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Abstract

Keywords:

This paper investigates the application of genetic prognarg to problems in
industrial analog computer-aided design (CAD). One CADdsuhain, analog
structural synthesis, is an often-cited success withingérgetic programming
(GP) literature, yet industrial use remains elusive. Waréra why this is, by
drawing upon our own experiences in bringing analog CADgduto industrial
use. Insum, GP-synthesized designs need to be more robesyispecific ways.
When robustnessis considered, a GP methodology of todageasanable circuit
problem would take 150 years on a 1,000-node 1-GHz clustevordts Law
cannot help either, because the problem itself is 'Anti-kéwaare’ — it becomes
more difficult as Moore’s Law progresses. However, we belige problem is
still approachable with GP; it will just take a significant anmt of 'algorithm
engineering’.

We go on to describe the recent application of GP to two othatog CAD
subdomains: symbolic modeling and behavioral modelingcoimtrast to struc-
tural synthesis, they are easier from a GP perspective rbutleeady at a level
such that they can be exploited in industry. Not only is GRotfilg approach that
gives interpretable SPICE-accurate nonlinear modelsrristout to outperform
nine other popular blackbox approaches in a set of six ¢incadeling problems.

Analog, CAD, Synthesis, Industrial, Genetic ProgrammmRgbust, Yield

1. Introduction

One of the flagship problems in genetic programming is thanafog struc-
tural synthesis, where the aim is to automatically deteentire circuit compo-
nents, interconnections, and suggested component diomsnsi meet a set of
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circuit design goals. This is an industrially relevant pgenb, and a challenge
to automated design techniques.

In this domain, GP has evolved several patent-quality isdioza et al.,
2003), which is a remarkable success by almost any measuig.anh espe-
cially notable accomplishment from an artificial intelligee perspective be-
cause “patent-worthiness” is a good measure of succesediing techniques
in automated “creative” design.

Given such impressive results, a GP researcher might hgpexed GP to
be barnstorming the field of analog design. However, thioidine case: GP
is actually not in uset all for topology design in industry. In fact, industrial
analog engineers and CAD developers would be very surptiséabar that
analog synthesis is considered a success within the fieléPain@ffect, the bar
of “GP success”, even success on industrially relevantlenad, is different
than the bar of “usefulness to industry”. How can GP make rtasition? In
this paper, we draw upon our experiences in industrial @halaD, with the
aim to identify what would make GP useful to that field.

This chapter is organized as follows. We first describe an@WD’s context,
then how GP-based synthesis would fit in. We highlight indaistobustness
issues and tactics, which we use to reframe the problem dé&eed synthesis.
Then, we show two other analog CAD applications where GP kémganroads:
symbolic modeling and behavioral modeling.

2.  The Problem Domain: Analog CAD

Context. Electronic Design Automation (EDA) is the field devoted to
building computer-aided design (CAD) tools for electrieabineers. Because
of the massive size of the semiconductor industry and thetaohchanges in
design constraints due to Moore’s Law, EDA is an active itigusvith billions

in revenue every year. Analog CAD (Gielen and Rutenbar, P&02 subfield
devoted to tools for analog circuit designers.

Design “Implementation”. When researchers in GP read about GP for
analog synthesis, they're used to reading about “fronteksign”, in which the
problem input is circuit specifications (e.g. get power congtion < 10mW),
and the target output is a “netlist”, which describes thetfsgsized circuit in
terms of components, interconnections, and componentdiioes.

That's actually just one step in a much broader flow. Somelimat,netlist
hasto getintotherealworld, i.e. as partof adiscrete ttirouas a “chip” (VLSI
circuit). The industrial value is in chips. The back-end fiewas follows. Once
the netlist is determined, it is converted into a “layout’hieh is essentially a
set of overlapping polygons, where specific shapes reprepenific types of
components and interconnects. The layout is integratedamtoverall system
layout, which is sent to a billion-dollar fabrication fatyl The system layout
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is used for creation of process masks, which are a sort ofigddysiter on
whether to dope / etch / etc. different parts of a silicon wafrocess mask
generation can cost hundreds of thousands of dollars or.rsiag the masks,
many chips at once are fabricated on a wafer. The chips @edsdipart from
each other, then packaged, and finally tested.

