going through a place and route

cycle. Because of the lack of detailed timing data it is harder to tune a design in Handel-C because

of the abstraction introduced by Handel-C.
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4.9.2 The Effect of Increasing Parallelisation of the Fitness Function

The results in Section 4.8.3 show that, using the current implementation and parameter values, the

benefits of increasing the number of parallel fitness evaluations falls off above 4. This is due to the

breeding phase taking a significant portion of the cycles when compared to the fitness evaluation.

This is a direct consequence of the linear representation of the individuals and the unsophisticated

crossover operator. It is also a consequence of performing the breed and evaluations in series rather

than in parallel. The effect is also amplified because of the simplicity of the problems chosen.

Clearly, more work needs to be done in the area of representation and crossover if the benefits of

parallelisation are to be fully realised using this implementation.

4.9.3 Performance Considerations and Potential Improvements

The work reviewed in Chapter 3 indicated that a performance improvement over a software imple-

mentation of two or three orders of magnitude has been achieved by implementing part or all of a

GA in hardware. The work described in this chapter has not achieved that level of improvement.

This is probably due to the straightforward translation of a serial algorithm into hardware, with-

out considering algorithmic parallelism from the outset, and the limited number of parallel fitness

evaluations that could be accommodated.

To achieve maximum performance, algorithmic parallelism or pipelining should be used to per-

form the selection, breeding and fitness evaluation phases in parallel. In the steady state model of

GP with a large population, the system could evaluate a number of individuals, while the breeding

of previously evaluated individuals could be carried out in parallel, effectively forming a pipeline.

An estimate of the worst case performance, if the system were implemented using a pipeline,

can be made by assuming that:

(a) The fitness evaluation will require the most cycles and will therefore be the slowest stage

in the pipeline. This means that we only need to consider how many cycles will be needed for the

fitness evaluation. This is shown in Table 4.5 as being reasonable.

(b) Each program is run exactly once per fitness case and that there is no looping or recursion.

(c) All stages are fully pipelined, that is to say that creation, selection, fitness evaluation, random

number generation and breeding are all performed in parallel so that a result is produced every c

cycles.
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(d) All programs are of maximum length.

The number of cycles C required is given by:

C � k �ON G � l � M � n � c
p P (4.4)

where G is the number of generations, l is the maximum program length, M is the population size,

n is the number of fitness cases, c is the number of clock cycles per instruction or function, p is the

number of fitness evaluations performed in parallel, and k is the fixed overhead for startup, general

control and generating the final result.

For the XOR problem described in Section 4.8.2, assuming k � 500, G � 511, l � 16, M � 16,

n � 4, c � 2, and p � 4, this gives a total cycle count of 262 132, a potential improvement of 1.4

times over the results shown in Table 4.4.

Clearly, the implementation of a fully pipelined GP system must be considered for future work.

A further performance boost is possible by increasing the value of p. When the population is

moved from memory constructed from Look Up Tables (LUTs) and Flip Flops to on-chip block

select RAM and/or external RAM, it should be possible to accommodate more logic to perform the

fitness evaluations and therefore increase p from 4 to a significantly larger value. A value of 32 for

p would yield a cycle count of 33 204, which would mean that Speedup time for the XOR problem

would be 75.

4.9.4 The Potential of Problem Specific Op–Codes

A key difference between this work and that of Nordin and Banzhaf [Nordin 95b], which used

a standard microprocessor, is that we are not constrained to a function set that a microprocessor

designer sees fit to implement. That is to say, the functions can be designed to have a higher level

of abstraction than machine instructions. While the experiments presented in this chapter were

restricted to fairly standard microprocessor like opcodes, other problems need not be so restricted.

One example of a problem where the function set is expressed at a high level of abstraction is the

Evolution of Emergent Behavior in [Koza 92] page 329. Here the function and terminal set require

several steps to be performed. If implemented using a Reduced Instruction Set Computer (RISC) or

Complex Instruction Set Computer (CISC) architecture, each step would require several instructions

to be executed and therefore require more than one clock cycle to execute. With Handel-C the
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functions could be encoded efficiently and compactly. An example from the Evolution of Emergent

Behaviour work is the implementation of the PICK-UP operator, which picks up food (if any) at the

current position if the ant is not already carrying food. Using Handel-C the operator can be written

so that it requires one clock cycle:

unsigned char grid[32][32];
unsigned int x,y,carrying_food;

if(!carrying_food && grid[x][y]) {
par {

carrying_food = 1;
grid[x][y] = 0;

}
}

As a comparison, when compiled using gcc, this sequence of statements requires 21 RISC (Pow-

erPC) instructions to be executed when the if expression evaluates to true.

4.10 Summary

This chapter has presented an initial implementation of a GP system written in Handel-C, which can

then be used to configure an FPGA. The GP system includes initial population creation, fitness eval-

uation, selection and breeding operators, and can output the result. To demonstrate the viability of

this approach, two simple problems have been solved. The performance of the FPGA implementa-

tion is better than the equivalent software implementation without using parallel fitness evaluations.

When parallel fitness evaluations were used, the performance increased as well. However, simply

translating a serial algorithm into hardware does not exploit the capabilities of the hardware fully.

To achieve even better performance the system should make use of pipelining.

To extend the capabilities of this work further, a method of storing the population in external

RAM is needed. To accommodate off-chip RAM, which can only be read or written to once per

clock cycle, and which has a limited word size, development of an efficient coding scheme will need

to be devised and it is likely that a pipelined design would be needed to get the most benefit from

using external RAM. The potential for realising even better performance by using a fully pipelined

design is clear, as is increasing the number of parallel fitness evaluations. These ideas are explored
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in the next chapter which uses pipelining to improve throughput and external RAM to store the

population.



Chapter 5

An Optimised Implementation

The system described in Chapter 4 stored the population directly in on-chip Look up Table

(LUT) memory. It also used a sequential model of operation. Consequently, it suffered from two

major deficiencies. Firstly, because of the inefficiencies of using LUTs to store individuals, the

size of the population that could be handled was very small – in the region of 16 individuals. Sec-

ondly, the sequential nature of the select-breed-evaluate sequence resulted in a non-linear relation-

ship between the number of parallel evaluations and the speed-up observed. This chapter describes

a number of architectural changes that address the issues of population size and throughput.

The chapter begins with a description of the architectural changes. The experimental setup is

then presented together with some experimental results that illustrate the effect of the changes. The

changes are then discussed and areas for further work are suggested.

5.1 System Architecture

5.1.1 Extending the Population Size

In the revised architecture, large populations are supported by storing the entire population in off-

chip Static Random Access Memory (SRAM). The Celoxica RC1000 board has 8 MiB of SRAM

arranged as 4 banks of 2 MiB that can be directly addressed by the FPGA. Each bank is configured

as 512 Ki 32bit words. One bank is used for storing the results of the run (fitness and lengths of each

individual), leaving three banks available for the population. The total population size is determined

84



5.1. SYSTEM ARCHITECTURE 85

by the program size chosen and the size of the program nodes. Table 5.1 illustrates the potential

range that can be accommodated for a node size of 32 bits.

Table 5.1: Possible population sizes when using three 2 MiB memory banks and a
word size of 32 bits for different program sizes.

Max program Length (words) 16 32 64 128 256 512 1024
Max population size 98 304 49 152 24 576 12 288 6 144 3 072 1 536

No attempt has been made to compress more than one node into a 32 bit word. If even larger

populations are needed then this could yield a possible 4 fold increase assuming an 8 bit node.

Because access to external memory is a bottleneck, a small working subset of the population as well

as the total population fitness values and some control information is kept in on-chip Block Random

Access Memory (BRAM) on the FPGA where they can be accessed more efficiently by the logic.

From the survey in Chapter 2, Figure 2.10 on page 36, it can be seen that these population sizes

would allow many GP problems to be implemented using the RC1000 hardware.

External SRAM can only be written to or read from once per clock cycle, so care was taken in

the design to ensure that parallel access to memory would not occur. Similarly, the on-chip BRAM

must not be accessed more than once per clock cycle so concurrent access to the BRAMs is achieved

by partitioning the BRAMs into smaller blocks that can be accessed in parallel, and by using the

dual port features of the BRAMs.

The internal program representation using a linear sequence of instructions and a register ma-

chine remains unchanged.

5.1.2 Replacement Strategy

In conventional steady-state GP, once an individual has been evaluated it replaces the worst indi-

vidual in the population. In a hardware implementation with parallel fitness evaluations this is ex-

pensive to implement since a global search is required. An alternative to this, called survival-driven

evolution, has been successfully used by Shackleford et al. [Shackleford 01]. In Shackleford’s

scheme, only offspring that are fitter than the worst of their two parents will survive into the next

generation by replacing one of the parents. This removes the need for any global search. A similar

approach is used by Yoshida et al. [Yoshida 01].

This scheme was adapted to the current work by maintaining a record of the fitness of one of the

parents of each individual. After crossover, each new individual is composed of two parts, one from
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each parent. One parent is designated the root parent, and the other the tail parent. The fitness of the

root parent is used to decide whether a child should replace its parent in the main population after its

fitness has been evaluated. If a child has the same fitness or better fitness than its root parent, it will

replace its root parent in the main population. In the following example, x
�
n � is used to indicate an

individual x with fitness n and x � � n � indicates a child individual whose root parent is x. The lower

the value of n the fitter the individual. Consider two individuals a
�
10 � and b

�
8 � which have been

selected for breeding. After crossover, two new individuals, a � and b � , are created. After fitness

evaluation, these have fitness values of a � � 9 � and b � � 9 � . Because a � � 9 � is better than its root

parent, a
�
10 � , it will replace a

�
10 � in the main population. However, b � � 9 � is not as fit as its root

parent, b
�
8 � , so it will not replace its root parent in the main population.

5.1.3 Using Pipelines to Improve Performance

Implementing algorithmic parallelism, or pipelining, is a frequently used technique in hardware

design that reduces the number of clock cycles needed to perform complex operations and has been

used in previous hardware implementations of GAs and GP 3.3.2. In particular, Scott [Scott 94]

and Shackleford et al. [Shackleford 01] used coarse grained pipelines so that the evolutionary steps

and the fitness steps were carried out in parallel. The revised design uses two types of pipelines:

a coarse grained control pipeline, and fine grained execution pipelines. The coarse grained control

pipeline is responsible for executing the fitness evaluation in parallel with the other stages of GP.

The four major GP operations are divided among the stages of the pipeline: selection of individuals

from the population for breeding, breeding new individuals, fitness evaluation of the individuals and

replacement of the new individuals in the population. To control access to the main population in

SRAM during the selection phase, which reads individuals from SRAM into BRAM, and writing

modified programs back to SRAM, these two operations are combined into one stage so that they

execute in sequence. Breeding is closely tied to selection and needs to occur before evaluation can

take place so this is combined into the selection phase. Figure 5.1 illustrates the flow of control and

the coarse-grained control pipeline.

Stage 1 runs continuously, with the random number generator creating a new random number

every clock cycle. The random numbers are available to the rest of the machine with no overhead.

Stage 1 also contains the logic for counting cycles. Stage 2 is the main GP machine and consists of
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Figure 5.1: Overall control flow of the pipelined GP system. Stage 1 runs continuously
generating random numbers and counting cycles. Stage 2 is the main GP machine
which is itself a pipeline consisting of two stages. The multiple instances of Fitness
Evaluation indicates that there may be many copies of this function, all operating in
parallel. The pipeline in Stage 2 is formed by feeding the output of Stage 2a into

Stage2b.

two sub-stages. Communication between the WriteBack/Select/Breed sub-stage (stage 2a) and the

Evaluate/Replace sub-stage (stage 2b) is via a two dimensional array of individuals in block RAM,

indexed by a global phase index which is toggled each time stages 2a and 2b complete. The Write-
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Back phase updates the main population in SRAM with the result of the preceding Evaluate/Replace

phase. The Select phase selects a series of two parents, using tournament selection, and copies the

selected individuals from SRAM to the on-chip BRAM. The Breed phase then creates a series of

new individuals ready for stage 2b to use. Stage 2b performs parallel evaluations of the individuals

and then determines which individuals should be replaced. The individuals identified for replace-

ment are in turn written back to the main population at the start of the next WriteBack/Select/Breed

sub-stage. The wait between evaluation and replacement is needed because both selection and re-

placement require access to the global fitness vector. In practice, the wait only comes into play

when the evaluation phase takes less time than WriteBack and Selection which only happens for

very simple fitness functions.

The operation of the design is shown in Figure 5.2 where the first six iterations of stages 2a and

2b are shown. The diagram shows the main population, held in SRAM, and its associated control

data. It also shows the state of the two sub-sets of the main population held in BRAM. These

are labelled BRAM X and BRAM Y. The illustration shows the case where the design has been

configured for two parallel fitness evaluations. If more parallel fitness evaluations are configured,

then BRAM X and BRAM Y will contain more individuals. The population size in this example

is 8. The following describes the operation of the design in detail for the first six iterations of the

main loop of stage 2 in Figure 5.1, starting after the initial program creation stage. The worst fitness

value is 15.
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Figure 5.2: Illustration of the operation of the pipelined implementation.
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Step1.

Stage 2a. Two individuals, b and d, are selected, using tournament selection, and copied

from SRAM into BRAM X. The control flags are updated to indicate that b and d are no

longer available for selection. This is indicated by the solid block at the bottom right of the

individual. After selection, two new individuals are created using the breeding operators.

These are denoted b* and d*.

Stage 2b. At this point, there are no individuals in BRAM Y, so nothing will be done in this

step.

Step 2.

Stage 2a. Two new individuals, f and h, are chosen for BRAM Y. Note that individuals b and

d were not valid candidates for selection. Again, the control flags are updated to indicate that

individuals f and h cannot be selected.

Stage 2b. Individuals b* and d* in BRAM X are evaluated. When the evaluations are com-

plete, the individuals have new fitness values. These fitness values are used to determine

which, if any, of the individuals are better than their parents, and so can be written back to the

main population. The replacement strategy is described in Section 5.1.2. If an individual has

the same fitness or is fitter than its parent, then it is marked as being ready to be written back

to SRAM. This is shown by the filled block at the top right of the individual.

Step 3.

Stage 2a. Individuals marked for being written to SRAM in BRAM X ( b* and d*) are copied

back to SRAM. This updates the individual programs in SRAM and updates their fitness

values. It also clears their control flags so that they are now available for selection. When the

WriteBack has completed, two new individuals (d and a) are selected and copied to BRAM

X. Note that both of the individuals just written back ( b and d) were valid candidates for this

selection.
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Stage 2b. The individuals in BRAM Y are being evaluated, and their replacement status is

also updated. Both individuals f* and h* are better then their parents, so they will be written

back to SRAM.

Step 4.

Stage 2a. Individuals b’ and h’ are selected and copied to BRAM Y. These are used to create

two new individuals b’* and h’*. The notation b’ and h’ indicates that these individuals have

already been modified once in a previous step.

Stage 2b. Individuals d* and a* in BRAM X are evaluated and their replacement status is

marked. Note, in this step, individual d* has a worse fitness value than its parent, d, so will

not be written back to the main population in SRAM. However, individual a* is better than

its parent, a, so is scheduled to be written back.

Step 5.

Stage 2a. Individual a* is written back to the main population and the control flags for indi-

viduals a’ and d’ are cleared. Two more individuals, e and c, are chosen and copied to BRAM

X.

Stage 2b. Individuals b’* and h’* in BRAM Y are evaluated. Individual h’* has the same

fitness as its parent and is therefore scheduled to be written to SRAM in the next step.

Step 6 to n.

The above sequence continues until the required number of generations have been completed.

Execution finishes by writing any valid individuals from BRAM to SRAM before outputting

the results of the GP run.

