
Chapter 1

GENETICPROGRAMMINGIN INDUSTRIALANALOG
CAD: APPLICATIONS AND CHALLENGES

Trent McConaghy and Georges Gielen
Katholieke Universiteit Leuven, Leuven, Belgium

Abstract
This paper investigates the application of genetic programming to problems in

industrial analog computer-aided design (CAD). One CAD subdomain, analog
structural synthesis, is an often-cited success within thegenetic programming
(GP) literature, yet industrial use remains elusive. We examine why this is, by
drawing upon our own experiences in bringing analog CAD tools into industrial
use. In sum, GP-synthesized designs need to be more robust invery specific ways.
When robustness is considered, a GP methodology of today on areasonable circuit
problem would take 150 years on a 1,000-node 1-GHz cluster. Moore’s Law
cannot help either, because the problem itself is ’Anti-Mooreware’ – it becomes
more difficult as Moore’s Law progresses. However, we believe the problem is
still approachable with GP; it will just take a significant amount of ’algorithm
engineering’.

We go on to describe the recent application of GP to two other analog CAD
subdomains: symbolic modeling and behavioral modeling. Incontrast to struc-
tural synthesis, they are easier from a GP perspective, but are already at a level
such that they can be exploited in industry. Not only is GP theonly approach that
gives interpretable SPICE-accurate nonlinear models, it turns out to outperform
nine other popular blackbox approaches in a set of six circuit modeling problems.

Keywords: Analog, CAD, Synthesis, Industrial, Genetic Programming,Robust, Yield

1. Introduction

One of the flagship problems in genetic programming is that ofanalog struc-
tural synthesis, where the aim is to automatically determine the circuit compo-
nents, interconnections, and suggested component dimensions to meet a set of

2 GENETIC PROGRAMMING THEORY AND PRACTICE III

circuit design goals. This is an industrially relevant problem, and a challenge
to automated design techniques.

In this domain, GP has evolved several patent-quality circuits (Koza et al.,
2003), which is a remarkable success by almost any measure. It is an espe-
cially notable accomplishment from an artificial intelligence perspective be-
cause “patent-worthiness” is a good measure of success for testing techniques
in automated “creative” design.

Given such impressive results, a GP researcher might have expected GP to
be barnstorming the field of analog design. However, this is not the case: GP
is actually not in useat all for topology design in industry. In fact, industrial
analog engineers and CAD developers would be very surprisedto hear that
analog synthesis is considered a success within the field of GP. In effect, the bar
of “GP success”, even success on industrially relevant problems, is different
than the bar of “usefulness to industry”. How can GP make the transition? In
this paper, we draw upon our experiences in industrial analog CAD, with the
aim to identify what would make GP useful to that field.

This chapter is organized as follows. We first describe analog CAD’s context,
then how GP-based synthesis would fit in. We highlight industrial robustness
issues and tactics, which we use to reframe the problem of GP-based synthesis.
Then, we show two other analog CAD applications where GP is making inroads:
symbolic modeling and behavioral modeling.

2. The Problem Domain: Analog CAD

Context. Electronic Design Automation (EDA) is the field devoted to
building computer-aided design (CAD) tools for electricalengineers. Because
of the massive size of the semiconductor industry and the constant changes in
design constraints due to Moore’s Law, EDA is an active industry, with billions
in revenue every year. Analog CAD (Gielen and Rutenbar, 2002) is a subfield
devoted to tools for analog circuit designers.

Design “Implementation”. When researchers in GP read about GP for
analog synthesis, they’re used to reading about “front-enddesign”, in which the
problem input is circuit specifications (e.g. get power consumption < 10mW),
and the target output is a “netlist”, which describes the synthesized circuit in
terms of components, interconnections, and component dimensions.

That’s actually just one step in a much broader flow. Somehow,that netlist
has to get into the real world, i.e. as part of a discrete circuit, or as a “chip” (VLSI
circuit). The industrial value is in chips. The back-end flowis as follows. Once
the netlist is determined, it is converted into a “layout”, which is essentially a
set of overlapping polygons, where specific shapes represent specific types of
components and interconnects. The layout is integrated into an overall system
layout, which is sent to a billion-dollar fabrication facility. The system layout

GP and Industrial Analog CAD 3

is used for creation of process masks, which are a sort of physical filter on
whether to dope / etch / etc. different parts of a silicon wafer. Process mask
generation can cost hundreds of thousands of dollars or more. Using the masks,
many chips at once are fabricated on a wafer. The chips are sliced apart from
each other, then packaged, and finally tested.