If a problem is detected after a step, then the process laatktrto the
previous step. The most expensive step is creation of theepsomasks, so
this is where it is most important to avoid backtracking. hlast case, which
still often happens in practice, a fabricated chip does mokvat all, and to
make it work one needs to go back to front-end design. Thishiesvk as a
“respin.” Obviously, respins are to be avoided because skroasts, but even
more importantly, loss of profitability in time-to-market.

A new analog topology significantly raises the chance of pinegue to lack
of experience with that topology; this makes adoption of mal@g structural
synthesis tool a risky proposition (and costly to try). Butimately, GP would
need to demonstrate working chips.

3.  GP Application: Analog Structural Synthesis, Part |
Designer Perspective

Since the late 1980’s, analog designers have been preseititathpressive-
sounding claims about “analog synthesis.” Researchers ladeled “analog
synthesis” to mean many things, including global paramepémization, au-
tomated conversion from netlist to layout, and automatedltgy design (the
version that GP targets). For a survey, see (Gielen and Barte2002).

Our focus here is automated topology design. Most analagmies would
acknowledge that if such a technology actually worked, itldadrastically
change the field. Their counterparts in digital design hdneady experienced
such arevolution: the mid 1980’s introduction of digitatotiit logic synthesis.

Unlike digital synthesis, few claims of analog synthesigehlaeld true. The
analog synthesis techniques were typically too unscatatiettle to be useful
in industry. Of the dozens of various types of analog synshexhnologies
reported over the last twenty years, just a few have fourichitag into industrial
use, and that was only recently (Synopsys, 2005, Caden®&p2Cadence,
2005a). None of these do automated topology design. Thusnabsigners
hear about a new structural synthesis technology, from G#*sewhere, they
immediately question them, and to a much stronger degreeahemation-
friendly digital designers.

How do the claims of GP look, from a designer’s perspective?

For starters, they're not shocked, even when they see tlentpatsults.
With every other structural synthesis technology repoutei now, something
was missing, something that limited its widespread indgisise. Despite their
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limited understanding of GP, designers have no real readoedt GP specially.
They simply believe that something’s missing for GP too.

They're right. When an analog designer digs more deeply into GP
methodology for automated topology design, he/she findblgnmms. Some
are obvious (to an electrical engineer), and some are subiie whereas prior
analog structural synthesis approaches had showstoppatdems of brittle-
ness and scalability, we believe that GP has no such problastead, GP faces
“engineering-style” challenges in problem setup, and @sfig in improving
GP’s speed.

Current Industrial Practice

It is fruitful to look at what flow and automation tools thadimstry uses
which are closest to the analog structural synthesis pmoble

Figure 1-1 illustrates the overall flow of front-end design ¢ell-level cir-
cuits.
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Figure 1-1. State of the Art Industrial Front End Analog Design Flow

The automation happening at the front end is in local / glapdimization
tools (Synopsys, 2005, Cadence, 2005b), which take in a fosalogy, and
automatically determine the component values in order & et the de-
sign specifications. This step is often referred to as dirsizing or circuit
optimization, rather than synthesis. The topology has Inegmually designed
beforehand. Yield improvement is typically manual, thotigére is a shift to
automation there too.

These tools need to make chips that meet certain performameesures
once they've been manufactured. Thus, the tools need a M@aestimating
performance and taking robustness into account.

Performance Estimation and Robustness

In analog synthesis, robustness is strongly related tmpednce estima-
tion. A performance estimator takes in a candidate designditopology and
component values in our case), and estimates the perfoemarithe circuit.
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To achieve a robust design, one has to estimate performanaecarately as
possible.

The ideal performance estimator would predict with 100%ueacy how
a design performs after layout, manufacturing, and testiitgout actually
fabricating it. And, it would run quickly enough to be invakéhousands or
millions of times throughout optimization, to allow autor®d exploration of
designs. SPICE is the most accurate and general estimatdhdye are also
faster, less general, less accurate ones.

Layout issues. “Layout parasitics” are effects that were not accounted for
prior to layout. An example layout parasitic is when the matdetween two
wires acts like a circuit component (e.g. a capacitor) widcsupposed to be
an open circuit.

Environmental conditions.  The manufactured chip will need to work at the
desired performance level, even as temperatures changet papply changes,
and load changes. These are conditions of the circuit'sabpgrenvironment.

Manufacturing variations. When manufacturing a VLSI circuit, random
variations get introduced into the implementation of theigies as an inherent
effect of the fabrication process. The automated tool mustatthis and handle
it.