A finer grained level of pipelining is implemented in the fitness evaluation function. To reduce logic

depth, and hence increase the clock frequency, it is often advantageous to split a complex expression

into more but simpler expressions. This usually requires more clock cycles, but by pipelining the

operations an effective single cycle throughput can be achieved. In this design, the function read,

and decode is pipelined with the function evaluation, though the effectiveness of this is problem

specific.
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5.1.4 Measuring Performance

To compare the performance of different implementations, a way of measuring the number of cycles

used by the FPGA is needed. One possibility is to use the DK1 simulator, but in large designs with

long running times this can take many hours of running which is often impractical. An alternative is

to include a cycle counter in the design which can be read by external programs. The internal cycle

counter runs in parallel with the rest of the hardware, incrementing a counter once per clock cycle.

This approach could be extended to providing fine-grained measurement of the cycles required

by the individual phases, which would be valuable for evaluating the detailed performance of the

design.

5.1.5 Obtaining the Results From a Run

Once the GP machine has finished a run, the best program needs to be communicated to the outside

world. The individual programs are already in SRAM, so they can be read directly by the host. The

program fitness and lengths are copied from BRAM to SRAM when the GP machine has finished

so they can also be read by the host. In addition, the cycle count(s), and other parameters are made

available to the host via SRAM.

5.2 Experimental Setup

The method of communication between the RC1000 board and the host control program was modi-

fied from that described in Chapter 4. The programs were held in the on-board SRAM so they could

be accessed directly by the host control program. Once the run had completed, the FPGA wrote

the run details to one of the SRAM banks so that the host control program could also gain access

to these. Access to the on-board SRAM was achieved using DMA via the PCI bus. Consequently

the host control program needs to be more sophisticated. The following is the pseudo-code for the

revised host control program.
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begin program host-control-2
reset RC1000
configure FPGA
seed the random number generator
signal FPGA to start
wait for FPGA to complete
DMA GP control data to host
DMA GP population to host
search for best individual
output best individual

end

The control data contains sufficient information for the host control program to identify the problem

and the run-time parameters, so that it can present the results of the run without requiring a priori

knowledge of the problem being run. The control data contains the problem type as one of an enu-

merated set of values, the population size, the number of generations run for, the number of parallel

fitness evaluations, the maximum program length, the population size, the number of cycles the

main loop ran for as well as the fitness and program lengths for all programs in the final population.

The control data is arranged in three pages. The page size is the based on the population size which

makes the address generation within the FPGA simple and efficient . The layout of the control data

area is shown in Figure 5.3.

Page 0

Page 1

Page 2

Population size
Number of generations
Parallel fitness evaluations
Maximum program length
Problem type
Cycles for entire run

Fitness values

Program lengths

Figure 5.3: Layout of the control data SRAM. This is used to communicate the results
of a run from the FPGA to a host based control program.
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5.3 Experiment Descriptions and Results

5.3.1 Exclusive Or Problem

This is the same problem already described in Chapter 4, Section 4.8.2 on page 75

XOR problem results

The results from running the XOR problem are given in Table 5.2.

Table 5.2: Results of running the XOR problem. The results are the average of 10 runs
for each configuration, each run using a different random seed.

Measurement PowerPC Handel-C
Parallel fitness evaluations n/a 1 2 4 8
Cycles 13 723 187 74 819 73 232 72 184 81 767
Clock Frequency 200 MHz 52 MHz 48 MHz 42 MHz 37 MHz
Number of Slices n/a 1238 1247 1725 2801
Speedupcycles 1 183 187 190 167
Speeduptime 1 47 44 39 31
Elapsed time 68 ms 1 
 44 ms 1 
 52 ms 1 
 71 ms 2 
 21 ms

Comparing these results first with the results in Section 4.8.2, which achieved a Speedup time of 6

using 4 parallel evaluations, it can be seen that splitting the algorithm into two sub-stages gives a

useful increase in performance. However, the surprising result is that it takes longer to run the XOR

problem when more evaluations are performed in parallel, in particular with 8 parallel evaluations.

Detailed investigation showed that this was a side effect of the selection method. During selection,

the number of individuals selected from the main population is the number of parallel fitness evalu-

ations wanted, and these are selected at random from the population, but only those individuals that

are not currently being evaluated by the Evaluate/Replace sub-stage are valid candidates. When the

number of individuals required is half the population size, many more attempts must be made by the

selection phase to find valid individuals. This explains why when the number of parallel evaluations

is 8, the run time is greater than when only two individuals are being selected.

The frequencies in Table 5.2 for the Handel-C implementations is as reported by the place and

route tools, and takes into account the delays introduced by the combinatorial logic and the delays

introduced by the routing resources used on the FPGA. A lot of effort was spent to reduce the logic

and routing delays in the design, with the result that this design runs substantially faster that the

previous design which could only reach 18 MHz.
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Equation 4.4 on page 81 predicts the worst case number of cycles required for a problem using a

pipeline. Using the figures from Table 5.2 for 4 parallel fitness evaluations and assuming the startup

overhead has increased to 5000 and the number of clock cycles per instruction c � 1, Equation

4.4 predicts that the XOR problem would require 135 816 cycles, which is 1.8 times the number

reported in the experiment. This result shows that the pipeline is still effective. The difference in

predicted versus actual is explained by the fact that the prediction assumes all programs to be of

maximum length.

5.3.2 Artificial Ant Problem

The objective of this problem is to evolve an ant-like program that can traverse a discontinuous trail

of food laid out on a toroidal grid. The ant has a limited set of moves it can execute and a limited

view of its surroundings.

Description

The motivation for choosing this problem for a hardware implementation is two fold: Firstly it is a

hard problem for GP to solve [Langdon 98b], and secondly it demonstrates that a custom hardware

design can efficiently encode the function and terminal set as native ‘instructions’. That is to say

one of the attractions of using an FPGA is that custom instructions not normally found in production

CPUs can easily be constructed.

This popular test problem was originally described by Jefferson et al. [Jefferson 90] and in the

context of GP was described by Koza in 1990 [Koza 90a]. It involves finding a program for an

ant-like machine that enables it to navigate its way round a trail of food on a toroidal grid of cells

within a fixed number of time steps. The function set F �"QCR>S _ S�IBI5HT	VU % ICWBG�X Y where R�S _ S�I I5H is a

two argument function that looks at the cell ahead and if it contains food evaluate the first terminal,

otherwise evaluate the second terminal. U % ICWBG�X evaluates its first and second terminals in sequence.

The terminal set T �ZQD[B\ S ].	 % R>W$^ ]?	V_�IC` \.	aG�I5U3Y , where [ \BS ] and
% REW$^ ] change the direction the

ant is facing, _�IC`B\ moves the ant one space forwards to a new cell, and if the new cell contains food,

the food is eaten. G�ICU is a no-operation terminal and has no effect on the ant. The G�ICU terminal is

included to make the number of terminals a power of 2, which simplifies the hardware logic. Each
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time [B\ S ].	 % R>W$^J] or _�IC` \ is executed, the ant consumes one time step. The run stops when either

all the time steps have been used, or the ant has eaten all the food.

All the results in this section use the Santa Fe trail [Jefferson 90] shown in Figure 5.4, which

has 89 pellets of food on a 32x32 grid. All the food pellets are present at the start of each run. The

Santa Fe trail is considered to be harder than the alternative John Muir trail [Koza 90a].

Start

End

= Food pellet

= Empty

Figure 5.4: Santa Fe artificial ant trail. The trail is denoted by the grey squares. The
darker squares contain food pellets.

The population size is 1024, the maximum program length is 31 and all experiments were run

for 32 generations. The maximum number of time steps for the ant to complete its trail is 600 (1). The

original work by Koza [Koza 92] quoted the number of timesteps as 400, but it has subsequently

been shown that the number is actually 600(2). The figure of 600 has been used in most of the

reported experimental work using the artificial ant problem, for example, [Maxwell III 94], [Lang-

don 98b], [Miller 00] and others.

The full set of parameters is given in Table 5.3.

Artificial ant problem results

The artificial ant problem was executed using the same environments as the regression problem and

the results are presented in Table 5.4.

(1)This differs from the results that were published in [Martin 02b], which used 1024 timesteps.
(2)From a private email discussion with Bill Langdon.
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Table 5.3: Parameters for the artificial ant problem
Parameter

Value

Population Size 1024
Functions R�S _ S�IBI5H � ] a 	9] b � , U % ICWBG � ] a 	9] b �
Terminals _�IC` \.	a[ \BS ]?	 % REWC^J].	;G�I5U
Max Program Size 32
Generations 32
Fitness Cases One fitness case. The program was run until 600 timesteps had

elapsed or the ant had consumed all the food.
Raw Fitness The number of pieces of food not eaten in the time available.

Table 5.4: Results of running the artificial ant problem
Measurement PowerPC Handel-C
Parallel fitness evaluations n/a 2 4 8 16 32
Cycles 2.26e9 33.21e6 18.08e6 10.25e6 5.87e6 3.28e6
Clock Frequency 200 MHz 40 MHz 38 MHz 36 MHz 33 MHz 31 MHz
Number of Slices n/a 1 835 2 636 4 840 7 429 14 908
Speedupcycles 1 69 125 220 386 691
Speeduptime 1 13 23 39 63 107
Elapsed time 11.3 s 0.83 s 0.47 s 0.28 s 0.17_s 0.11 s

To verify that the correct trajectory had been followed by the ant, over 150 example correct

programs were examined using a graphical ant simulator. A screen-shot of the simulator is shown

in Figure 5.5. It was written using the ncurses screen handling package. All the programs examined

followed the trail correctly.

A 100% correct ant found during one run is:

IF_FOOD(MOVE,NOP)
IF_FOOD(LEFT,LEFT)
IF_FOOD(NOP,LEFT)
PROGN(MOVE,LEFT)
IF_FOOD(MOVE,RIGHT)

This program used 558 timesteps to complete the trail, and was used to display the behaviour in

Figure 5.5.

Figure 5.6 shows the speedup results for the artificial ant problem, and gives both the Speedup cycles

and Speeduptime.

These results show, that for the artificial ant problem, increasing the number of parallel fitness

evaluations increases the Speedupcycles factor almost linearly, but because the routing delay on the
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Figure 5.5: Simple graphical simulator for the artificial ant. The ant is at position
x=12,y=16 and has eaten 24 of the 89 pellets of food. The ant is currently facing east

and has consumed 83 of the possible 600 timesteps so far.
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Figure 5.6: The speedup factors for the number of cycles (Speedupcycles) and the time
(Speeduptime) for the artificial ant problem. The Speedupcycles shows a nearly linear in-
crease as the number of parallel fitness evaluations is increased, while the Speedup time

shows a non-linear relationship due to the increased routing delays.
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FPGA increases with larger designs, the maximum clock frequency decreases, offsetting some of

the gains made by increasing the parallelism.

The number of slices used for 32 parallel evaluations is nearly 80% of the total available on the

chip. This is effectively the limit for the XCV2000E FPGA. It is worth remarking that a PC with

750 MiB of RAM was required to run the Handel-C compiler and the place and route tools before

this design could be implemented, and a PC with a 1.4 GHz Athlon CPU required nearly four hours

to complete the place and route. This is in contrast to a modest 500 MHz Pentium machine capable

of compiling and running lilgp and other popular GP packages.

Using Equation 4.4 for the artificial ant problem requires an estimate of the number of fitness

cases. Although the ant problem specifies a single fitness case, the program is run repeatedly until

either all the food is consumed, or all the timesteps have been used up. Using the shortest viable

program length of 4 to consume all 600 timesteps gives an estimate of 150 for n. Applying Equation

4.4 for 32 parallel fitness evaluations, and given that c � 4, the predicted worst case number of cycles

is 9 
 8 � 106. The measured value 4 
 2 � 106 is better than this worst case prediction.

5.3.2.1 Comparison of hardware GP to using a standard PC

The results shown so far have compared the hardware implementation of the algorithm with a soft-

ware implementation of the same algorithm. Although this shows the speedup that the hardware

implementation is capable of it has only compared a relatively slow processor (200 MHz) to the

hardware. Using a slow processor does not help a practitioner to decide whether a hardware or

software implementation is appropriate, especially with modern processors running at over 2 GHz.

In addition, the results so far have only compared the performance of the same algorithm when

run on the hardware platform and a software platform. While this comparison gives an accurate

measure of the effect of using hardware, it does not give an indication of how useful the hardware

GP is compared to a standard tree based GP system.

This section addresses the above limitations by comparing the performance of the hardware

with the same algorithm running on a 1.4 GHz Athlon processor, and by comparing the hardware

GP to a standard tree based GP system, again running on a 1.4 GHz Athlon PC. The package used

for the tree based GP was lilgp. This package was chosen because of its popularity within the GP

community (online survey carried out in 1998 [Martin 98, pp 4.8]). The artificial ant problem was

used for these experiments. For the lilgp implementation, the standard lilgp settings were used.
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Table 5.5 shows the results of running these experiments.

Table 5.5: Comparison of the performance of the artificial ant running in hardware to
the artificial ant running on a 1.4 GHz processor, using both the hardware algorithm

and lilgp. The hardware implementation used 32 parallel fitness evaluations.
Platform Clock Speed Time (seconds)
Hardware GP 31 MHz 0.11
Athlon 1.4 GHz 0.94
Athlon lilgp 1.1 1.4 GHz 7.94

It can be seen from this table that the hardware implementation is approximately 8.5 times faster

than the same algorithm running on a 1.4 GHz processor. When compared with the standard lilgp

program running on the same processor, the hardware implementation is over 70 times faster. This

large speedup can be attributed to a number of factors. Firstly, lilgp uses a tree based GP repre-

sentation and so imposes an overhead when traversing the tree structure and invoking the functions

which are accessed using function pointers. Secondly, because of the large data set used in lilgp

(approximately 3 MBytes), the effect of the data cache on the Athlon processor is reduced. Thirdly,

in lilgp the programs lengths are not tightly constrained, so the programs that are being evaluated

will tend to be longer than the hardware GP algorithm.

5.3.3 Boolean Even-6-Parity Problem

The objective of this problem is to evolve a function that takes n Boolean inputs and returns 1 if an

even number of inputs evaluate to 1, 0 otherwise.

Description

This problem was chosen because it has been well studied and represents another popular test prob-

lem. It is a more arduous problem than the artificial ant problem since it requires a larger population,

longer program lengths and is run for more generations. However, the fitness function is simpler, so

more parallel fitness function evaluations can be accommodated on the FPGA than the ant problem.

For this problem the population size is 2048, the maximum program length is 256 and all exper-

iments were run for 64 generations. The full set of parameters is given in Table 5.6. The function

set for this problem included the NOT and XOR functions because it has been shown that for Boolean-

n-parity problems the standard function set (AND, OR, NAND, NOR from [Koza 92]) standard GP
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was unable to find solutions when n b 6 [Koza 92]. However, in [Koza 92] it was found that if ADFs

were used, the XOR function was created by the ADFs which allowed solutions to be found.

Table 5.6: Parameters for the Boolean even-6-parity problem
Parameter Value
Population Size 2048
Functions F$GBH �&% n 	 % m ��	>I %��&% n 	 % m ��	DG�I5] �&% n 	 % m ��	dc�I %��&% n 	 % m �
Terminals 16 registers
Max Program Size 256
Generations 64
Fitness Cases All 26 � 64 test cases
Raw Fitness The number of fitness cases that were incorrect.

Boolean even-6-parity results

The Boolean even-6-parity problem was executed using the same environments as the regression

problem and the results are presented in Table 5.7.

Table 5.7: Results of running the Boolean even-6-parity problem
Measurement PowerPC Handel-C

Parallel fitness
evaluations

n/a 2 4 8 16 32 64

Cycles 90.8e9 1.2e9 617e6 341e6 173e6 86e6 40e6
Clock Frequency 200 MHz 48 MHz 46 MHz 44 MHz 41 MHz 38 MHz 34 MHz
Number of Slices n/a 1 418 1 654 2 161 6 396 10 124 19 051
Speedupcycles 1 75 147 266 524 1055 2270
Speeduptime 1 18 34 88 163 281 419
Elapsed time 454 s 25 s 13.4 s 7.75 s 4.22 s 2.26 s 1.18 s

Figure 5.7 shows the speedup results for the Boolean even-6-parity problem, and gives both

the Speedupcycles and Speeduptime. As for the artificial ant problem, these results show that for the

Boolean even-6-parity problem, increasing the number of parallel fitness evaluations increases the

Speedupcycles factor almost linearly, but because the routing delay on the FPGA increases with larger

designs, the maximum clock frequency decreases, offsetting some of the gains made by increasing

the parallelism. The number of slices used for 64 parallel evaluations is nearly 100% of the total

available on the chip. With 64 parallel evaluations, the design took 14 hours to place and route using

a 1.4 GHz Athlon workstation with 1 GiB of RAM.