If a problem is detected after a step, then the process backtracks to the
previous step. The most expensive step is creation of the process masks, so
this is where it is most important to avoid backtracking. In aworst case, which
still often happens in practice, a fabricated chip does not work at all, and to
make it work one needs to go back to front-end design. This is known as a
“respin.” Obviously, respins are to be avoided because of mask costs, but even
more importantly, loss of profitability in time-to-market.

A new analog topology significantly raises the chance of a respin due to lack
of experience with that topology; this makes adoption of an analog structural
synthesis tool a risky proposition (and costly to try). But,ultimately, GP would
need to demonstrate working chips.

3. GP Application: Analog Structural Synthesis, Part I

Designer Perspective

Since the late 1980’s, analog designers have been presentedwith impressive-
sounding claims about “analog synthesis.” Researchers have labeled “analog
synthesis” to mean many things, including global parameteroptimization, au-
tomated conversion from netlist to layout, and automated topology design (the
version that GP targets). For a survey, see (Gielen and Rutenbar, 2002).

Our focus here is automated topology design. Most analog designers would
acknowledge that if such a technology actually worked, it would drastically
change the field. Their counterparts in digital design have already experienced
such a revolution: the mid 1980’s introduction of digital circuit logic synthesis.

Unlike digital synthesis, few claims of analog synthesis have held true. The
analog synthesis techniques were typically too unscalableor brittle to be useful
in industry. Of the dozens of various types of analog synthesis technologies
reportedover the last twentyyears, just a few have found their way into industrial
use, and that was only recently (Synopsys, 2005, Cadence, 2005b, Cadence,
2005a). None of these do automated topology design. Thus, when designers
hear about a new structural synthesis technology, from GP orelsewhere, they
immediately question them, and to a much stronger degree than automation-
friendly digital designers.

How do the claims of GP look, from a designer’s perspective?
For starters, they’re not shocked, even when they see the patent results.

With every other structural synthesis technology reporteduntil now, something
was missing, something that limited its widespread industrial use. Despite their

4 GENETIC PROGRAMMING THEORY AND PRACTICE III

limited understanding of GP, designers have no real reason to treat GP specially.
They simply believe that something’s missing for GP too.

They’re right. When an analog designer digs more deeply intothe GP
methodology for automated topology design, he/she finds problems. Some
are obvious (to an electrical engineer), and some are subtle. But, whereas prior
analog structural synthesis approaches had showstopping problems of brittle-
ness and scalability, we believe that GP has no such problems. Instead, GP faces
“engineering-style” challenges in problem setup, and especially in improving
GP’s speed.

Current Industrial Practice

It is fruitful to look at what flow and automation tools that industry uses
which are closest to the analog structural synthesis problem.

Figure 1-1 illustrates the overall flow of front-end design for cell-level cir-
cuits.

Set up
problem

description,
testbenches

Choose
topology

Set up
design space,
optimization

goals,
initial sizing

Auto-size
circuit with

performance
optimization

Choose
circuit from
tradeoff of

possible
circuits

Adjust
sizings

to improve
yield

Simulate Simulate

Sized,
yield-robust

circuit

Figure 1-1. State of the Art Industrial Front End Analog Design Flow

The automation happening at the front end is in local / globaloptimization
tools (Synopsys, 2005, Cadence, 2005b), which take in a fixedtopology, and
automatically determine the component values in order to best meet the de-
sign specifications. This step is often referred to as circuit sizing or circuit
optimization, rather than synthesis. The topology has beenmanually designed
beforehand. Yield improvement is typically manual, thoughthere is a shift to
automation there too.

These tools need to make chips that meet certain performancemeasures
once they’ve been manufactured. Thus, the tools need a meansfor estimating
performance and taking robustness into account.

Performance Estimation and Robustness

In analog synthesis, robustness is strongly related to performance estima-
tion. A performance estimator takes in a candidate design (i.e. a topology and
component values in our case), and estimates the performances of the circuit.

GP and Industrial Analog CAD 5

To achieve a robust design, one has to estimate performance as accurately as
possible.

The ideal performance estimator would predict with 100% accuracy how
a design performs after layout, manufacturing, and testingwithout actually
fabricating it. And, it would run quickly enough to be invoked thousands or
millions of times throughout optimization, to allow automated exploration of
designs. SPICE is the most accurate and general estimator, but there are also
faster, less general, less accurate ones.