The simplest model is so-called “Fast/Slow corners”, whickffect try to
capture the 3-sigma extremes in each type of transistogsatipg speed due
to manufacturing variations. This approach is popular tersimplicity and
availability. However, corners do not model the problemlwetause they do
not bracket the variations in analog design goals (theyeakyronly suitable
for digital design).

Some approaches build empirically-based statistical tsameestimate a
probability density function, such as (Power et al., 1994)ese models almost
always make assumptions that render them inaccurate, onge assuming
that certain random variables are independent when thegatrer ignoring
local statistical variations as in (Alpaydin et al., 2003).

One approach (Drennan and McAndrew, 2003) uses a more physisis
for randomness modeling and is quite accurate, though alcatipn is that
for every transistor, 8 random variables are introduceds,tlh medium sized
circuit could have hundreds of random variables.

Analog Structural Synthesis Problem

The problem of analog structural synthesis is the same asizhrgy prob-
lem, except the design space is broadened drasticallychiod@ choice of the
topology (devices and connections among devices, in addibi device sizes).
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Synthesis cannot make assumptions about the topologyhdisi®ig implica-
tions, which we will discuss later.

Current Industrial Practice: Details

We are now ready to ask how the industrial tools account floustness.

For environmental variations, they use a set of user-deficauhers”, with
each corner specifying a temperature, power supply, etdCER used to
estimate performance for each corner, and the worst-céise igataken.

For layout, they can ignore it for a first-pass design. Théey éayout has
been done, if layout parasitics degrade the performanceniach, the most
important parasitics can be inserted into the design andal tptimization
performed.

For manufacturing variations, they (Synopsys, 2005, Ceele2005b) use
model corners, which as mentioned, is less accurate. Thermany other
approaches in the literature (Phelps et al., 2000, Schexladl, 2001, Smedt
and Gielen, 2003), but each is forced to trade off accuracietsible runtime,
or pessimistic design. GP tactics such as (Teller and Aritb87, Hu and
Goodman, 2004b) are too expensive for refining designs.

4.  Analog Design for Robustness (on a Fixed Topology)

This section highlights how a fixed topology implicitly bgs robustness, or
conversely, what other robustness issues must be congidéren evolving a
topology.

Robustness in Manual Topology Design

By definition, optimization approaches operate on manukgsigned topolo-
gies. For VLSI circuits, and perhaps as a surprise to Grerajally-designed
topologies are almost always designed with robustness in mind.

We now examine what analog designers do to make topologies rmlbust.
We will refer to a well-known circuit shown in figure 1-2.

Topologies Are Designed For Process Variations. The effect of “local”,
or “mismatch”, variations within a chip (“mismatch”) hasvalys been smaller
than “global” variations which are between chips and betwess (1-26 vs.
10-20%).

The main tactic to deal with global variations is to designaures in which
performance is a function eftios of sizings, rather than absolute values. For
example, in common-source gain stages, a load resistordvi@avle variation
of 10-20%. So, designers use a PMOS load instead, matched up to an NMOS
gain transistor, and gain is dependent on the ratios (e.figure 1-2, M5a is
a resistive load for M3a).
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Figure1-2. “High-speed operational transconductance amplifier (O&Aplog circuit

Differential design is another tactic to move away from ‘@bge” values.
Here, “mirrors of structures” are created, and the circpérates on a difference
between two voltages, rather than one voltage and grounelfigire 1-2 OTA
is symmetrical about a vertical axis centered on M5 and M&;dttput is a
function of the difference between the positive and negatiputs, ninp and
nin_n.

A precise current is expensive to generate; it's a much hiegea to generate
one or a few reference currents and copy them throughoutitbeitcwith
“current mirrors.” The OTA does this: the three transistonsthe left are the
“biasing” circuitry to generate currents, which are thepied throughout the
circuit. Sometimes a single current can be shared, ratherttlging to match
two separate currents. The OTA's differential pair (M1la aftb) does this:
instead of having different “tail” currents, they share #ane current which
goes through M6 and M7.

Negative feedback is a well-known general engineeringrtiecte for com-
promising some performance in the interest of precisioraldacircuits often
do this too, such as for improving common-mode rejectioio &ta differential
amplifier, or for reducing variation of an amplifier's gainggavi, 2000).