Using Equation 4.4 for 64 parallel fitness evaluations and given that c � 2, the predicted worst

case number of cycles is 67 � 106. The measured value of 40 � 106 is better than the worst case

predicted value.
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Figure 5.7: The speedup factors for the number of cycles (Speedupcycles) and the time
(Speeduptime) for the Boolean even-6-parity problem. The Speedupcycles shows a nearly
linear increase as the number of parallel fitness evaluations is increased, while the

Speeduptime shows a non-linear relationship due to the increased routing delays.

5.4 Discussion

5.4.1 Effect of Implementing Pipelines and Increasing Parallelism

A direct comparison between the XOR problem in Chapter 4 and the XOR problem in this chapter

(sect. 5.3.1) shows that using pipelines provides a useful speedup, but because the fitness evaluation

is much shorter than the WriteBack/Select/Breed sub-stage, there is no benefit to increasing the

number of parallel fitness evaluations. It is also clear that for small populations there is a limit

to the number of parallel fitness evaluations that can be accommodated. However, the situation

is reversed in the artificial ant problem and the even-6-parity problem because the time needed for

fitness evaluation is much larger than the WriteBack/Select/Breed phase. Clearly, for other problems

where the fitness function takes a long time it would be worth devising efficient pipelines for the

fitness evaluation functions.

The speedups achieved for the Boolean even-6-parity problem are better than those achieved

for the artificial ant problem. This is mainly because the functions in the function set F for the

Boolean even-6-parity problem are simpler than the artificial ant problem, requiring fewer steps to

be executed for each instruction. The intrinsic parallelism of Handel-C also allowed the functions to

be implemented very efficiently. A second reason for the improved throughput is that the Boolean



5.4. DISCUSSION 103

even-6-parity problem has a longer mean program length than the artificial ant problem. Stallings

[Stallings 00] provides an equation that gives the speedup factor of a pipeline with k stages:

Sk � T1

Tk
� nkτe

k � �
n � 1 �df τ � nk

k � �
n � 1 � (5.1)

where τ is the maximum stage delay, k is the number of stages in an instruction pipeline and n is the

number of instructions executed.

From Equation 5.1 it can be seen that the longer the instruction stream, the better the speedup.

For the artificial ant problem, the mean program length was 16 and the pipeline had two stages.

This gives a speedup factor for the pipeline of 1.88, while for the Boolean even-6-parity problem

the mean program length was 128. Again the pipeline had two stages. This gives a pipeline speedup

factor of 1.98.

Equation 4.4 on page 81 was used to predict the worst case number of cycles that would be

needed to execute the programs. In all cases, the measured results were less than the predicted

worst case results, confirming that the pipeline implementation was effective and that the fitness

evaluation for all the problems was the dominant thread of execution.

5.4.2 Comparison With a Popular Software GP system.

While this may appear to be an unfair comparison, a lot of work in GP is centered around exploring

the detailed operation of GP, which often requires hundreds or thousands of runs with minor param-

eter changes, and performance is still likely to be an issue even with processors running at 1 GHz

and beyond. This comparison was made to see if using a hardware implementation would be of ben-

efit to researchers. The results show that where a fixed problem type needs to be run many times, a

hardware implementation using many parallel fitness evaluations could reduce the time required for

extended runs . In particular, when compared to lilgp running on a 1.4 GHz Athlon processor, the

hardware implementation of the artificial ant problem was 70 times faster. This result shows that

despite the availability of fast processors that a hardware GP system would be useful for some hard

problems.
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5.5 Summary

Moving the population storage to off-chip SRAM enabled the design to solve problems, such as the

artificial ant and Boolean even-6-parity problems, which require larger population sizes. Pipelining

the breed, selection and evaluation phases gives a performance boost to problems that have short

evaluation time requirements like the XOR problem. For problems like the artificial ant problem

and the Boolean even-6-parity problem that require extended fitness evaluation times, the benefits

of using a pipeline are even greater, giving a nearly linear increase in throughput as the number of

parallel fitness evaluations is increased.



Chapter 6

Behavioural Analysis

Chapters 4 and 5 described two hardware implementations of GP. In both cases the work con-

centrated on the implementation issues and improving the clock speed of the implementation, but

put to one side the performance of the system with respect to its ability to solve GP problems. Now

that the raw throughput issues have been addressed it is time to look at how well the hardware imple-

mentation performs, in particular the biases introduced by the crossover operator and the Random

Number Generator (RNG).

This chapter begins with an empirical analysis of the crossover operator. Three crossover oper-

ators that limit the lengths of programs are used; the truncating operator used in the work described

previously, a standard limiting operator that constrains the lengths of both offspring and a new

limiting operator that only constrains the length of one offspring. The latter has some interesting

properties that suggest this operator has the effect of limiting code growth in the presence of fitness.

In Chapter 4 it was suggested that the RNG should be looked at more closely. The behaviour of

the Linear Feedback Shift Register (LFSR) RNG is analysed and compared to six alternative RNGs.

The results show that an alternative RNG allows the hardware GP system to produce more correct

programs.

6.1 Analysis of the Crossover Operator

The hardware design uses a linear program representation with a fixed maximum size. Choosing a

fixed maximum size made the storage of programs in on-chip RAM and off-chip RAM efficient and
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simple to implement. Consequently a method of limiting the program size during crossover was

needed. The first implementation, described in the preceding chapters, used a truncating crossover

operator. This is compared to a second method of limiting lengths, called the limiting crossover

operator.

The analysis is performed by running a number of experiments and by comparing the results.

Two different implementations of GP were used for the experiments. First, a simple program that

simulated the effects of GP crossover was used to show the expected program length distributions

in the absence of fitness using a linear representation. This is referred to as the GP simulator.

Second, the hardware implementation described in Chapter 5 was used to obtain results both with

and without fitness. The test problems for all the experiments where fitness is used were the artificial

ant and the even-6-parity problems described in Chapter 5. In the case of the experiments that do

not use fitness, all programs are assigned the same fitness value. This means that all individuals

have the same probability of being selected for the breeding phase.

6.1.1 Behavioural Analysis

The measurement of overall GP behavior is frequently limited to plotting the average population fit-

ness vs. generation. This is shown for the artificial ant problem, using the hardware implementation

described in the previous chapter, in Figure 6.1. The graph shows the average of 500 runs. This will

be used as a baseline when looking at changes to the original design.
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Figure 6.1: GP performance of the original design for the artificial ant problem.

However, when looking for the reasons to explain why a feature of an operator or represen-

tation has an effect, raw performance gives us a very restricted view of what is happening, and

more analytical methods are needed. One such method is to consider one or more aspects of the
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internal population dynamics during a run. Recently a lot of work has been done to develop exact

schema theories for Genetic Programming [Poli 01a] [Poli 01b], which, among other things, give

us a description of the expected changes in the program length distribution during a GP run. The

asymptotic distribution of program lengths is important to us because it is a way of comparing the

sampling behavior (search bias) of different crossover operators and replacement strategies.

Starting with the standard GP model using standard subtree crossover, uniform initial length

distribution and ignoring the effects of fitness, Figure 6.2 shows the expected length distribution for

generations 0,1,10 and 31. The population was initialised using a uniform random distribution of

lengths between 1 and 31 inclusive. In this case there is no maximum program size. This agrees

with the results in [Poli 01b] where the distribution asymptotically converges to a discrete Gamma

distribution. The mean program length at generation 31 is 16. Note, only program lengths 1 – 32

are shown in the graph, but the tail continues towards infinity.
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Figure 6.2: Program length distribution for standard GP crossover operating on linear
strings , using a global replacement strategy, non-steady state and no fitness, using the

GP simulator. Average of 500 runs.

6.1.2 Truncating Crossover Operator

This crossover operator (described in Chapter 4, Section 4.5.2) ensures programs do not exceed

the maximum program length by selecting crossover points in two individuals at random and ex-

changing the tail portions up to the maximum program length. Crossovers that result in programs

exceeding the maximum length are truncated at the maximum length.
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The behavior of the hardware implementation using the truncating crossover operator, without

fitness, is shown in Figure 6.3.

0
10

20
30

40
50

60
70

0 5 10 15 20 25 30

N
um

be
r 

of
 P

ro
gr

am
s

Program Length

Gen 0
Gen 1

Gen 10
Gen 31

Figure 6.3: Program length distribution using truncating crossover using a linear pro-
gram representation without fitness. From the hardware implementation of the artificial

ant problem. Average of 500 runs.

A feature of this result is that there is initially a large peak at the maximum program size of 31,

but in subsequent generations the distribution tends to resemble a Gamma distribution like the one

in 6.2. However, it is important to note that it not the same Gamma distribution, because the mean

program length tends to decrease with this crossover operator. The reason is that with the truncation

the amount of genetic material removed from the parents when creating the offspring may be bigger

than the amount of genetic material replacing it. At generation 31 the mean program length is 12.5,

down from the initial mean length of 16.

When fitness is used, the length distribution for the artificial ant problem changes as shown in

Figure 6.4, but it still retains some of the features of a Gamma distribution. The striking feature is

the large peak at the maximum program length limit which represents 13% of the total population

at generation 31. At generation 31, the mean program length is 16.5, up from the initial mean value

of 16.

The corresponding result from the Boolean even-6-parity problem is shown in Figure 6.5, which

also shows a large peak at the maximum program length of 255. At generation 63, the mean program

length is 144, up from the initial mean value of 128.
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Figure 6.4: Program length distribution using truncating crossover using a linear pro-
gram representation with fitness. From the hardware implementation of the artificial

ant problem.
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Figure 6.5: Program length distribution using truncating crossover using a linear pro-
gram representation with fitness. From the hardware implementation of the Boolean

even-6-parity problem. Average of 500 runs.

6.1.3 Limiting Crossover Operator

An alternative method of ensuring that programs do not exceed the fixed limit is to repeatedly

choose crossover points until the lengths of both child programs are below the program size limit

Lmax. For two programs a and b, with lengths la and lb, two crossover points xa and xb are chosen

so that 0 � xa � la and 0 � xb � lb. After crossover, the new lengths are simply l �a � xa � lb � xb and

l �b � xb � la � xa. If l �a g Lmax or l �b g Lmax the selection of xa and xb is repeated until l �a � Lmax AND
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l �b � Lmax. Because both child programs are required to be shorter than Lmax this operator is termed

the dual-child limiting crossover operator.

This is the approach taken in lilgp (versions 1.02 and 1.1) when the keep_trying parameter is

enabled [Zongker 96] to limit the tree depth and the total number of nodes in a program tree during

crossover.

When this method of limiting the program length was implemented in the hardware version, but

without fitness, we obtained the distribution shown in Figure 6.6. The mean program lengths for all

generations is 16.

0
5

10
15

20
25

30
35

40
45

50

0 5 10 15 20 25 30

N
um

be
r 

of
 P

ro
gr

am
s

Program Length

Gen 0
Gen 1

Gen 10
Gen 31

Figure 6.6: Program length distribution using limiting crossover without fitness, from
the hardware implementation of the artificial ant problem. Average of 500 runs.

When fitness is enabled using the dual-child variant for the artificial ant problem, there is a bias

in favor of longer programs, as shown in Figure 6.7. A feature of the results for the artificial ant

problem is the sharp rise in program lengths for generations 10 and 31 above length 15, and the

peak after length 15. This is likely to be due to the distribution of fitness in the program search

space and can be seen as a form of what is commonly termed bloat. Bloat is the term given to the

tendency of GP programs to grow in length without any increase in their fitness. This tendency is

well documented in the GP literature [Koza 92] [Blickle 94] [Nordin 95a] [Soule 98] [Luke 00a]

[Langdon 97]. At generation 31, the mean program length has increased to 20.3, up from the initial

mean length of 16.
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Figure 6.7: Program length distribution using limiting crossover with fitness and the
dual-child variant. From the hardware implementation of the artificial ant problem.

Average of 500 runs.

The results for the Boolean even-6-parity problem are shown in Figure 6.8, which also exhibits

a similar peak of program lengths. At generation 63, the mean program length has increased to 162,

up from the initial mean length of 128.
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Figure 6.8: Program length distribution using limiting crossover with fitness and the
dual-child variant. From the hardware implementation of the even-6-parity problem.

Average of 500 runs.
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6.1.4 Modified Limiting Crossover Operator

The above crossover operator (dual-child limiting) requires both of the child programs to have

lengths less than Lmax. A variation of this operator is to require only one of the child programs

to be shorter than Lmax. That is, the selection of xa and xb is repeated until l �a � Lmax OR l �b �
Lmax. If one of the child programs is larger than the maximum, it is simply discarded and the

parent substituted in its place. This is termed the single-child limiting crossover operator. When

the hardware implementation was modified to incorporate the single-child limiting operator, the

result without fitness is shown in Figure 6.9 was obtained. A feature of this result is that the mean

program length moves towards smaller values. At generation 31, the mean program length is 11.5,

down from the initial mean length of 16.
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Figure 6.9: Program length distribution using limiting crossover without fitness and
the single-child variant. From the hardware implementation of the artificial ant prob-

lem. Average of 500 runs.

However, when the program length distribution using the single-child variant was plotted for the

artificial ant problem, shown in Figure 6.10, the length distribution peaks closer to the mean of Lmax.

At generation 31 the mean program length is 17.2. This behavior is interesting since it appears to

have avoided the phenomenon commonly known as bloat. The corresponding plot for the Boolean

even-6-parity problem is shown in Figure 6.11. Again there is a peak of lengths near the mean of

Lmax. At generation 63, the mean program length is 140, up from the initial mean length of 128.
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Figure 6.10: Program length distribution using limiting crossover with fitness and the
single-child variant. From the hardware implementation of the artificial ant problem.

Average of 500 runs.
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Figure 6.11: Program length distribution using limiting crossover with fitness and the
single-child variant. From the hardware implementation of the even-6-parity problem.

Average of 500 runs.
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In both examples of the single child limiting crossover with fitness, the plots (Figures 6.10 and

6.11) are less smooth than the dual child limiting crossover results (Figures 6.7 and 6.8). The plots

for the single child limiting crossover suggest some form of instability, suggesting an area for future

research.

The effect of using the limiting crossover operator with and without the single-child variant on

the mean population fitness using the artificial ant problem is shown in Figure 6.12 together with the

original mean population fitness. This graph shows that all three crossover implementations have a

similar rate of improvement, with the limiting crossover operator with single-child variant maybe

performing slightly better on the artificial ant problem.
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Figure 6.12: Comparative mean population fitness of the hardware implementation for
the artificial ant problem using truncating crossover, dual child limiting crossover and

single child limiting crossover. Average of 500 runs.

Finally, the distribution of 100% correct program lengths was measured for truncating and both

limiting crossovers. The hardware implementation was run 500 times, and if a 100% correct pro-

gram was generated, the length was recorded. These are shown in Figures 6.13, 6.14 and 6.15

respectively for the artificial ant problem.

These plots show that truncating crossover has allowed GP to find more 100% correct programs

than the limiting crossover using the dual-child variant. However, when using the single-child

variant, limiting crossover found the most 100% correct programs. It is interesting to note that the

results shown in Figure 6.12 do not show this difference in the outcome, highlighting the weakness

of using the standard measure of performance.
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Figure 6.13: Distribution of lengths of 100% correct programs using the truncating
crossover operator for the artificial ant problem over 500 runs.
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Figure 6.14: Distribution of lengths of 100% correct programs using the dual-child
variant limiting crossover operator for the artificial ant problem over 500 runs.
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Figure 6.15: Distribution of lengths of 100% correct programs using the the single-
child variant limiting crossover operator for the artificial ant problem over 500 runs.