Layout issues. “Layout parasitics” are effects that were not accounted for
prior to layout. An example layout parasitic is when the material between two
wires acts like a circuit component (e.g. a capacitor) whichis supposed to be
an open circuit.

Environmental conditions. The manufactured chip will need to work at the
desired performance level, even as temperatures change, power supply changes,
and load changes. These are conditions of the circuit’s operating environment.

Manufacturing variations. When manufacturing a VLSI circuit, random
variations get introduced into the implementation of the designs as an inherent
effect of the fabrication process. The automated tool must model this and handle
it.

The simplest model is so-called “Fast/Slow corners”, whichin effect try to
capture the 3-sigma extremes in each type of transistor’s operating speed due
to manufacturing variations. This approach is popular for its simplicity and
availability. However, corners do not model the problem well because they do
not bracket the variations in analog design goals (they are really only suitable
for digital design).

Some approaches build empirically-based statistical models to estimate a
probability density function, such as (Power et al., 1994).These models almost
always make assumptions that render them inaccurate, for example assuming
that certain random variables are independent when they arenot, or ignoring
local statistical variations as in (Alpaydin et al., 2003).

One approach (Drennan and McAndrew, 2003) uses a more physical basis
for randomness modeling and is quite accurate, though an implication is that
for every transistor, 8 random variables are introduced; thus, a medium sized
circuit could have hundreds of random variables.

Analog Structural Synthesis Problem

The problem of analog structural synthesis is the same as thesizing prob-
lem, except the design space is broadened drastically, to include choice of the
topology (devices and connections among devices, in addition to device sizes).

6 GENETIC PROGRAMMING THEORY AND PRACTICE III

Synthesis cannot make assumptions about the topology; thishas big implica-
tions, which we will discuss later.

Current Industrial Practice: Details

We are now ready to ask how the industrial tools account for robustness.
For environmental variations, they use a set of user-defined“corners”, with

each corner specifying a temperature, power supply, etc. SPICE is used to
estimate performance for each corner, and the worst-case value is taken.

For layout, they can ignore it for a first-pass design. Then, after layout has
been done, if layout parasitics degrade the performance toomuch, the most
important parasitics can be inserted into the design and a local optimization
performed.

For manufacturing variations, they (Synopsys, 2005, Cadence, 2005b) use
model corners, which as mentioned, is less accurate. There are many other
approaches in the literature (Phelps et al., 2000, Schenkelet al., 2001, Smedt
and Gielen, 2003), but each is forced to trade off accuracy for feasible runtime,
or pessimistic design. GP tactics such as (Teller and Andre,1997, Hu and
Goodman, 2004b) are too expensive for refining designs.

4. Analog Design for Robustness (on a Fixed Topology)

This section highlights how a fixed topology implicitly brings robustness, or
conversely, what other robustness issues must be considered when evolving a
topology.

Robustness in Manual Topology Design

By definition, optimization approaches operate on manuallydesigned topolo-
gies. For VLSI circuits, and perhaps as a surprise to GPers,manually-designed
topologies are almost always designed with robustness in mind.

We now examine what analog designers do to make topologies more robust.
We will refer to a well-known circuit shown in figure 1-2.

Topologies Are Designed For Process Variations. The effect of “local”,
or “mismatch”, variations within a chip (“mismatch”) has always been smaller
than “global” variations which are between chips and between runs (1-2% vs.
10-20%).

The main tactic to deal with global variations is to design structures in which
performance is a function ofratios of sizings, rather than absolute values. For
example, in common-source gain stages, a load resistor would have variation
of 10-20%. So, designers use a PMOS load instead, matched up to an NMOS
gain transistor, and gain is dependent on the ratios (e.g. infigure 1-2, M5a is
a resistive load for M3a).

GP and Industrial Analog CAD 7

VSSVSS

M2b

M3bM3a

M1a M1b

n2a

n3

n2b

nin_p nin_m

n5n4a n4b

M2a

M6

M7M4a

M5a M5b

M4b

nvdd

nvss

n1

nout

nvb1

nvb3

nvb2

Figure 1-2. “High-speed operational transconductance amplifier (OTA)” analog circuit

Differential design is another tactic to move away from “absolute” values.
Here, “mirrors of structures” are created, and the circuit operates on a difference
between two voltages, rather than one voltage and ground. The figure 1-2 OTA
is symmetrical about a vertical axis centered on M5 and M7; the output is a
function of the difference between the positive and negative inputs, ninp and
nin n.