Trust and Re-Use. The topology is trusted because it has been created and
characterized by expert analog designer(s), and has Hedreted and tested in
many process generations. Topology re-use is widespreadibe past success
means more confidence that the topology will work. A new togwis typically

a derivative of an existing topology, because similarityinteans trust.
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SPICE canlie. SPICE can lie due to problems in its device models, conver-
gence, and perhaps inadequate models of parasitics. SRI@dstor models
seem to be in a continually inadequate state, with knownidefiees (e.g. non-
smooth transitions from one operating region to anotheajt éf the difficulty

is that the models have to work for several processes, tjypregjuire hundreds

of parameters that should be easy to extract, and strivevodsgood a phys-
ical basis as possible. Because of this, designers corségiauwoid transistor
operating regions where the models are known to be inadequat

Whitebox Constraints.  Topologies have whitebox constraints based on the
strategy underlying the topology’s design. Every transist a circuit has been
designed with the assumption that it will be operating in ecHz operating
region; there is a good chance that the assumptions break dotside those
constraints.

Clear Path To Layout. The designer knows that, for manually-designed
topologies, there is a clear path to layout; to a large extemtdesigner has
already anticipated the parasitics. Layout designershaige tactics to improve
robustness, such as: folding transistors, guard rings;anadul routing to avoid
cross-coupling between sensitive wires (Hastings, 208Mpaert et al., 1999).
Analog layout synthesis is another analog CAD subproblem (Rutenbar and
Cohn, 2000); it is difficult to model and solve well, as illkeged by continued
research activity. When layout parasitics are more prooedinsuch as in RF
design, there are ways to tighten the coupling betweengsama layout design
(DeSmedt and Gielen, 2003, Zhang et al., 2004, Bhattacledrgi, 2004).

To properly account for layout effects in synthesis, onesjioiiity is to unite
the front-end design space (topology and circuit sized) thig back- end space
(layout), and approach the whole problem at once, as inasebt of (Koza
et al., 2003). Unfortunately, runtime was 1.5 orders of nitagle slower. And,
that work drastically simplified the layout synthesis psshl— it didn't even
extract the parasitics from the layout before simulatirgribtlist.

Synthesis Exaggerates “Cheating” of Search Algorithms.  We say a

“cheat” occurs when design has good measured performanaeshich upon

inspection is useless (e.g. not physically realizable).ehample is too many
long, narrow transistors; the solution is to add more cai#is on width/length

ratios. Each added constraint takes time to detect, comadire-run. There
is more opportunity for structural synthesis to cheat camegbéo optimization,

because synthesis design space is drastically larger,RitEsan cheat more
readily. Evolvable hardware research is filled with exarmméodd designs;
however, in non-reprogrammable analog VLSI, one cannotaceimdd designs
because of the high cost of fabrication.
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5.  GP Application: Analog Structural Synthesis, Part I
An Updated Model of the Analog Synthesis Problem

Most earlier GP structural synthesis work such as (Koza.e189€9, Lohn
and Colombano, 1998, Zebulum et al., 2002, Sripramong afmduthazou,
2002, Koza et al., 2003) did not have a very thorough modehefproblem
compared to analog CAD optimization, but is has been geligiter recently.
In (Koza et al., 2004a), corners have been added to accouet¥@onmental
and (very roughly) manufacturing variations. And, they émpestbenches
directly from an industrial CAD vendor (Synopsys, 2005).oligh some recent
research has not yet acknowledged the need for more rolksgastidar et al.,
2005).

GP does not have whitebox constraints, because it does rka assump-
tions about what region each transistor will operate in. @Radly has stronger
performance measures in one regard: it also tries to matebfarans of be-
havior.

Compared to analog CAD optimization work, GP’s biggest deficy in
problem modeling is its lack of a good model of manufactukiagations. The
closest, robust HFC (Hu and Goodman, 2004a), did have Maarle €ampling,
but the randomness model is not suitable for VLSI circuits.

Beyond analog CAD optimization, GP-evolved circuits mushshow get
the same advantages as a manually-designed topology. Bagitscmust get
designer trust, including an explanation and formulae &ravior; ultimately,
successful fabrication and testing. On the way, there @& édndles of SPICE
(mis)behavior, layout parasitics, search space cheat®xra challenges from
first-order process variations.