The corresponding program plots for the Boolean even-6-parity problem are shown in Figures

6.16, 6.17 and 6.18 for the truncate, dual-child limiting and the single-child limiting crossovers

respectively. Again, from these results the truncating crossover has produced more 100% correct

programs than the limiting crossover using the dual child variant, and the single child variant has

produced the most 100% correct programs, though the difference is not as marked as for the artificial

ant problem. This is possibly due to the fact that the parameters chosen for the Boolean even-6-

parity problem were more favourable to finding a solution than the artificial ant problem.
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Figure 6.16: Distribution of lengths of 100% correct programs using the truncating
crossover operator for the Boolean even-6-parity problem over 500 runs.
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Figure 6.17: Distribution of lengths of 100% correct programs using the dual-child
variant limiting crossover operator for the even-6-parity problem over 500 runs.
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Figure 6.18: Distribution of lengths of 100% correct programs using the the single-
child variant limiting crossover operator for the even-6-parity problem over 500 runs.
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6.1.5 Tuning the Maximum Length Parameter

The results shown in Figures 6.13, 6.14 and 6.15 suggest that for the artificial ant problem imple-

mented in hardware, programs of length 4 or 5 are most likely to be correct, though this can only

be confirmed by either exhaustively testing every possible program or by randomly sampling all

possible programs. It was then observed that the peak program length in Figure 6.10 was larger than

length 4. It was then conjectured that if the maximum program length was changed so that the peak

was moved so that it was closer to the most frequently successful program, that GP would find even

more successful programs. The experiments using the artificial ant problem using the single child

limiting crossover were repeated but using maximum lengths of 16 and 8. The results of running

the hardware implementation with these modified lengths are shown in Figures 6.19 and 6.20 for

maximum lengths 16 and 8 respectively.
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Figure 6.19: Distribution of lengths of 100% correct programs using the the single-
child variant limiting crossover operator and a length limit of 16 for the artificial ant

problem over 500 runs.

This confirmed the idea that by limiting the program lengths that GP is allowed to create, that

GP could create more 100% correct programs. The corresponding program length distributions are

shown in Figures 6.21 and 6.22. Again these show that the program length distribution peaks near

the peak of the successful programs.
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Figure 6.20: Distribution of lengths of 100% correct programs using the the single-
child variant limiting crossover operator and a length limit of 8 for the artificial ant

problem over 500 runs.
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Figure 6.21: Program length distribution using limiting crossover with fitness and the
single-child variant. Maximum length limited to 16. From the hardware implementa-

tion of the artificial ant problem over 500 runs.
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Figure 6.22: Program length distribution using limiting crossover with fitness and the
single-child variant. Maximum length limited to 8. From the hardware implementation

of the artificial ant problem over 500 runs.

6.2 Discussion

The differences between the dual-child and single-child variants can be explained by considering

first the dual-child case. Starting with a uniform distribution of program lengths, the average pro-

gram length is given by Lavg � Lmax
2 and the average crossover point is Lavg

2 . Every crossover produces

two offspring, the average length of which is Lmax
2 , with one small and one large program produced.

When one of the offspring exceeds Lmax both crossover points are re-selected until both programs

satisfy the length constraint. The result is that the average program length using this crossover

will remain Lmax
2 . However, in the single-child case, only one child needs to meet the length con-

straint. With one long and one short offspring, the short offspring will be more likely to satisfy

the constraint and so be retained for propagation. Because the shorter program is preferred, the

mean program length will tend to continually decrease. In summary, in the absence of fitness, the

single-child variant selects programs that are on average smaller than Lmax
2 .

In the presence of fitness we believe that this pressure to decrease the mean program length

competes with the well documented tendency of GP programs to grow in the presence of fitness in

a variety of problems. The result is that when using the single length constraint and an upper bound

on the program length, the program length distribution does not have a strong bias to longer lengths

and is more likely to remain in an equilibrium.
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A side effect of using the single child variant is that when a long program is rejected, a copy

of the parent is propagated to the next generation. This means that even if crossover is used as the

only operator, a proportion of reproduction will be present. The effect of this bias has not been

investigated.

A practical penalty of the dual child limiting crossover approach is that multiple passes may

be required to obtain two crossover points that satisfy the length constraints. Depending on the

implementation this could have an impact on the time needed to complete a GP run. In practice,

for most problems the time required for crossover in a standard GP system is much smaller that

the time for evaluating programs, and so will only extend the time required by a small factor. In

the hardware implementation, crossover is performed in parallel with evaluation, so there will be no

impact for most problems, where fitness evaluation takes longer than selection and breeding. For the

artificial ant problem and the Boolean even-6-parity problem implemented in hardware, the limiting

crossover operators did not have any effect on the overall behavior of the design, both the clock

speed and number of clock cycles remained the same as the truncating crossover implementation.

It is worth noting that the single-child limiting crossover will need zero iterations to find a legal

offspring, so this will have a smaller effect on the overall performance in a serial implementation of

the algorithm.

The effect of adjusting the program length limit so that the peak in the length distribution is

closer to the peak of correct program lengths suggests that allowing programs to be unlimited in

length may be detrimental to using GP effectively because of the time needed for carrying out

unnecessary processing.

The speedup that hardware GP had over a software implementation meant that it was feasible to

perform 500 runs of the experiments in a reasonable time. Using the elapsed times from Table 5.7 on

page 101, and ignoring the overhead of the scripts used to run the experiments, 500 runs of the

Boolean even-6-parity problem took 1 
 18 � 500 � 590 s, or nearly 10 minutes. Using a software

implementation on a processor running at 1 GHz would have required 454 � 5 � 500 � 45400 s or

nearly 12 hours.
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6.3 Analysis of the Random Number Generator

This section analyses the Random Number Generator (RNG), or more correctly the Pseudo Random

Number Generator (PRNG), chosen for the work in Chapters 4, 5 and Section 6.1 of this chapter.

The behaviour of the system is then compared using several other RNGs. This section starts with a

survey of RNGs and PRNGs that have previously been used to generate random or pseudo-random

sequences in hardware.

6.3.1 Previous Work on Random Number Generator Quality

The effect of RNG quality on the performance of GA and GP has been investigated in [Meysen-

burg 97a], [Meysenburg 97b], [Meysenburg 99b], [Meysenburg 99a], [Meysenburg 02], [Daida 97],

[Daida 99] and [Cantú-Paz 02]. The general conclusions from these investigations are that the RNG

used can have an effect on the performance of GAs and GP. However, the effect is often statisti-

cally insignificant. Furthermore, the effect is not always correlated with the quality of the RNG, as

measured using standard statistical tests.

6.3.2 Previous Work on Using Random Number Generators in Hardware

There are three dominant methods of generating random or pseudo-random sequences in hardware:

LFSR or Tauseworth generators, generators based on Cellular Automata (CA), and generators that

exploit a physical noisy phenomenon such as the noise from an electrical circuit, radioactive decay

or atmospheric radio noise.

LFSR generators

These were used by Maruyama et al. [Maruyama 99]. In their paper they referred to the generator

as a m-sequence, or maximal sequence. This means that the generator of length n generates 2n � 1

numbers. Graham [Graham 96] implemented a single cycle LFSR.

An interesting hybrid was used by Tommiska and Vuori [Tommiska 96] where three coupled

LFSRs were used to provide a random sequence. An interesting feature of this work is that the

RNG was combined with a source of noise. The amplified noise from a diode was fed into an

analogue to digital converter, and the resulting digital values were used to seed the RNG, and also

added to the LFSR at intervals to perturb its state.
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The manufacturers of FPGAs provide example designs of LFSRs to be used as random sequence

generators. For example Xilinx [Xilinx 01a], and Altera [Altera 01] provide Hardware Design

Language (HDL) code for LFSRs.

CA generators

Aporntewan [Aporntewan 01] used a one dimensional 2-state CA. Scott [Scott 94] used a CA that

consisted of 16 cells with 2 different rules as described by Wolfram [Wolfram 84]. Shackleford et

al. [Shackleford 01] implemented a CA based on the work by Wolfram [Wolfram 86]. Yoshida et

al. [Yoshida 01] also used a CA system combining two CAs that used two different rules.

Other generators

L’Ecuyer in [L’Ecuyer 88] and [L’Ecuyer 90] showed that a lagged Fibonacci generator gives better

results than other generators. However, Chu and Jones [Chu 99] showed that when implemented in

an FPGA, a lagged Fibonacci generator requires a large amount of FPGA resources and that LFSRs

are much more space efficient.

As already noted, Tommiska and Vuori [Tommiska 96] used the noise from a diode to pro-

vide a source of true randomness to seed the LFSR generator. The generator was also perturbed

at intervals using the same random noise source. It would appear that digital circuits, clocked at

a regular frequency, would themselves make poor random number generators, but the physics of

semiconductor devices means that there is always a low-level of noise introduced into digital semi-

conductor circuits. This can be exploited to produce random sequences, as demonstrated by Fairfield

et al. [Fairfield 84], by exploiting the frequency instabilities inherent in LSI devices. However, they

report that the generator is slow – producing random integers at a rate of around 3 bytes per second.

Thermal noise is another frequently used method of generating random sequences and was used by

Bright and Turton [Bright 00].

Other examples of generators that have used natural sources of noise include the radioactive

beta decay of radioactive isotopes such as Krypton-85 [Fourmilab 02] and the visually interesting

patterns generated by Lava lamps [Lavarand 02].

Because generators that use natural noise are often slow, they have the drawback that they are

unable to generate random numbers at a high enough rate to be used as the primary source in an
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evolutionary algorithm, so instead they are often used to seed and/or perturb the standard PRNGs.

They also often require specialised hardware to implement them.

6.3.3 Experimental Setup

The performance of the various RNGs in this section was evaluated using three methods: using the

Diehard test suite, using the artificial ant problem from Chapter 5 and using Handel-C to implement

the generators.

Diehard test suite

The Diehard test suite maintained by Marsaglia [Marsaglia 01] is a de-facto standard for evaluating

RNGs and was used to gauge the general performance of the RNG. The suite consists of up to 15

tests that are modeled on applications of random numbers. All the RNGs considered in this paper

were implemented in ISO-C and were submitted to all 15 tests. The test method for Diehard is

similar to that described in Meysenburg and Foster [Meysenburg 99a]. Each RNG was used to

generate a binary file of about 10 MiB. Each Diehard test produces one or more p-values(1) . A p-

value can be considered good, bad, or suspect. Meysenburg used a scheme by Johnson [Johnson 96]

which assigns a score to a p-value as follows. If p b 0 
 998 then it is classified as bad. If 0 
 95 �
p � 0 
 998 then it is classified as suspect. All other p-values are classified as good. Using this

classification, every bad p-value scores 4, every suspect p-value scores 2 and good p-values score

zero. For each RNG, the scores for each test were summed, and the total for each RNG is the sum

of all the test scores for that RNG. Using this scheme, high scores indicate a poor RNG and low

scores indicate a good RNG. The results for each test are given in Appendix D.

Incorporation of RNGs into hardware GP

Each RNG was then incorporated into the hardware GP system described in Chapter 5 using the arti-

ficial ant problem with the Santa Fe trail. The problem was run 500 times, and the number of correct

programs that appeared was recorded. This is used as a measure of how well the RNG performs

in a GP system. In all cases, the population size is 1024, the maximum program length is 31 and

all experiments were run for 31 generations. The ant was allocated 600 timesteps. The probability

(1) p-values are given by p h F i X j , where F is the assumed distribution of the sample random variable X — often
normal. The p-value should be uniform on k 0 l 1 j if the input file contains truly independent random bits.
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of selecting crossover was 66%, mutation 12.5% and reproduction 21.5%. The crossover operator

used the truncating method of limiting the maximum program length, as described in Section 6.1.2.

RNG implementation using Handel-C

Each RNG was also implemented as a stand alone application for an FPGA using Handel-C, and

the number of slices used and the maximum attainable clock frequency was recorded. This gives

a measure of the hardware resources needed to implement the RNG, and also an indication of the

logic depth required.

6.4 Random Number Generator Implementations

This section considers several different RNGs including the generators commonly used in hardware

implementations.

6.4.1 LFSR RNG

The details of the LFSR generator have already been given in Section 4.3 on page 63. The ob-

vious weakness of this type of RNG is that sequential values fail the serial test described by

Knuth [Knuth 69]. At any time step t there are two equally likely values for time t � 1. If for

an LFSR of length n at time t the value is v, then at time t � 1 the value will be v � 2 or v � 2 � 2n m 1.

All the serial tests in this section were performed by generating a file of random numbers using

each of the generators. The file created was about 11 MiB in size (i.e. about 2.8 million 32 bit

numbers). The results for the LFSR RNG are shown in Figure 6.23 where pairs of values vt and

vt n 1 are plotted.

It can be seen that for any value vt there are only two possible values of vt n 1. Though the random

number generator runs in parallel with the main GP machine, it is possible to access sequential val-

ues when creating an initial program, or when choosing crossover points. There is then a possibility

of introducing a potentially degrading bias by using such an RNG.

6.4.2 Multiple LFSRs

One method of obtaining better serial test results when using an LFSR is to allow the LFSR to run

for a number of cycles before reading another number. That is, to produce n random bits from an
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Figure 6.23: Serial test of a simple LFSR RNG.

LFSR of length m (where n � m), the LFSR should be allowed to run for n cycles between reading

the bits. Since this would limit the rate at which random numbers could be generated in the present

design it is not explored any further. However, an equivalent result can be obtained by implementing

n LFSRs of length m and using a single bit from each LFSR at each time step. This can also be done

using a single long LFSR of n � m bits, [Stiliadis 96] effectively implementing n parallel LFSRs.

However, implementing a long shift register in a Xilinx Virtex FPGA is not efficient because the

look up tables can implement a 16 bit shift register very easily, but longer shift registers require

more extensive routing resources.

The effect of using a better RNG was investigated by implementing 32 16 bit LFSR machines

that run in parallel, and initialising each LFSR to a different value. Bit32 from each LFSR is used

to construct a 32 bit random number. The serial test result is shown in Figure 6.24, which shows

the serial test result for 32 LFSRs is better than the single LFSR. This generator is referred to as the

32LFSR.

6.4.3 Cellular Automata RNG

Another popular RNG for hardware implementations is based on Cellular Automata (CA). A one-

dimensional (1D) CA consists of a string of cells. Each cell has two neighbours - left and right,

or in some literature west and east respectively. At each time step, the value of any cell c is given
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Figure 6.24: Serial test for an RNG using 16 parallel LFSRs

by a rule. For this implementation, rule 30 is used, which states that for any cell c at time t,

ct n 1 � ���
westt +ct �3� eastt � , where � denotes the exclusive OR function. In practice the CA is

implemented using a single 32 bit word, and for cell 0, its right-hand neighbour is cell 31, and

similarly for cell 31 its left hand neighbour is cell 0. Figure 6.25 shows the result of running this

RNG using the serial test. As in the simple LFSR RNG there is a distinct pattern to the numbers,

but for most values of vt there are several possible values for vt n 1. This generator is referred to as

1DCA.