A precise current is expensive to generate; it’s a much better idea to generate
one or a few reference currents and copy them throughout the circuit with
“current mirrors.” The OTA does this: the three transistorson the left are the
“biasing” circuitry to generate currents, which are then copied throughout the
circuit. Sometimes a single current can be shared, rather than trying to match
two separate currents. The OTA’s differential pair (M1a andM1b) does this:
instead of having different “tail” currents, they share thesame current which
goes through M6 and M7.

Negative feedback is a well-known general engineering technique for com-
promising some performance in the interest of precision. Analog circuits often
do this too, such as for improving common-mode rejection ratio of a differential
amplifier, or for reducing variation of an amplifier’s gain (Razavi, 2000).

Trust and Re-Use. The topology is trusted because it has been created and
characterized by expert analog designer(s), and has been fabricated and tested in
many process generations. Topology re-use is widespread because past success
means more confidence that the topology will work. A new topology is typically
a derivative of an existing topology, because similarity maintains trust.

8 GENETIC PROGRAMMING THEORY AND PRACTICE III

SPICE can lie. SPICE can lie due to problems in its device models, conver-
gence, and perhaps inadequate models of parasitics. SPICE transistor models
seem to be in a continually inadequate state, with known deficiencies (e.g. non-
smooth transitions from one operating region to another). Part of the difficulty
is that the models have to work for several processes, typically require hundreds
of parameters that should be easy to extract, and strive to have as good a phys-
ical basis as possible. Because of this, designers consciously avoid transistor
operating regions where the models are known to be inadequate.

Whitebox Constraints. Topologies have whitebox constraints based on the
strategy underlying the topology’s design. Every transistor in a circuit has been
designed with the assumption that it will be operating in a specific operating
region; there is a good chance that the assumptions break down outside those
constraints.

Clear Path To Layout. The designer knows that, for manually-designed
topologies, there is a clear path to layout; to a large extentthe designer has
already anticipated the parasitics. Layout designers alsohave tactics to improve
robustness, such as: folding transistors, guard rings, andcareful routing to avoid
cross-coupling between sensitive wires (Hastings, 2000, Lampaert et al., 1999).
Analog layout synthesis is another analog CAD subproblem (Rutenbar and
Cohn, 2000); it is difficult to model and solve well, as illustrated by continued
research activity. When layout parasitics are more pronounced, such as in RF
design, there are ways to tighten the coupling between sizing and layout design
(DeSmedt and Gielen, 2003, Zhang et al., 2004, Bhattacharyaet al., 2004).

To properly account for layout effects in synthesis, one possibility is to unite
the front-end design space (topology and circuit sizes) with the back- end space
(layout), and approach the whole problem at once, as in section 5.2 of (Koza
et al., 2003). Unfortunately, runtime was 1.5 orders of magnitude slower. And,
that work drastically simplified the layout synthesis problem – it didn’t even
extract the parasitics from the layout before simulating the netlist.

Synthesis Exaggerates “Cheating” of Search Algorithms. We say a
“cheat” occurs when design has good measured performances,but which upon
inspection is useless (e.g. not physically realizable). Anexample is too many
long, narrow transistors; the solution is to add more constraints on width/length
ratios. Each added constraint takes time to detect, correct, and re-run. There
is more opportunity for structural synthesis to cheat compared to optimization,
because synthesis design space is drastically larger, and SPICE can cheat more
readily. Evolvable hardware research is filled with examples of odd designs;
however, innon-reprogrammable analogVLSI, one cannot embrace odd designs
because of the high cost of fabrication.

GP and Industrial Analog CAD 9

5. GP Application: Analog Structural Synthesis, Part II

An Updated Model of the Analog Synthesis Problem

Most earlier GP structural synthesis work such as (Koza et al., 1999, Lohn
and Colombano, 1998, Zebulum et al., 2002, Sripramong and C.Toumazou,
2002, Koza et al., 2003) did not have a very thorough model of the problem
compared to analog CAD optimization, but is has been gettingbetter recently.
In (Koza et al., 2004a), corners have been added to account for environmental
and (very roughly) manufacturing variations. And, they employ testbenches
directly from an industrial CAD vendor (Synopsys, 2005). Though some recent
research has not yet acknowledged the need for more robustness (Dastidar et al.,
2005).

GP does not have whitebox constraints, because it does not make assump-
tions about what region each transistor will operate in. GP actually has stronger
performance measures in one regard: it also tries to match waveforms of be-
havior.

Compared to analog CAD optimization work, GP’s biggest deficiency in
problem modeling is its lack of a good model of manufacturingvariations. The
closest, robust HFC (Hu and Goodman, 2004a), did have Monte Carlo sampling,
but the randomness model is not suitable for VLSI circuits.