New Computational Challenges

Ultimately, the only way to accurately model manufactunagiations is via
simulation on good statistical models. Let us examine the runtime of a typical
structural synthesis run that uses brute force Monte Camapfing. Except
for layout, we will temporarily ignore all the extra challggs wrought by a
non-fixed topology.

Let us say: 8 corners (for environmental variations), 10 dMdbarlo sam-
ples (for manufacturing variations; 10 is optimistic), aiwhulation time of 1
minute for a circuit at one corner and one sample on all testies on a 1 GHz
machine. Parasitic-extracted layouts might mean 10x longarger designs
and/or longer-than-transient analyses could easily tak&@®@x, or even 600x
longer to simulate.
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Itis typical for a GP run to explore 100 million designs formaahallenging
problems. 1 billion or even 10 billion would not be unreaduagKoza et al.,
2003). But let us have 1,000 1-Ghz machines in parallel.

Then, total run time = 152 years! And it's even longer for thegproblems,
where simulation time is 6x-600x longer and number of iraliils is 10x-100x
more.

One might ask if Moore’s Law can ease this challenge.

The Impact of Moore’s Law

Mooreware vs. Anti-Mooreware.  GP is considered an example of “Moore-
ware” (Kozaetal., 1999), where an algorithm becomes mdeetidfe with more
computational power, and therefore with the march of Makaiw over time.

However, Moore’s Law when attacking VLSI design problema touble-
edged sword. Each new technology generation also requioee modeling
effort, and therefore more compute time! For example, tlegrier substrate
noise modeling is growing; to model this takes 30 minutes aur imodern
processors (Soens et al., 2005), i.e. 120x more compudhidiort.

Thus, analog synthesis is an “"Anti-Mooreware” problem:etsgmore diffi-
cult as Moore’s Law progresses. So, we cannot rely on the tslware” aspect
of GP to eventually be fast enough.

Design Challenge

Topologies
breaking

Synthesis
Runtime

Faster More Complex
CPUs Modeling

\//’

Cancel each
other out?

Figure 1-3. Effects of Moore’s Law on Analog Structural Synthesis

Moore’s Law Breaks Topologies.  Topologies are getting constrained in
new ways due to Moore’ Law. Here is an example. Supply voitaged
threshold voltages are steadily decreasing, but threstoitdges cannot scale
as quickly because of fundamental physical constants. Aésaint, “cascode”
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Table 1-1. GP-generated symbolic circuit models with < 10% train arsd ¢eror.

Perf. Char. Expression

ALF -10.3 + 7.08e-5/id1 + 1.87 * In(-1.95e+9 + 1.00e+10 / (I"sgsg3)
+ 1.42e+9 *(vds2*vsdb) / (vsgl*vgs2*vsg5*id2))
fu 10(5.68 - 0.03 * vsgl / vds2 - 55.43 * id1+ 5.63e-6 / id1 )
PM 90.5+190.6 *id1/vsgl + 22.2 *id2 / vds2

voffset - 2.00e-3

SRp 2.36e+7 +1.95e+4 *id2 /id1 - 104.69 / id2 + 2.15e+9 * id2634+8 * id1

SRn -5.72e+7 - 2.50e+11 * (id1%id2) / vgs2 + 5.53e+6 * vds2¢&g 109.72 / id1

configurations, which stack two transistors on top of eatiemtare unusable
(e.g. M4b and M5bin figure 1-2 are in cascode). The alteraatare less ideal:
folded cascodes mean larger power consumption, and eagessinean slower
speed and instability risk. Figure 1-3 summarizes.

The Road Ahead for GP and Structural Synthesis

GP has come a long way along the road of analog structurahasist and
the milestones have been remarkable. But a full indusdtrgihgth version is
orders of magnitude away.

Speeding up GP sufficiently may actually be possible, becthere are so
many facets to the problem and the algorithms. It comes dowant“algo-
rithm engineering” problem. There are possible speedufds #ie general EA
level, for example in population management, handling ety / hierarchy,
exploiting advances in theory, reuse of run information;gpresentation and
operators, parallelism; (2) at the robustness level, fangle exploiting the
transparency in manufacturing variations, environmevaahtions, and simu-
lation analyses; and (3) at the domain-specific level oflesi| analog circuits,
for example to guide design of representation, operataisbailding blocks,
special constraints, faster performance estimators. Kagalaborated on some
possibilities (Koza et al., 2004b).