6.4.4 Multiple CA generators

As in the case of the LFSR RNG, if several CAs are combined, it would be expected that the results

would be much better than the single 1DCA. For this test, 32 CAs were implemented, and by taking

one bit from each CA, a 32 bit random number can be generated. The result for the serial test

appears to be much more random, as shown in Figure 6.26. Each CA is initialised with a different

pattern. This generator is referred to as the 32CA
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Figure 6.25: Serial test for a 1DCA RNG
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Figure 6.26: Serial test for a 32CA
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6.4.5 Standard C RNGs

Another frequently used RNG is the Linear Congruential generator that is often found in imple-

mentations of the standard C library, following the illustration of an example rand() function

in [Kernighan 88]. The general equation for these is:

I j n 1 � �
aI j � c � mod m (6.1)

where a 	 c and m are constants chosen to produce a maximal length RNG. However, as pointed

out by many authors (eg: [Press 86]) these generators are not good. A factor against implementing

such a generator in hardware is that it requires one addition, one multiplication, and one modulus

operator, which in Handel-C would consume a large amount of silicon and because of the deep logic

produced when using 32 bit words, would be slow. An alternative given by [Press 86] avoids the

modulus operator, and is called the Even Quicker Generator (EQG). It is claimed that this is about

as good as any 32 bit linear congruential generator. Its equation is:

I j n 1 � aI j � c (6.2)

Values for a � 1664525 and c � 1013904223 are suggested. Note that there is an implicit mod 232

operator when executed on a 32 bit processor, so the algorithm is equivalent to 6.1.

As a sanity check that the experimental method of ranking the RNGs using Diehard was the

same as that used by Meysenburg, the generator known as “the mother of all generators” was also

implemented and run against the Diehard suite. This is a multiply with carry generator and is

described by Marsaglia [Marsaglia 94]. It was not implemented in the hardware GP system because

of its complexity.

6.4.6 Non Random Sequences

Until now we have considered pseudo random sequences. These are sequences where it is hard

to guess the next number in a sequence. As an experiment, a further set of runs were performed

with an obviously non-random number generator. For this a sequential generator that output the

sequence n 	 n � 1 	 n � 2 	�
�
�
 was used. Rather surprisingly this also worked to produce 100% correct

programs, though substantially fewer than the other generators achieved.
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6.4.7 Truly Random Sequences

All the RNGs considered so far are not true random sequences, relying on the manipulation of

objects of finite size, and so fail one or more of the Diehard battery of tests. So a set of random

numbers was obtained from a source generated by using the atmospheric noise captured by a radio

receiver [random.org 02]. Each GP run for the artificial ant problem needs about half a million

random numbers, so a block of 10 MiB was downloaded from www.random.org and a randomly

selected 2 MiB block was transferred to one of the SRAM on the FPGA system using DMA. The

FPGA read this block sequentially to get its random numbers.

6.5 Experimental Results

The results from running the Diehard tests are summarised in Table 6.1. This shows the total results

for each test and ranks them according to their Diehard score. The worst score that Diehard can

award is 876. Note that the Sequential generator fails all Diehard tests. Appendix D gives the

results of the Diehard tests in full.

Table 6.1: Summary results of running the Diehard tests on the random number gen-
erators.

RNG Score
Mother 20
True 22
32LFSR 162
EQG 288
32CA 640
1DCA 676
LFSR 756
Sequential(2) 876

The number of correct programs that were produced by each random number generator was

recorded and is shown in Table 6.2. The results are ranked according to the number of correct

programs produced. The table also shows the slice count for the RNG implemented using Handel-C

and the maximum frequency as reported by the place and route tools. The slice count is a vendor

dependent measure of the number of FPGA blocks used. The clock rate is an indication of the logic

depth required to implement the generator, with deeper logic exhibiting a greater gate delay and

(2)Note. This is not a true RNG. See Section 6.4.6
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therefore a lower maximum clock rate. The slice count and frequency for the true RNG assumes

that the source of random numbers is supplied by an external device to the FPGA, and that the

FPGA simply needs to read the value from a port and write it to a register.

Table 6.2: Summary of GP performance for all random number generators tested from
500 runs.

RNG Correct Slice Clock rate
32CA 82 284 105 MHz
True 81 6 >200 MHz
32LFSR 79 130 134 MHz
EQG 78 288 42 MHz
ID CA 78 22 125 MHz
LFSR 68 18 188 MHz
Sequential 39 21 155 MHz

6.6 Discussion

The Diehard score obtained by the mother RNG was close to that obtained by Meysenburg, the

difference being explained by the fact that Meysenburg used the average of 32 runs, while the work

described here used a single run. Despite this difference, this confirms that the experimental method

used for ranking the RNGs using Diehard is comparable.

Despite the apparently serious deficiencies found in both the simple LFSR used in the original

implementation and the simple one dimensional CA random number generator, the overall effect

of implementing a more sophisticated RNG on the overall GP performance appeared to be small.

This result generally agrees with the work by Meysenburg and Foster [Meysenburg 99a], with the

exception that they did not consider a single-cycle LFSR. The single-cycle LFSR performs the least

well of the RNGs.

What was surprising was the emergence of solutions when a non-random sequence was used.

Clearly, a non-random sequence does not allow GP to operate as efficiently in terms of producing

100% correct programs, presumably because of the failure to explore some areas of the search space.

Nevertheless, the sequential generator allowed GP to explore enough of the search space to discover

viable solutions.

Despite the small differences in performance between the RNGS, with the exception of the

single-cycle LFSR and the sequential generator, from the results we can say that using a different
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RNG from the single LFSR would improve the performance of the hardware GP implementation,

and that an RNG based on multiple LFSRs or multiple CAs would be a better choice for a hardware

GP system. The use of a truly random number source did not appear to improve performance over

the 1DCA, 32CA and 32LFSR RNGs. This provides more evidence countering the notion that GP

needs a very high quality RNG.

Table 6.2 shows that the difference in GP performance between the 32CA, True, 32LFSR, EQG

and 1DCA generators is small. However, these 5 generators have very different Diehard scores,

so there does not appear to be a straightforward relationship between the Diehard score and the

performance of GP. This raises a question about the role that RNGs play in GP. Is a RNG that scores

well in some of the standard tests for randomness the best RNG for GP?

When looking at the FPGA slice counts and maximum clock rates, the 32LFSR uses about half

the FPGA resources that the 32CA does, and exhibits a smaller delay than the 32CA. This result

agrees with Yoshida et al. [Yoshida 01] where they found an LFSR RNG used fewer gates than

a CA base RNG. As predicted, the EQG uses the most FPGA resources and has very deep logic,

meaning that it can only run at a much slower rate than any of the other generators. The EQG RNG

could be re-implemented in the FPGA using pipelines to achieve much higher clock rate, but since

it performed no better than the 32CA or 32LFSR, this was not investigated any further.

6.7 Summary

This chapter has presented two behavioural analysis of the hardware GP system. First, the behaviour

was analysed using the program length distributions, and second, the impact of the random number

generator was evaluated.

6.7.1 Program Length Distribution

This analysis, based on measuring the program length distributions, was inspired by the results from

the work on a general schema theory of GP. It has led to an implementation of a crossover operator

that constrains the maximum program lengths in a natural way, without needing to know anything

about the program structure. For the artificial ant problem and Boolean even-6-parity problem

another mechanism has been discovered that avoids the effects of unconstrained program growth,

and also also yields more correct programs than the other crossover operators examined.
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In conclusion, all three crossover operators are effective in the hardware implementation when

applied to the artificial ant problem, with the single-child limiting crossover performing ahead of the

other two. The behavior of the single-child limiting crossover in the presence of fitness is interesting

and suggests another mechanism for controlling code growth.

6.7.2 Random Number Generator

The main conclusion from this investigation is that for the hardware GP system, the simple LFSR

used in the original design can be improved upon by using a generator based on multiple LFSRs,

multiple CAs, or if available, a high speed source of true random numbers. A secondary conclusion

is that with the exception of the non-random sequence and the LFSR generator, there is no significant

difference in GP performance when different hardware RNGs are used.



Chapter 7

Economic Analysis of Hardware GP

Previous chapters presented the results of implementing GP in hardware mainly in terms of

throughput and behaviour. Taken in isolation, the results suggest that there is a strong case for

implementing GP in hardware, especially where the user wants to minimise the time to run an

experiment. However, using Handel-C and FPGAs to implement GP involves additional costs when

compared with a software implementation of GP. These costs may be broken down into the capital

cost of the equipment and software, the time needed to learn about Handel-C and FPGAs, and the

cost of the additional development time required when using Handel-C.

The chapter begins with a review of the capital costs, followed by a discussion on the changes

that need to be made to traditional software engineering when using Handel-C. The economic fac-

tors that affect the suitability of using a hardware implementation of GP are then analysed using

two problems. The economics are viewed from the perspective of two groups of users. First, the

academic researcher who is exploring GP, and who would benefit from the potential for reduced

run times. This user will typically be able to make use of academic discounts for equipment and

software. The second user group is concerned primarily with exploiting GP in a commercial or

industrial context.

7.1 Hardware and Software Costs

Two items of equipment were needed to implement the work described in Chapters 4, 5 and 6: a high

performance workstation, and the FPGA development board. In addition, two software tools were

134
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required: Handel-C and the Xilinx FPGA synthesis tools. Because the price of hardware is contin-

ually changing, and different vendors have different pricing policies, only general hardware pricing

information is provided in this section. Similarly, because some software vendors do not make their

pricing publicly available, no detailed pricing information for the software can be provided.

Handel-C and the FPGA vendors synthesis tools typically require a highly specified workstation.

To illustrate this, a design from Section 5.3.2 that implemented the artificial ant problem is used as

an example. This example used 32 parallel evaluations which required nearly 80% of the total

slices available on the FPGA. To complete the compilation of the design using Handel-C, a PC

with 750 MiB of RAM was required. A PC with a 1.4 GHz Athlon CPU required nearly four

hours to complete the place and route. This is in contrast to a modest 500 MHz Pentium machine

capable of compiling and running lilgp and other popular GP packages. However, smaller designs,

for example the XOR problem with two parallel fitness evaluations in Chapter 5, could be compiled

and synthesised using a 500 MHz PC with 256 MiB of memory in about 10 minutes.

There is a wide variety of FPGA boards available from vendors, though many smaller FPGAs,

for example the Spartan II 200K-gate FPGA fitted to some low cost boards, do not have sufficient

resources to host the GP system described in Chapters 4 and 5 without some modifications. Board

costs typically range from o 200 for the simple boards fitted with small devices to over o 10,000 for

boards fitted with the largest devices.

The costs for Handel-C and the synthesis tools must also be added to the total capital cost. For

the academic researcher, the tool vendors often very generously make these available at low or zero

cost. However, for the commercial user, these tools can represent a significant cost.

7.2 Software Engineering Issues

Handel-C is designed to shield the programmer from the internal details of FPGAs and low level

hardware logic programming. In this regard it performs well, allowing the designer to concentrate

on the functionality required in an FPGA and still use an algorithmic approach to programming.

However, this approach has its limitations, particularly when it comes to issues of performance that

have traditionally been the preserve of hardware design engineers.

To understand the effect that using FPGAs and Handel-C can have on engineer productivity, this

section will consider the additional work needed by an engineer implementing a hypothetical pro-
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gram in software who then translates the same program in hardware using Handel-C. This approach

is used because one of the potential user groups of Handel-C are software engineers who want to use

FPGAs as part of a design. The assumptions made about the engineer are that they are competent in

the use of a popular imperative programming language such as C, they have a good understanding

of the problem, and that there is a comprehensive and accurate statement of the requirements for

the program. In this scenario it is assumed that the software engineer has designed the program

using well established techniques, and implemented and tested the program using the C language

and standard tools. A straightforward translation, or port, of the program to Handel-C will probably

require some changes to accommodate the lack of a stack, restricted data types, limited data mem-

ory capacity and limited code space. This will mean the engineer having to learn about the basic

features of Handel-C and FPGAs. Once the program has been successfully ported to Handel-C, and

proved to be functionally correct, the performance of the design will need to be considered. It is

highly unlikely that, for any non-trivial program, a straight port to Handel-C will result in a design

with the required performance. The biggest contributor to this will probably be the effect of the

deep combinatorial logic that some expressions generate. The design will need to be changed to

reduce logic depth by simplifying expressions and breaking complex expressions into more steps.

Further changes would probably be needed to optimise loop control structures, and possibly make

use of optimised core components available from the FPGA manufacturers. An example of this is

the use of the Coregen components when using the Xilinx Alliance tool set. However, to get the best

performance it will usually be necessary to revise the algorithm to exploit the parallelism available

with hardware. The engineer must also learn to interpret the detailed statistics available from the

place and route tools, which also requires an understanding of the FPGA internal architecture, and

an understanding of how Handel-C constructs hardware.

These issues are recognised by the vendors of Handel-C, and are documented in the user man-

uals and in a range of application notes. However, once the designer starts to optimise the design,

a more detailed knowledge of the underlying hardware structure of FPGAs is needed in order to

understand the optimisations.

The second cost that is incurred when using Handel-C and FPGAs is the time needed by Handel-

C to compile the source language into a netlist. Compiling the hardware GP system for the artificial

ant problem using 32 parallel fitness evaluations required approximately 30 minutes. This figure was

obtained with full optimisation enabled, and can be reduced by disabling most of the optimisations



7.3. GENETIC PROGRAMMING COSTS 137

at the expense of a slower and larger design. A related cost is the time needed to synthesise the

netlist into an FPGA configuration file. The artificial ant problem required about 4 hours. The time

can be reduced if the timing constraints are relaxed, but this results in a design that can be clocked

only at a much lower rate. During the development of the GP system use was made of reducing the

compile times by disabling optimisations and reducing the clock rate so that the development time

was reduced. The optimisations were enabled and stricter timing constraints were only used when

the design was functionally correct.

In summary, the cost of using Handel-C can be broken down into the cost of training, the time

needed to become familiar with new techniques and the additional time required to iteratively im-

prove the design.

7.3 Genetic Programming Costs

The previous sections give some general observations about the costs of using Handel-C and FP-

GAs. This section discusses some of the implications of implementing GP in hardware. Chapter

2 suggested that running the GP algorithm was part of a process called Meta-GP, and that imple-

menting GP in hardware could help speed up the process of discovering good parameter settings.

However, when it takes several hours to recompile and synthesise an FPGA based GP system, the

benefits of a faster GP system are not so obvious. The reason the synthesis takes so long is due to

the algorithms that the tools use internally. This is not something the user has any great control over,

other than by relaxing the timing constraints and accepting a slower design.

The benefits of a fast GP system are also eroded because the design of the GP machine, as

described in Chapters 4 and 5, is statically configured. For example, no provision was made to allow

the population size, number of generations, operator proportions, or other run time parameters to

be modified without having to recompile the design. This means that every time a GP run-time

parameter is changed, the design must be recompiled and synthesised. One improvement that could

be made is to allow some of the run-time parameters to be configured before the GP run. For

example, the run-time parameter values could be written to SRAM by the host and then read by the

FPGA, in the same way that the random number seed is initialised.

Another aspect of the static design is that both the fitness evaluation and the function set are hard

coded into the design. This leads to the idea of dynamically configuring the function set and the
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fitness evaluation, possibly leaving the selection and breeding components as statically configured

parts of the design. Reconfigurability was discussed in Chapter 3. Approaches to a reconfigurable

hardware GP system using Xilinx Virtex FPGAs include the use of JBits [Sundararajan 00] or a

configurable virtual machine [Sekanina 00].

7.4 Quantifying the Costs

To help a practitioner decide whether a hardware implementation would be cost effective, it would

be useful to be able to quantitatively assess the costs. This section provides a quantitative method

of assessing the costs of using hardware GP. The costs are then compared with the costs of using a

software GP system. The costs are approximate values in Euros, in 2002. All times are in hours.

The times assigned to the hardware development are based on the times needed for carrying out the

experiments in the previous chapters.