Beyond analog CAD optimization, GP-evolved circuits must somehow get
the same advantages as a manually-designed topology. Such circuits must get
designer trust, including an explanation and formulae for behavior; ultimately,
successful fabrication and testing. On the way, there are the hurdles of SPICE
(mis)behavior, layout parasitics, search space cheats, and extra challenges from
first-order process variations.

New Computational Challenges

Ultimately, the only way to accurately model manufacturingvariations is via
simulation on good statistical models. Let us examine the runtime of a typical
structural synthesis run that uses brute force Monte Carlo sampling. Except
for layout, we will temporarily ignore all the extra challenges wrought by a
non-fixed topology.

Let us say: 8 corners (for environmental variations), 10 Monte Carlo sam-
ples (for manufacturing variations; 10 is optimistic), andsimulation time of 1
minute for a circuit at one corner and one sample on all testbenches on a 1 GHz
machine. Parasitic-extracted layouts might mean 10x longer. Larger designs
and/or longer-than-transient analyses could easily take 6x, 60x, or even 600x
longer to simulate.

10 GENETIC PROGRAMMING THEORY AND PRACTICE III

It is typical for a GP run to explore 100 million designs for more challenging
problems. 1 billion or even 10 billion would not be unreasonable (Koza et al.,
2003). But let us have 1,000 1-Ghz machines in parallel.

Then, total run time = 152 years! And it’s even longer for tougher problems,
where simulation time is 6x-600x longer and number of individuals is 10x-100x
more.

One might ask if Moore’s Law can ease this challenge.

The Impact of Moore’s Law

Mooreware vs. Anti-Mooreware. GP is considered an example of “Moore-
ware” (Koza et al., 1999), where an algorithm becomes more effective with more
computational power, and therefore with the march of Moore’s Law over time.

However, Moore’s Law when attacking VLSI design problems isa double-
edged sword. Each new technology generation also requires more modeling
effort, and therefore more compute time! For example, the need for substrate
noise modeling is growing; to model this takes 30 minutes on four modern
processors (Soens et al., 2005), i.e. 120x more computational effort.

Thus, analog synthesis is an “Anti-Mooreware” problem: it gets more diffi-
cult as Moore’s Law progresses. So, we cannot rely on the “Mooreware” aspect
of GP to eventually be fast enough.

Design Challenge

Topologies
breaking

Faster
CPUs

More Complex
Modeling

Synthesis
Runtime

Cancel each
other out?

Figure 1-3. Effects of Moore’s Law on Analog Structural Synthesis

Moore’s Law Breaks Topologies. Topologies are getting constrained in
new ways due to Moore’ Law. Here is an example. Supply voltages and
threshold voltages are steadily decreasing, but thresholdvoltages cannot scale
as quicklybecause of fundamental physical constants. At some point, “cascode”

GP and Industrial Analog CAD 11

Table 1-1. GP-generated symbolic circuit models with < 10% train and test error.

Perf. Char. Expression

ALF -10.3 + 7.08e-5 / id1 + 1.87 * ln(-1.95e+9 + 1.00e+10 / (vsg1*vsg3)
+ 1.42e+9 *(vds2*vsd5) / (vsg1*vgs2*vsg5*id2))

fu 10̂(5.68 - 0.03 * vsg1 / vds2 - 55.43 * id1+ 5.63e-6 / id1)

PM 90.5 + 190.6 * id1 / vsg1 + 22.2 * id2 / vds2

voffset - 2.00e-3

SRp 2.36e+7 + 1.95e+4 * id2 / id1 - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * id1

SRn - 5.72e+7 - 2.50e+11 * (id1*id2) / vgs2 + 5.53e+6 * vds2 / vgs2 + 109.72 / id1

configurations, which stack two transistors on top of each other, are unusable
(e.g. M4b and M5b in figure 1-2 are in cascode). The alternatives are less ideal:
folded cascodes mean larger power consumption, and extra stages mean slower
speed and instability risk. Figure 1-3 summarizes.

The Road Ahead for GP and Structural Synthesis

GP has come a long way along the road of analog structural synthesis, and
the milestones have been remarkable. But a full industrial-strength version is
orders of magnitude away.