6. GP Application: Symbolic Modeling

Given the overall goal of finding ways to aid analog enginéetke design
process, we can ask ourselves what other problems GP mighinhd hat's a
guestion that we asked in the last year, and so far we've dstraded two other

industrially-relevant applications. Let's examine eastarting with symbolic
modeling.
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In all designs that an engineer does, the more he or she taléssa circuit,
the more he will be able to improve it (in terms of performarmcel yield),
and the more productive he or she will be. This is independenthether the
tools are automated or manual. Equations are a very usefufdohelping
designers improve understanding, e.g. equations that resigrd variables
(e.g. component values) to circuit performances (e.g. p@wasumption).
Such equations have traditionally been created by handhbéytare so useful
that since the early 90s, there has been considerable chseféort to devise
algorithms to automate this (Gielen, 2002). This subfiel@foAnalog CAD
is called "symbolic analysis" when the equations are diesttracted from
the topology, or "symbolic modeling" when the equations ednom SPICE
simulations. The ideal approach would produce SPICE-ateuinterpretable
equations of arbitrary nonlinear circuits. So far, no apptocould do all those
things at once.

Interestingly (and almost surprisingly), no one had yetuse in symbolic
regression mode on SPICE-generated training data. So pliecjt, with a few
modifications to GP to keep the expressions readily intaipet(McConaghy
et al., 2005). Table 1-1 gives models for each of six diffeqgerformance
expressions, for the circuit previously examined (figur@)l1-
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Figure 1-4. Comparison of prediction error for several state-of-thiavedeling approaches.

GP turned out to predict remarkably well. In a separate sturdgix circuit
datasets (McConaghy and Gielen, 2005a), we found that GF gemerate
nonlinear expressions that outperformed several statieeséirt approaches, as
shown in figure 1-4.
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Table 1-2. GP-generated behavioral models for a latch circuit.

Train error Expression
15.11% dx1/dt = nBit
dx2/dt = Bit * x1
6.25% dx1/dt = - 21.3 - 9.28e-03 * bufclk * x1 + 1.0e+04 * nBit tifzlk
3.32% dx1/dt = 2.21e-02 - 3.72e-02 * x1 - 21.8 * Bit*nBit * buifc
dx2/dt = nBit * bufclk * x1
dx6/dt = x1

7.  GP Application: Behavioral Modeling

Another challenge in circuit design is how to manage sydwmal design.
One of its sub-problems is how to simulate a whole system gaaible time,
ideally fast enough to optimize with. A good approach is béral models,
which approximate the dynamic behavior of each of the systenb-blocks.
Automatically devising behavioral models is very difficult's common for
a student to spend his whole PhD on (manually) designing d gebavioral
model for one building block! There’s a long history of atigsito automated
approaches as well, starting from linear, progressing takiyenonlinear, and
finally recent successes in strongly nonlinear behaviomleats. But those ap-
proaches are, once again, black box. With behavioral mugletven more than
symbolic analysis, trustworthiness of a model is very intguat; and blackbox
models compromise that, because there is no guarantee leomdtel will
perform under other input stimuli.

Once again, we saw opportunity. We adapted our GP systemiltb dyu
namic models, and tested it on a strongly nonlinear cirdditGonaghy and
Gielen, 2005b). It successfully built interpretable bebeal models with good
prediction ability. Table 1-2 gives some of the behavioraldels generated, at
different levels of complexity and accuracy.

8. Conclusions

While GPers have considered analog synthesis a succegd@t@P, and
with good reason from an Al perspective, it still remains @ to be put into
industrial analog design practice.

To understand why, we examined the problem context and thésief how
adesign isimplemented. It comes down to achieving morestatesigns, with
the main aim of reducing risk of costly manufacturing respiRurthermore, it
needs to be trusted by the designer. To address this, ther@putational effort
goes up drastically, and Moore’s Law cannot be relied updretp because the
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problem is “Anti-Mooreware”. Thus, we have a grand “algomit engineering”
challenge for clever GP researchers.

Structural synthesis is not the only opportunity for GP imlag CAD. We
demonstrated GP as applied to two other applications, symninodeling and
behavioral modeling, where the barrier to entry was far lpased the industrial
payoff much sooner.

GP is not barnstorming the field of analog design... yet. Big slowly
gaining groundin multiple aspects of analog CAD.
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