The cost is expressed as a cost per GP run, Crun. The total cost of running a GP experiment is

the total capital cost of equipment Ccap plus the cost associated with developing the GP application,

Cdev, plus a cost for the time to run the experiment, Cgp. Because it is likely that the equipment and

development software would be used for more than one experiment, the total hardware and software

costs are divided equally between E GP experiments. If Chw is the cost of hardware and Csw is the

cost of software, then the cost of the equipment and software for one experiment is given by:

Ccap � Chw � Csw

E
(7.1)

From this it can be seen that the more experiments the capital cost is spread over, the smaller

the value of the per-experiment capital cost Ccap p An approximation of the cost of developing and

running of a GP program is made by assuming that the a users time has a uniform cost of Cut per

hour. The cost of developing the GP system, Cdev, in time Tdev is given by:

Cdev � Cut � Tdev (7.2)

The cost of making a single GP run, Cgp, in time Trun is given by:

Cgp � Cut � Trun (7.3)
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The total cost, Ctot, to implement a GP system and perform one run is given by:

Ctot � Ccap � Cdev � Cgp (7.4)

Running the same GP system for N runs, the cost per run is given by:

Crun � Ccap � Cdev � �
N � Cgp �

N
(7.5)

From this it is clear that the greater the number of runs performed, the more cost effective the GP

implementation will be. To see the effect of a different number of runs, two problems are used as

examples. The first is the Boolean even-6-parity problem, described in Section 5.3.3. The second is

a hypothetical problem that takes 24 hours to run when implemented in software. Table 7.1 shows

the costs used for the examples. The time needed to implement the hardware GP system is taken as

100 and the time to implement the software GP system 50. These times assume that each GP system

was developed independently. The longer time needed for the hardware system is due to the longer

time needed for each program iteration, as discussed in Section 7.2. Cut is assumed to be constant

for both implementation and running, and is taken as o 10/hour.

Table 7.1: Costs for implementing hardware GP and software GP. All costs are ap-
proximate and are in Euros as of 2002.

Hardware GP Software GP
Hardware Costs Chw o 10,000 o 2,000
Software Costs Csw o 10,000 o 100
Implementation cost Cimpl o 2,000 o 1,000

The Boolean even-6-parity problem using 64 parallel fitness evaluations was clocked at 34 MHz,

and required 40 � 106 cycles. Therefore a single run took 40 � 106 � 34 � 106 s = 1.175 s or 0.00034 h.

The corresponding software implementation running at 200 MHz required 419 � 1 
 175 s = 492 s

or 0.136 h. Using a value of 100 for E , Figure 7.1 shows the cost for both the hardware and the

software implementation for different values of N between 1 and 1000. Note the log scale for the

cost per run. The graph shows, for the Boolean even-6-parity problem, that as the number of runs

increases there is a point at which the hardware implementation has a lower cost per run than the

same algorithm implemented in software.
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Figure 7.1: Cost benefit of using hardware GP for the Boolean even-6-parity problem.

The cost per run was also calculated for the hypothetical problem that requires 24 hours to

complete one run when implemented in software. It is assumed that the hardware GP system can

achieve a Speeduptime of 500, so the hardware GP system would require 0.048 h. This is plotted in

Figure 7.2. This shows that for experiments that require a long time to run, a hardware GP system

can reduce the cost of running the experiments by an order of magnitude or more.
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Figure 7.2: Cost benefit using hardware GP for a hypothetical problem that requires
24 hours to run when implemented in software.

However, the absolute cost of developing and running a GP system is often not as important

as the total time available to carry out experiments. Within the total time two activities must be
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completed; the design and implementation of the GP system, and running the GP experiments using

the process of Meta-GP as described in Section 2.6.3. In this scenario the number of runs that can

be achieved in that time is often the limiting factor and maximising the number of runs is therefore

an important goal.

The number of runs, N, that can be completed in time Ttot is:

N � Ttot � Tdev

Trun
(7.6)

where Tdev is the time to develop the GP system and Trun is the time required to complete a single

run of the GP experiment.

Using the Boolean even-6-parity problem as an example, Tdev is 100 for the hardware implemen-

tation and 50 for the software implementation. The time for one run of the hardware implementation

was 0.00034 h and for the software implementation was 0.16 h.

Figure 7.3 shows the number of runs that can be run for values of Ttot between 1 and 150 hours.

Note the log scale for the number of runs. This graph shows that where the total time is limited
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Figure 7.3: Number of runs that can be achieved using the Boolean even-6-parity prob-
lem for a software implementation and a hardware implementation

or the number of runs is not critical, that the software implementation may be adequate. However,

where the number of runs in a given time needs to be maximised, the hardware implementation has

a clear advantage for this experiment.
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The number of runs for the hypothetical problem that requires 24 hours to run is shown in Figure

7.4. This graph shows that for problems with extended running times, when the total time available
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Figure 7.4: Number of runs that can be achieved using a hypothetical problem that
requires 24 hours to run when implemented in software.

is greater than the time to implement a hardware GP system, the hardware GP system allows many

more runs to be completed in the time available. The results in Figures 7.3 and 7.4 ignore the

effect of having to recompile the GP system for every change made to the GP parameters. This is

reasonable given that a method of achieving this has already been proposed (7.3).

7.5 Summary

The use of Handel-C and FPGAs by a software engineer has a number of costs associated with it.

Firstly, the cost of training the engineer in the use of Handel-C and the underlying hardware. Sec-

ondly, the capital costs of equipment and software. Thirdly, the extended time needed to implement

a design using Handel-C and the FPGA vendor’s synthesis tools. Weighed against these costs are

the potential for greatly reduced run times for a GP problem, and the potential to explore areas of

GP that would be intractable using traditional software implementations.

To obtain the best advantage from using hardware GP as part of the Meta-GP process, the design

should be modified to allow the dynamic modification of the run time parameters. This would avoid

the time consuming process of having to recompile the design every time a parameter change was

required.
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A method of assessing the cost effectiveness of using hardware GP has been presented, which

should help a user decide whether a hardware GP system can be justified in terms of cost. A method

of predicting the number of runs that a GP implementation can complete in a given time has also

been presented. Two examples have been used to illustrate these methods. The method of assessing

the cost per run is sensitive to the capital cost and the value of Cut. Where the capital cost is higher or

the cost of implementing the GP system is higher, then the use of hardware GP may not be justifiable

on cost alone. Where the equipment is only used for a small number of experiments, it is unlikely

that the user of GP would find a hardware implementation a good economic proposition. However,

for problems that would be impractical to explore using traditional software implementations, a

hardware GP system could be justified on the basis of cost.

The use of hardware GP can also be justified where the number of runs that can be completed

in a fixed time needs to be maximised, for example when the problem requires an extended running

time.

All the examples have assumed that the GP system is implemented completely for each exper-

iment. In practice, once a GP system has been designed, the time needed to develop a variant will

be much smaller, so the advantages of using hardware GP will be more pronounced.



Chapter 8

Conclusions

The Genetic Programming algorithm requires a lot of computing resources because it often has

to evaluate hundreds, thousands or millions of programs during a run. Furthermore, the algorithm

often needs to be run multiple times to find an acceptable solution to a problem. It is also the case

that numerous runs of the GP algorithm are needed when empirically investigating the behaviour of

a GP system.

The hypothesis of this research is that implementing GP in hardware will reduce the time needed

to run the GP algorithm. A reduced run time for GP would allow the detailed operation of GP to

be explored in ways that previously would have required an uneconomic investment in time and

equipment. Reducing the running time of GP would also allow GP to be applied to problems that,

so far, have been hard or impossible for GP to solve.

8.1 Recapitulation of the Contributions

8.1.1 Hardware Genetic Programming

This thesis approached the idea of implementing GP in hardware from a practical standpoint by

combining GP with two technologies – a Field Programmable Gate Array (FPGA) and Handel-C –

to produce the first published complete GP system in hardware. The implementation of a proof of

concept design, described in Chapter 4, shows that implementing all the stages of GP in hardware

is a practical proposition, and that using Handel-C it was possible to design the hardware using an

algorithmic approach. By using a simplified design, and accepting that there would be limitations

144
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in such a design, practical issues surrounding the use of Handel-C and designing for an FPGA

were addressed. However, the proof of concept design used an essentially serial GP algorithm,

as used in software implementations of GP. The results from the problems used to test the design

(simple regression and the XOR problem) showed that ignoring the opportunities to fully exploit the

parallelism offered by hardware meant that throughput was limited and that the potential speedups

were not achieved. The proof of concept design also showed that, without external memory, an

FPGA can only support a very limited population size.

The results from the optimised implementation (Chapter 5), which used pipelines, confirmed

that exploiting the parallelism in hardware could lead to substantial increases in throughput. The

results from the optimised implementation also showed that, by using external memory, it is feasible

to implement some common GP benchmark problems entirely in hardware, and, for one of the

problems used (Boolean even-6-parity problem), speed up the execution of GP by a factor of over

400 when compared to the same algorithm executed in software.

8.1.2 Meta-GP

To support the hypothesis, this research also considered the question of why it is important to re-

duce the run time of GP. Using GP is almost always presented as a linear series of steps. In reality,

most users know this is not an accurate reflection and that using GP often requires extensive exper-

imentation to produce acceptable results. In this thesis the process of using the GP algorithm has

been presented explicitly as an algorithm – called Meta-GP. Furthermore, the term Meta-GP has

been used to describe the broad activity of using an evolutionary approach to discovering accept-

able operational parameters for the GP algorithm, rather than the narrow interpretation often used

to describe the automatic optimisation of a single parameter. By recognising that Meta-GP is an

essential part of developing and using GP systems, it is shown that the time to execute the core GP

algorithm is more important than is normally assumed. Reducing the time for the core algorithm

means that more GP runs can be completed, given a fixed time budget.

A practical demonstration of the benefits of using a hardware GP implementation in the Meta-

GP process was highlighted during the investigation into the behaviour in Chapter 6. The speedup

offered by the hardware implementation meant that it was feasible to repeatedly run the experiments

for 500 runs in order to get an average of many runs, while still being able to experiment with
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parameter settings and modify the crossover operators. Using a software implementation would

have required a much longer running time, nearly 12 hours for the Boolean even-6-parity problem,

which would have hindered experimentation with parameter settings and exploration of different

operators.

8.1.3 Exploring GP Behaviour

The standard method of describing the behaviour of GP systems in the published literature is to plot

a graph of average fitness versus generation, sometimes together with a plot of the effort required

to find a solution, as originally described in [Koza 92]. While this method shows how quickly

a GP system reaches an average fitness level, it does not show how the GP system is behaving

internally. Furthermore, as shown in Chapter 6, the standard method does not clearly show the

differences between two similar GP systems. In this thesis, the number of correct programs at

the end of a run has been used, which shows more directly the differences in behaviour between

experiments. Although the number of correct programs has previously been used as a measure of

effort, for example by Miller and Thomson in [Miller 00], this thesis also considered the program

size distribution. The results were presented as a histogram of the lengths of the 100% correct

programs. This gave another insight into the choice of operational parameters. The program size

distribution for the artificial ant problem suggested modifying the maximum length that programs

were allowed to grow to. The modifications showed that the number of 100% correct solutions

could be increased.

When investigating the behaviour of different crossover operators, the changes in the population

length distribution during a GP run gives an insight into the pressures that different operators can

have on the program lengths of the population. Using this insight, a new crossover operator – called

single child limiting crossover – has been developed. The single child limiting crossover operator

has been shown to be effective in constraining the maximum length of programs and in controlling

the tendency of GP programs to bloat.

8.1.4 Taxonomy of GP Attributes

Arranging the attributes of GP into a taxonomy was prompted because there has not been a unified

classification of this information before. The taxonomy makes it explicit which attributes are re-
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lated to the problem and which attributes are GP specific. Just as in software engineering, where

there is a clear distinction between the specification of a problem and the implementation, explicitly

identifying which attributes are problem specific and which are GP specific should help in identi-

fying suitable attribute values for problems. The survey of problems highlighted several features

of how GP has been applied. Firstly, the lack of formal methods to specify problems runs counter

to the general adoption of such methods in general software engineering. Secondly, the ranges of

population sizes, generations run and resultant program sizes all suggest that GP has only tackled

problems with modest dimensions. Lastly, it showed that software implementations of GP dominate

the published results. These three features all suggest areas of further research, indeed, the lack of

hardware GP systems was one motivation for the research described in this thesis.

It is not claimed that the taxonomy presented in Chapter 2 is complete but it is given as a starting

point for further refinement.

8.1.5 High Level Language Hardware Compilation

The principle benefit of using Handel-C as an implementation language was that the implementation

could be expressed as an algorithm, rather than a structural description of the hardware. A second

benefit was that the same algorithm could be implemented in both hardware and software with

minimal changes. Being able to re-use the same algorithm for a software implementation and for

an FPGA was found to be important for three reasons. Firstly, it facilitated the initial development

of the algorithm in software. This is advantageous because using Handel-C meant the hardware

development process required a longer time to iterate through the design-code-test cycle than the

software cycle. Secondly, because the code can be made portable between Handel-C and ISO-C, the

porting of the algorithm from the software development environment to Handel-C, and vice versa,

is simplified, reducing the opportunities for errors to be introduced in the porting process. Thirdly,

it allowed the direct comparison of the algorithm’s performance when implemented in software and

hardware. In the published literature of evolutionary computation, most of the previously reported

comparisons between hardware and software have either used a software simulation of the hardware

design, or have only used very loosely related software algorithm equivalents of the hardware.
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8.1.6 Random Number Generation for Hardware

There is a popular theme in the literature of evolutionary computation which implies that a very

good source of random numbers is essential. Previous studies have shown that, given a reasonably

good generator, the quality of a random number generator is probably not as important as some have

stated. The analysis of the hardware random number generators confirmed that for most hardware

generators the quality of the generator has little measurable effect on the performance of the GP

algorithm. However, it also showed that a demonstrably poor generator, such as a simple linear

feedback shift register generator, can impair the performance of the GP algorithm.

In addition to using pseudo random number generators and true random number generators,

the analysis also showed that using a non-random source of numbers allowed the GP algorithm to

find solutions, though with a much lower probability of success than the pseudo random and truly

random generators.

8.1.7 Economics of Hardware Genetic Programming

This thesis started with the hypothesis that implementing GP in hardware could result in reduced

running times for the GP algorithm. The experimental evidence shows that it is indeed practical

to implement GP in hardware and for the implementation to be able to solve some test problems

in a much shorter time than an equivalent software implementation. However, it is unlikely that

a hardware GP system would be appropriate for all problems and for all classes of user. Because

the initial investment in hardware and software is significant, using hardware GP may not be cost-

effective for some problems. By considering both the time to run an experiment and the potential for

running many more experiments in a given time, a method of quantifying the cost benefit of using

hardware GP has been presented, which allows a practitioner to objectively evaluate the usefulness

of hardware GP.
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8.2 Further Work

8.2.1 Alternative FPGAs

Higher Performance FPGAs

The design in Chapters 4 and 5 used the Xilinx XCV2000e device, which was one of the most

advanced devices available at the time the research was carried out. However, technological ad-

vances have taken place and the more recent Virtex-II FPGAs from Xilinx are bigger and faster

than the Virtex-E devices and promise even better speedups. Initial studies using these devices have

indicated that a further speedup of two to three times is possible. This speedup is achieved by a

higher clock rate, up to 420 MHz, and better routing resource utilisation. The Virtex-II devices also

have larger gate counts and bigger on-chip BRAMs. The largest of these devices currently avail-

able (mid-2002), – the XC2V8000 – has 46 592 slices. Early work suggests that this device could

accommodate up to 128 parallel fitness evaluations for the artificial ant problem, and 256 for the

Boolean even-6-parity problem. These devices also have on-chip multipliers which would make it

possible to use function sets that require multiplication and division operators, often required for

regression problems. On-chip multipliers would also mean that other PRNGs could be used, such

as the Mother PRNG described in Section 6.4. The initial indication is that by combining the faster

clock frequency and more parallel fitness evaluations the ant problem could see a further 10 times

speedup, and the Boolean even-6-parity problem a speedup of 20 times. Further work needs to be

carried out to verify this.

Low Cost FPGAs

At the other end of the device spectrum, there are some low cost FPGAs that may be suitable for

embedding into equipment. For example, the Spartan range from Xilinx which is fitted to the low

cost RC100 development board, available from Celoxica. This board has a Spartan XC2S200 FPGA

which has 5 292 logic cells. Initial experiments using this device indicate that it could accommodate

the hardware GP system.
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Alternative FPGA Manufacturers

While this work has used FPGAs from Xilinx, FPGAs are available from a number of other man-

ufacturers. To date, none of these has been considered for implementing GP. However, one of the

features of Handel-C is that it is not tied to one device manufacturer. This allows a single design to

be targeted at many different FPGA families, often with little or no change to the design. For partic-

ular applications, other manufacturers devices may offer advantages such as gate count, specialised

hardware features, speed, power consumption or cost.

8.2.2 Generalised Design

As already noted in Chapter 7, the cost in time to make small changes to a GP system in an FPGA

can be large, so it would seem reasonable to add the means of varying some of the run-time pa-

rameters for a given design. This could be done by supplying them during start-up. For example,

a design with a fixed maximum population size could have a run-time limit below the maximum

specified by the host program. This would make the technique more useful for exploring particular

aspects of GP behavior.

Two possible approaches to realising a more general design have been suggested in Chapter 7:

JBits [Sundararajan 00] and a configurable virtual gate array [Sekanina 00]. Both these approaches

use the idea of being able to reconfigure the FPGA so that the logic can be altered externally.

Another alternative, mentioned in Chapter 4, is to implement a general set of functions, modelled,

for example, on the Java virtual machine. Implementing a virtual machine in hardware would then

allow the function set and the fitness functions to be compiled externally and then made available to

the FPGA for execution, without needing to alter the FPGA contents. The fitness function could be

placed in SRAM and executed directly by the FPGA hosted virtual machine. However, using this

approach is likely to reduce the speedups that are obtained when an optimised and problem specific

function set is implemented in the FPGA.

8.2.3 Techniques from Standard Genetic Programming

Several specialised techniques have been used to facilitate the implementation of GP in hardware.

In particular, the use of a linear representation and the crossover operators described in Chapter 6.
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The crossover operators investigated in Chapter 6 used a linear representation, but from the

results in [Poli 01a] similar behavior would be expected when the truncating crossover and the

single child limiting crossover techniques are applied to standard tree based GP. This is an area that

should be investigated.

Other techniques have been suggested for controlling the program size during evolution such as

homologous and size fair operators [Langdon 99] and smooth operators [Page 99], which could also

be adapted to a hardware implementation.

The linear representation was used because of its simplicity and regularity. Other regular rep-

resentations that should be straightforward to implement in hardware include Cartesian Genetic

Programming by Miller and Thompson [Miller 00].

8.2.4 Applications

In this thesis, hardware GP has been used to implement only a limited number of problems. To get a

more complete picture of the effects of the design decisions, and the limitations of the design, more

problems would need to be implemented and analysed.

None of the applications described in this thesis, or suggested as future applications, require

large fitness functions. Although the initial population creation, breeding and support functions used

around 20% of the chip area, the amount of logic that can be accommodated on an FPGA is severely

limited. It is therefore not clear how fitness functions that require a lot of computing resources will

be able to be accommodated on an FPGA. For example, Bennett [Bennett III 96] [Bennett III 99],

Koza et al. [Koza 96b] [Koza 00a] [Koza 97c] [Koza 99a] and others have used one or more Spice

circuit simulators to evolve electrical circuits. It is doubtful whether Spice could be ported to an

FPGA using current technologies, so there is going to be a class of problems that would be hard to

implement completely in hardware.

None of the applications implemented in this thesis have used floating point mathematical func-

tions. Although Celoxica provide a fixed point and floating point library with Handel-C, no work has

yet been done to evaluate how efficiently fitness functions that use fixed or floating point arithmetic

can be implemented.

Although hardware GP has been shown to give useful speedups for the problems already imple-

mented, these are all problems that have already been solved by standard GP. However, hardware
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GP offers the opportunity to tackle problems that have not yet been considered practical. Because

the FPGA system has the potential to evaluate individuals in a far shorter time than even the fastest

Pentium class computers, it becomes possible for a GP system to process fast real-time data. This

would be particularly appropriate where fitness data are available only as a real-time data stream, for

example in signal processing applications, where real-time data, such as telemetry from remote sen-

sors, could be processed directly by the FPGA. For example, this might find use in applications that

need to continuously optimise a signal processing algorithm, such as a filter, in response to chang-

ing conditions, or where real-time constraints must be met. An example of such an applications is

scheduling hard disc operations as investigated by Turton and Arslan [Turton 95].

FPGAs are typically endowed with a large number of Input/Output (I/O) pins. Using these I/O

pins, a fitness function implemented in an FPGA would have direct access to external signals. These

pins could, for example, be connected directly to an image sensor device, giving the fitness functions

direct access to raw image data. This would find applications in image recognition problems.

Another interesting possibility for using an FPGA is that the output signals can be directly

encoded into the function set, thereby opening up the possibility of embedding the GP system

and having it directly control hardware devices while evaluating the fitness of the programs. An

example of this would be a robotic control that reads sensor inputs directly using some of the I/O

pins on the FPGA. The evolving programs would then generate control signals directly to the robot,

again using some of the I/O pins. Although FPGAs have previously been embedded in robots, for

example in [Thompson 97], [Seok 00] and [Haddow 99] using hardware GP would mean that the

robot’s behaviour could be evolved using GP without the need for an external PC.

The applications suggested in this section have only hinted at the possibilities made possible

by implementing GP in an FPGA. It is hoped that the fast execution of the hardware GP algorithm

coupled with the compact hardware requirements of an FPGA would suggest other applications of

this work.

8.3 Conclusions About the Hypothesis

The research has supported the hypothesis that implementing GP in hardware can speedup the op-

eration of the GP algorithm. It has also been shown that a hardware GP system reduces the time

needed to investigate the detailed operation of GP. However, the analysis of the economic factors
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that influence the choice of whether to use a hardware or software GP system shows that, although

a large speedup is possible, a hardware GP system would not be appropriate in every application

due to the high initial capital cost and the time required to develop the GP system. Finally, some of

the potential applications suggest that hardware GP could open up areas of research which would

otherwise be impractical for software based GP.
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Appendix A

Attributes of the Experimental Problems

This appendix presents the attributes of the problems used in the experimental work in this

thesis. The attributes are shown using the format developed in Chapter 2, Table 2.7 on page 32.

Table A.1 describes the regression problem from Chapter 4. Table A.2 describes the exclusive

OR problem used in Chapter 4 and Chapter 5. Table A.3 describes the artificial ant problem from

Chapter 5, and Table A.4 describes the Boolean even-6-parity problem from Chapter 5.
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Table A.1: Simple regression attributes
Category Value Comments

EXTERNAL
Problem category Regression Simple linear regression
Formal specification Equation x � a � 2b
Number of fitness cases 4
Language FM

GP SPECIFIC
Function set size 8 !C# # �&%

n 	 % m � , 'D) + �&%
n 	 % m � ,'D,.- �&%

n � , '*,�/ �&% n � , 0�254 ,,3! -56 �&%
n � , -$#3798 �&%

n 	9: m � ,<�8�4?75@ A �&%
n 	 % m �

Function set abstraction Low
Terminal set size (T) 4
Automatic feature discovery None
Memory None
Program representation Linear
Polymorphism and data typing None
Representation mapping Direct
Crossover operator 67%

Xmod True. Truncating crossover.
Mutation operator 12.5%

Mmod False
Reproduction operator 21.5%

Rmod False
Creation method Uniform
Seeding None
Population size 16
Generations 511
Selection method Tournament
Generational method Steady state

RESULTS
Program size 4
Successful True
Effort
Wall clock time

IMPLEMENTATION
Class of GP platform Hard
Fitness function implementation Intrinsic
Model of parallelisation MasterSlave
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Table A.2: Exclusive OR problem attributes
Category Value Comments

EXTERNAL
Problem category Regression Boolean expression regression
Formal specification Equation x � a � b
Number of fitness cases 4
Computability FM

GP SPECIFIC
Function set size 4 F$GBH �&% n 	 % m �L	�I %��&% n 	 % m ��	G�I %��&% n 	 % m ��	MGJFBG$H �&% n 	 % m �
Function set abstraction Low
Terminal set size (T) 4 4 registers.
Automatic feature discovery None
Memory None
Program representation Linear
Polymorphism and data typing None
Representation mapping Direct
Crossover operator 66%

Xmod True - Truncating crossover
Mutation operator 12.5%

Mmod False
Reproduction operator 21.5%

Rmod False
Creation method Uniform
Seeding None
Population size 16
Generations. 511
Selection method Tournament
Generational method Steady state

RESULTS
Program size 4
Successful True
Effort
Wall clock time

IMPLEMENTATION
Class of GP platform Hard
Fitness function implementation Intrinsic
Model of parallelisation MasterSlave
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Table A.3: Santa Fe Artificial Ant problem attributes
Category Value Comments

EXTERNAL
Problem category Control
Formal specification English A description of how the ant

should behave.
Number of fitness cases 4
Computability FM

GP SPECIFIC
Function set size 4 R�S _ S�IBI5H � ] a 	9] b � ,U % ICWBG � ] a 	9] b �
Function set abstraction Low
Terminal set size (T) 4 _�IC`B\?	;[B\ S ].	 % R>W$^ ]?	;G�ICU
Automatic feature discovery None
Memory None
Program representation Linear
Polymorphism and data typing None
Representation mapping Direct
Crossover operator 66%

Xmod True - Truncating crossover
Mutation operator 12.5%

Mmod False
Reproduction operator 21.5%

Rmod False
Creation method Uniform
Seeding None
Population size 1024
Generations. 32
Selection method Tournament
Generational method Steady state

RESULTS
Program size 4
Successful True
Effort
Wall clock time

IMPLEMENTATION
Class of GP platform Hard
Fitness function implementation Intrinsic
Model of parallelisation MasterSlave
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Table A.4: Boolean even-6-parity problem attributes
Category Value Comments

EXTERNAL
Problem category Regression Boolean expression regression
Formal specification Equation
Number of fitness cases 4
Computability FM

GP SPECIFIC
Function set size 4 F$GBH �&% n 	 % m �L	�I %��&% n 	 % m ��	G�IC] �&% n 	 % m ��	dc�I %��&% n 	 % m �
Function set abstraction Low
Terminal set size (T) 16 16 registers. The 6 input val-

ues were written to registers 0-5.
The result was read from register
0.

Automatic feature discovery None
Memory None
Program representation Linear
Polymorphism and data typing None
Representation mapping Direct
Crossover operator 66%

Xmod True - Truncating crossover
Mutation operator 12.5%

Mmod False
Reproduction operator 21.5%

Rmod False
Creation method Uniform
Seeding None
Population size 2048
Generations 64
Selection method Tournament
Generational method Steady state

RESULTS
Program size 171 Mean size from 500 runs
Successful True
Effort
Wall clock time

IMPLEMENTATION
Class of GP platform Hard
Fitness function implementation Intrinsic
Model of parallelisation MasterSlave



Appendix B

Taxonomy Data

B.1 Data Used to Construct the Taxonomy of Genetic Programming

This section presents a summary of the data that was collected in order to construct the taxonomy of

Genetic Programming. This data was collected and placed into a MySQL relational data base. To

reduce the opportunity for errors, reports from the database were run to provide the data in Chapter

2. The reports were run using a Perl script which then used gnuplot to format the graphs. This table

was created using Perl which formatted a LYX table for automatic inclusion into this thesis.

Category Description Pop Gen Size Reference

1 Algorithms Automatic Programming of a

Randomizer

500 51 87 [Koza 92, pp 396–408]

2 Algorithms Boolean 6multiplexer 500 51 12 [Koza 92, pp 187–188]

3 Algorithms Boolean 11 Multiplexer 500 51 37 [Koza 92, pp 169-186]

4 Algorithms Bracket problem 10000 50 88 [Langdon 98a, pp 143–148]

5 Algorithms Directed acyclic graphs – – – [Handley 94b]

6 Algorithms Discovering learning rules for

neural networks

1000 1000 – [Radi 99]

7 Algorithms Dyck language 10000 50 32 [Langdon 98a, pp 149–154]

8 Algorithms even 5 parity 16000 51 112 [Koza 94, pp 162]

9 Algorithms Even 5 parity (with ADF) 16000 51 51 [Koza 94, pp 162]

10 Algorithms Evolution of schedule for simu-

lated annealing

– – – [Thonemann 94]

11 Algorithms Evolving a list 10000 100 109 [Langdon 98a, pp 123–142]

12 Algorithms Evolving a queue 10000 50 16 [Langdon 98a, pp 81–122]

13 Algorithms Evolving a sort 1000 49 42 [Kinnear, Jr. 93]

14 Algorithms Evolving a sort using FPGAs 1000 51 – [Koza 97b]

15 Algorithms Evolving a stack 1000 101 16 [Langdon 98a, pp 61–80]
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Category Description Pop Gen Size Reference

16 Algorithms Evolving Neural Network

Structures by means of Gen

1000 200 – [Golubski 99]

17 Algorithms Function approximation by su-

perimposing genetic program-

ming trees: with applications to

engineering problems

2000 40 – [Yeun 00]

18 Algorithms Learning by adopting represen-

tations

– – – [Rosca 94]

19 Algorithms Minimal sorting network prob-

lem with GPPS 1.0

640000 1001 241 [Koza 99c, pp 335–339]

20 Algorithms Reasoning about proofs – – – [Nordin 99b]

21 Algorithms Regression using stack based

GP

200 21 – [Perkis 94]

22 Algorithms Reverse polish expression 10000 100 38 [Langdon 98a, pp 154–160]

23 Algorithms Sorting network 500 51 – [Koza 99c, pp 335–339]

24 Algorithms Stack filters – – – [Oakley 94]

25 Art Composing 16th century coun-

terpoint

– – – [Polito 97]

26 Art Genetic art in virtual reality – – – [Das 94]

27 Art Grammar based genetic pro-

gramming technique applied to

music generation

– – – [Putnam 94]

28 Art IFS generation - fractal genera-

tion

50 30 22 [Sarafopoulos 99]

29 Art Induction and recapitulation 250 50 221 [Spector 95b]

30 Art Interactive evolution of equa-

tions and images

– – – [Sims 91]

31 Classification 2 boxes 4000 51 17 [Koza 94, pp 57]

32 Classification Autonomous document classifi-

cation for business

– – – [Clack 97a]

33 Classification Building queries for informa-

tion retrieval

– – – [Kraft 94]

34 Classification Classify Swedish nouns 4000 100 50 [Nordin 94]

35 Classification Classifying protein sequences 320000 51 – [Koza 98a]

36 Classification Competitively evolving deci-

sion trees for natural language

processing

900 500 18 [Siegel 94]

37 Classification Cracking and co-evolving ran-

domisers

2048 100 – [Jannink 94]

38 Classification Credit approval 1000 40 – [Eggermont 99]

39 Classification Credit card problem 600 80 – [Ahluwalia 98]

40 Classification Detection of the dipicolinic

acid biomarker in Bacillus

spores using Curie-point

pyrolysis mass spectrometry

and genetic programming

– – – [Goodacre 00]

41 Classification Digit recognition 512000 201 – [Koza 99c, pp 253]
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Category Description Pop Gen Size Reference

42 Classification Donut problem – – – [Tackett 94]

43 Classification Evolving Fuzzy Rule Based

Classifiers with GA-P

– – 67 [Garcia 99]

44 Classification Extracting low contrast curvi-

linear features from SAR im-

ages of arctic ice

357 30 – [Daida 96]

45 Classification Feature discovery – – – [Tackett 93]

46 Classification Fitting chaotic data 5000 101 102 [Oakley 94]

47 Classification Flushes and four-of-a-kinds in a

Pinochle Deck

4000 51 63 [Koza 94, pp 417]

48 Classification Flushes and four-of-a-kinds in a

Pinochle Deck (with ADF)

4000 51 54 [Koza 94, pp 417]

49 Classification Genetic programming as an an-

alytical tool for non-linear di-

electric spectroscopy

50000 200 – [Woodward 99]

50 Classification GP for analysing metabolic

data - classification

37500 500 – [Gilbert 99]

51 Classification GP for automatic target classifi-

cation in radar

250 100 11 [Stanhope 98]

52 Classification Iris detection 600 120 – [Ahluwalia 98]

53 Classification Medical data mining using evo-

lutionary computation (thyroid

problem)

5000 250 – [Brameier 01]

54 Classification Multi population GP applied to

burn diagnosing

12500 60 43 [de Vega 00]

55 Classification News story classification by

Dow Jones

– – – [Masand 94]

56 Classification Prediction of secondary struc-

ture of proteins

– – – [Handley 93]

57 Classification Prediction of transmembrane

domains in proteins

4000 21 71 [Koza 94]

58 Classification Prediction of transmembrane

domains in proteins (with ADF)

4000 21 122 [Koza 94]

59 Classification Quintic polynomial 4000 51 69 [Koza 94, pp 118]

60 Classification Ship detectors 5000 10 17 [Howard 99]

61 Classification Sonar classification 60 50 150 [Iba 94]

62 Classification Speaker identification 10000 2000 256 [Conrads 98]

63 Classification Speaker identification (task

level)

400 50 – [Kantschik 99]

64 Classification Text classification 100 20 – [Masand 94]

65 Classification The detection of caffeine in

a variety of beverages us-

ing Curie-point pyrolysis mass

spectrometry and genetic pro-

gramming

25000 250 16 [Goodacre 99]

66 Classification The donut problem 1024 50 – [Tackett 94]
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Category Description Pop Gen Size Reference

67 Classification Transmembrane segment iden-

tification with architecture al-

tering operations

– – – [Koza 99c, pp 271]

68 Classification Upgrading rules for OCR 5000 100 – [Andre 94]

69 Control Artificial Ant 500 51 18 [Koza 92, pp 147–162]

70 Control Artificial ant 13x13 grid 4000 51 90 [Koza 94, pp 349]

71 Control Artificial ant 13x13 grid (with

ADF)

4000 51 71 [Koza 94, pp 349]

72 Control Box moving Robot 500 51 207 [Koza 92, pp 381–390]

73 Control Broom balancing 500 51 21 [Koza 92, pp 289–303]

74 Control Broom balancing 500 51 – [Koza 92, pp 288–307]

75 Control Bumble bee 25 flowers 4000 51 452 [Koza 94, pp 275]

76 Control Bumble bee 25 flowers (with

ADF)

4000 51 245 [Koza 94, pp 275]

77 Control Cart centering 500 51 55 [Koza 92, pp 122–147]

78 Control Cart centering 128000 201 – [Koza 99c, pp 305–308]

79 Control Cart Centering (with ADF) 128000 501 486 [Koza 99c, pp 305–308]

80 Control Channel equalisation – – – [Esparcia-Alcázar 96]

81 Control Control of robots – – – [Ghanea-Hercock 94]

82 Control Corridor following – – – [Reynolds 94a]

83 Control Evolution of cooperation – – – [Rush 94]

84 Control Evolution of herding behaviour – – – [Reynolds 92]

85 Control Evolving controllers for au-

tonomous agents using GP

100 51 – [Silva 99]

86 Control Food Place Foraging 1000 61 67 [Koza 92, pp 329–343]

87 Control Generating adaptive behaviour

for a real robot using function

regression within genetic pro-

gramming

– – – [Banzhaf 97]

88 Control Generation of programs for

crawling and walking

1000 100 – [Spencer 94]

89 Control Genetic Programming for ser-

vice creation in Intelligent Net-

works

200 200 18 [Martin 00]

90 Control Goal keeper control strategy 200 2000 32 [Adorni 99]

91 Control Lawnmower 1000 51 280 [Koza 94, pp 225]

92 Control Lawnmower (with ADF) 1000 51 76 [Koza 94, pp 225]

93 Control Multi-agent problem 64000 901 – [Koza 99c, pp 241]

94 Control Noise cancellation – – – [Esparcia-Alcázar 96]

95 Control Obstacle avoiding robot 4000 51 336 [Koza 94, pp 365]

96 Control Obstacle avoiding robot (with

ADF)

4000 51 101 [Koza 94, pp 365]

97 Control Reactive and memory based GP

for robot controllers

100 – – [Andersson 99]

98 Control Robot controller – – – [Koza 99c, pp 332–334]

99 Control Robot controller problem with

GPPS 1.0

640000 1001 260 [Koza 99c, pp 332-334]
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Category Description Pop Gen Size Reference

100 Control Robot localisation 1000 5000 – [Ebner 99]

101 Control Soccer softbot teams 128 – – [Luke 98a]

102 Control Task Prioritisation (PacMan) 500 51 115 [Koza 92, pp 344–355]

103 Control The pursuit problem – 2000 – [Haynes 95]

104 Control Truck Backer upper problem 1000 51 108 [Koza 92, pp 307–314]

105 Control Wall Following Robot 1000 51 145 [Koza 92, pp 360–380]

106 Design An evolutionary approach to

automatic generation of VHDL

code for low-power digital fil-

ters

1000 10000 – [Erba 01]

107 Design Automatic synthesis of a wire

antenna using genetic program-

ming

500000 – – [Koza 00b]

108 Design Design of explicitly or implic-

itly parallel low resolution char-

acter recognition algorithms

1000 1000 – [Adorni 98]

109 Design Discovering simple fault-

tolerant routing rules using

genetic programming

500 31 25 [Kirkwood 97]

110 Design Electrical filter circuits - re-

inventing circuits

1950000 – 12 [Koza 99b]

111 Design Evolving signal processing al-

gorithms by genetic program-

ming

250 100 69 [Sharman 95]

112 Design Evolving Turing machines from

examples

– – – [Tanomaru 93]

113 Design Gate-level synthesis of boolean

functions using binary multi-

plexers

600 700 – [Hernández-Aguirre 00]

114 Design Genetic programming ap-

proaches for minimum cost

topology optimisation of

optical telecommunications

networks

100 300 323 [Aiyarak 97]

115 Design High gain op-amp circuit 640000 101 46 [Koza 97a]

116 Design Jetliner model evolution 10 50 221 [Nguyen 94]

117 Design Low pass filter (with ADF) 320000 501 27 [Koza 99c, pp 455–483]

118 Design Low-pass filter 500 51 – [Koza 99c, pp 455–483]

119 Design Low-pass filter (using architec-

ture altering operations)

500 51 – [Koza 99c, pp 561–567]

120 Design Parallel surface reconstruction 300 2000 – [Weinert 02]

121 Regression 2 boxes (with ADF) 4000 51 33 [Koza 94, pp 57]

122 Regression A genetic programming ap-

proach for robust language in-

terpretation

32 4 – [Rosé 99]

123 Regression Differential Equations 500 51 14 [Koza 92, pp 264–288]
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Category Description Pop Gen Size Reference

124 Regression Discover a cellular encoding of

a neural network for the even-

11-parity problem

1024 50 – [Gruau 94]

125 Regression Discovery of Kepler’s Third

Law

500 51 6 [Koza 92, pp 255–258]

126 Regression Discovery of trigonometric

identities

500 51 9 [Koza 92, pp 238–242]

127 Regression Double auction market strate-

gies

– – – [Andrews 94]

128 Regression Econometric modelling 500 51 31 [Koza 92, pp 247–255]

129 Regression Evolution of obstacle avoidance

behaviour

1000 50 32 [Reynolds 94b]

130 Regression Evolving a sorting network 500 100 13 [Ryan 94]

131 Regression Fibonacci Sequence 600000 501 70 [Koza 99c, pp 297–304]

132 Regression Four sines 4000 51 86 [Koza 94, pp 144]

133 Regression Four sines (with ADF) 4000 51 94 [Koza 94, pp 144]

134 Regression GP for combining neural net-

works for drug discovery

500 50 – [Langdon 02b]

135 Regression Horse race prediction – – – [Perry 94]

136 Regression Identification of macro me-

chanical models

– – – [Schoenauer 96]

137 Regression Inflation rate modelling 250 1000 – [Chen 98]

138 Regression Knowledge intensive genetic

discovery in foreign exchange

markets

100 100 11 [Bhattacharyya 02]

139 Regression Measuring facial emotional ex-

pressions using GP

750 70 – [Loizides 01]

140 Regression Missile countermeasures 500 50 – [Moore 98]

141 Regression Parametric coding - lens profile 100 5277 – [Racine 99]

142 Regression Playing Othello – – – [Eskin 99]

143 Regression Playing tetris 1000 171 – [Siegel 96]

144 Regression Predicting journey times on

motorways

2000 – – [Howard 02]

145 Regression Predicting the flow of a typical

urban basin

2000 – – [Dorado 02]

146 Regression Quartic polynomial using

grammatical evolution

500 51 – [Ryan 98]

147 Regression Quintic polynomial (with ADF) 4000 51 64 [Koza 94, pp 118]

148 Regression Regular languages – – – [Dunay 94]

149 Regression Stack filters 2000 101 100 [Oakley 94]

150 Regression Symbolic Differentiation 500 51 41 [Koza 92, pp 262–264]

151 Regression Symbolic Integration 500 51 12 [Koza 92, pp 258–262]

152 Regression Symbolic regression

(x^4+x^3+x^2+x)

500 51 20 [Koza 92, pp 162–169]

153 Regression Symbolic regression with con-

stant creation

500 51 23 [Koza 92, pp 242–245]
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Category Description Pop Gen Size Reference

154 Regression The acquisition of double mar-

ket auction strategies

300 50 – [Andrews 94]

155 Regression The automatic generation of

plans for a mobile robot

2000 51 122 [Handley 94a]

156 Regression The tartarus environment 800 100 185 [Teller 94a]

157 Regression Time series modelling 1000 50 – [Whigham 99]

158 Regression Two term 4000 51 60 [Koza 94, pp 151]



Appendix C

Experimental Setup

This appendix describes the experimental setup used in for experimental work in Chapters 4, 5 and

6. It describes the platforms used for the experiments and associated software. This appendix also

gives the configuration commands and the commands to execute the tools where relevant. This

information is included to assist others to replicate some or all of the work reported in this thesis.

URLs are given for the various packages and vendors.

C.1 Experimental Platforms

C.1.1 Hardware

The work in Chapter 4 was performed using a 200 MHz AMD K6 PC with 128 KiB of memory and

a 500 MHz Pentium II PC, with 384 MiB of memory. The work in Chapters 5 and 6 was performed

using a PC, consisting of a 1.4 GHz Athlon processor with 750 MiB of Double Data Rate (DDR)

RAM. An extra 256 MiB was borrowed for the Boolean even-6-parity problem, bringing the total

to 1 GiB DDR RAM.

C.1.2 RC1000 FPGA Evaluation Board

This board, available from Celoxica Ltd consists of:

Xilinx XCV2000e, Virtex-E series FPGA, in a bg560 package.
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4 banks x 2 MiB Static Random Access Memory (SRAM)

An Intel 21152 PCI-PCI bridge that connects the host bus to the RC1000.

A PLX PCI9080 PCI controller chip.

A Cypress IDC2061A programmable clock generator.

For full details of the hardware, refer to the RC1000 Hardware Reference Manual [Celoxica Ltd 01c].

For details of the APIs used to configure the board, refer to the Software Reference Manual [Celox-

ica Ltd 01d] and the Functional Reference Manual [Celoxica Ltd 01b].

C.1.3 Software

The software environment used to run the Celoxica DK1 and Xilinx Alliance software was Mi-

crosoft Windows 98 and Microsoft NT 4.0 for the work described in chapter 4 and Microsoft Win-

dows 2000 professional for the work described in chapters 5 and 6.

The software environment for running the psim PowerPC simulation was Mandrake Linux,

version 8.0.

C.2 Software Tools

C.2.1 Celoxica DK1

Version 3.0 of DK1 was used. Service pack 1 was installed for the work in chapter 5.

C.2.2 Celoxica RC1000 Drivers and Utilities

Version 1.32 of the Windows 98 and Windows 2000 drivers were used http://www.celoxica.

com.
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C.2.3 Xilinx Alliance

Version 3.1 patch level 8. http://www.xilinx.com/

C.2.4 Diehard

Version 19950110 from http://stat.fsu.edu/geo/

C.2.5 PowerPC Cross Compiler and Simulator

For the PowerPC simulation, the code was compiled using the GNU C compiler, version 2.95.2.

This was obtained as part of the tpmp package, which contained the following package files:

tpmp2-binutils-2.9.1-1.i386.rpm

tpmp2-gcc-2.95.2-1.i386.rpm

tpmp2-glibc-2.1.3-1.noarch.rpm

The PowerPC simulator is delivered as part of the GNU debugger (gdb) version 5.1.1. It was

configured and built using:

> export CC=gcc; ./configure –target=ppc-unknown-eabi –enable-sim-ppc

> make

> make install

The code was compiled for the PowerPC target using the following commands:

> ppc-linux-gcc -c hwgp.c -I. -I/usr/include -DPSIM -D<problem-type>

> ppc-linux-ld -o hwgp-ppc hwgp-ppc

where problem-type is one of: ANT, XOR, REGRESSION, BOOLPARITY.

The following command was used to obtain the cycle counts from the PowerPC simulator:

> ppc-unknown-eabi-run -I hwgp-ppc
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The standard psim program needed to be modified to allow it to record more than 4 � 109 cycles.

This was because the standard program used variables of type unsigned long as counters. Using

gcc version 2.95 on an Intel 32 bit processor these are 32 bit integers and can represent values up to

232 � 1 or approximately 4 � 109. The counters were replaced with type unsigned long long(1)

which, again using gcc 2.95, are 64 bit quantities and can represent integers up to 264 � 1 or approx-

imately 1 
 8 � 1019. The corresponding printf() formats were changed to %ll.

C.2.6 Relational Database

MySQL (version 3.23) was used to store the GP attribute data. The Perl API was used to insert the

data and perform the queries that produced the results in Chapter 2. A single table stored all the

taxonomy data.

C.2.7 Graph Preparation Tools

All the graphs were created using gnuplot version 3.7. http://www.ucc.ie/gnuplot/

C.3 Other Tools

The LYX document preparation system (http://www.lyx.org/) and LATEX 2ε were used to pre-

pare and print this thesis.

(1)The long long type specifier has been an unofficial extension to ANSI-C for many years and was officially incor-
porated into the C language as part of ISO/IEC 9899-1999, Programming Languages – C.



Appendix D

Random Number Generator Test
Results

This appendix contains the results of running the Diehard tests for all the RNGs in Chapter 6.

Max score represents the case where an RNG fails all the tests. The test method is described in

Section 6.3.3 on page 124. Each test is described in detail in the file TESTS.TXT which is delivered

as part of the Diehard test suite.

The standard test programs – diehard and diequick – generate a lot of commentary while they

are running, making it hard to automatically process the results. To allow the automatic collection

of test results, a version of the diequick program – called diequiet – was created that printed only

the p-values to stdout. These were then processed by a Perl script to generate the final test results.

201



APPENDIX D. RANDOM NUMBER GENERATOR TEST RESULTS 202

Table D.1: Diehard test results for all RNGs examined.

Max score LFSR EQG 32LFSR IDCA 32CA True Mother Sequential

Birthday 36 36 8 2 0 8 0 0 36

Overlapping permutation 8 8 0 4 8 8 0 0 8

Binary Rank 32x32 8 8 2 8 2 6 0 0 8

Binary Rank 6x 104 104 40 8 140 70 4 6 104

Bitstream 80 80 0 0 80 80 4 0 80

Overlapping pairs tests 328 328 188 94 328 320 6 2 328

Count the ones (stream) 8 8 8 8 8 8 0 0 8

Count the ones (specific) 100 100 42 30 100 100 2 4 100

Parking Lot 44 4 0 0 4 2 0 0 44

Minimum Distance 4 4 0 4 4 4 0 0 4

3D spheres 84 4 0 2 4 2 4 4 84

Squeeze 4 4 0 0 4 4 0 0 4

Overlapping Sums 44 44 0 0 6 0 2 2 44

Runs 16 16 0 2 16 8 0 2 16

Craps 8 8 0 0 8 12 0 0 8

Total 876 756 288 162 676 640 22 20 876