Speeding up GP sufficiently may actually be possible, because there are so
many facets to the problem and the algorithms. It comes down to an “algo-
rithm engineering” problem. There are possible speedups at(1) the general EA
level, for example in population management, handling modularity / hierarchy,
exploiting advances in theory, reuse of run information, inrepresentation and
operators, parallelism; (2) at the robustness level, for example exploiting the
transparency in manufacturing variations, environmentalvariations, and simu-
lation analyses; and (3) at the domain-specific level of cell-level analog circuits,
for example to guide design of representation, operators and building blocks,
special constraints, faster performance estimators. Kozahas elaborated on some
possibilities (Koza et al., 2004b).

6. GP Application: Symbolic Modeling

Given the overall goal of finding ways to aid analog engineersin the design
process, we can ask ourselves what other problems GP might help in. That’s a
question that we asked in the last year, and so far we’ve demonstrated two other
industrially-relevant applications. Let’s examine each,starting with symbolic
modeling.

12 GENETIC PROGRAMMING THEORY AND PRACTICE III

In all designs that an engineer does, the more he or she understands a circuit,
the more he will be able to improve it (in terms of performanceand yield),
and the more productive he or she will be. This is independentof whether the
tools are automated or manual. Equations are a very useful tool for helping
designers improve understanding, e.g. equations that map design variables
(e.g. component values) to circuit performances (e.g. power consumption).
Such equations have traditionally been created by hand, butthey are so useful
that since the early 90s, there has been considerable research effort to devise
algorithms to automate this (Gielen, 2002). This subfield ofof analog CAD
is called "symbolic analysis" when the equations are directly extracted from
the topology, or "symbolic modeling" when the equations come from SPICE
simulations. The ideal approach would produce SPICE-accurate, interpretable
equations of arbitrary nonlinear circuits. So far, no approach could do all those
things at once.

Interestingly (and almost surprisingly), no one had yet used GP in symbolic
regression mode on SPICE-generated training data. So, we applied it, with a few
modifications to GP to keep the expressions readily interpetable (McConaghy
et al., 2005). Table 1-1 gives models for each of six different performance
expressions, for the circuit previously examined (figure 1-2).

Figure 1-4. Comparison of prediction error for several state-of-the-art modeling approaches.

GP turned out to predict remarkably well. In a separate studyon six circuit
datasets (McConaghy and Gielen, 2005a), we found that GP could generate
nonlinear expressions that outperformed several state-of-the-art approaches, as
shown in figure 1-4.

GP and Industrial Analog CAD 13

Table 1-2. GP-generated behavioral models for a latch circuit.

Train error Expression

15.11% dx1/dt = nBit
dx2/dt = Bit * x1

6.25% dx1/dt = - 21.3 - 9.28e-03 * bufclk * x1 + 1.0e+04 * nBit * bufclk

3.32% dx1/dt = 2.21e-02 - 3.72e-02 * x1 - 21.8 * Bit*nBit * bufclk
dx2/dt = nBit * bufclk * x1
dx6/dt = x1

7. GP Application: Behavioral Modeling

Another challenge in circuit design is how to manage system-level design.
One of its sub-problems is how to simulate a whole system in a feasible time,
ideally fast enough to optimize with. A good approach is behavioral models,
which approximate the dynamic behavior of each of the system’s sub-blocks.
Automatically devising behavioral models is very difficult: it’s common for
a student to spend his whole PhD on (manually) designing a good behavioral
model for one building block! There’s a long history of attempts to automated
approaches as well, starting from linear, progressing to weakly nonlinear, and
finally recent successes in strongly nonlinear behavioral models. But those ap-
proaches are, once again, black box. With behavioral modeling, even more than
symbolic analysis, trustworthiness of a model is very important, and blackbox
models compromise that, because there is no guarantee how the model will
perform under other input stimuli.

Once again, we saw opportunity. We adapted our GP system to build dy-
namic models, and tested it on a strongly nonlinear circuit (McConaghy and
Gielen, 2005b). It successfully built interpretable behavioral models with good
prediction ability. Table 1-2 gives some of the behavioral models generated, at
different levels of complexity and accuracy.

8. Conclusions

While GPers have considered analog synthesis a success story for GP, and
with good reason from an AI perspective, it still remains forGP to be put into
industrial analog design practice.

To understand why, we examined the problem context and the details of how
a design is implemented. It comes down to achieving more robust designs, with
the main aim of reducing risk of costly manufacturing respins. Furthermore, it
needs to be trusted by the designer. To address this, the GP computational effort
goes up drastically, and Moore’s Law cannot be relied upon tohelp because the

14 GENETIC PROGRAMMING THEORY AND PRACTICE III

problem is “Anti-Mooreware”. Thus, we have a grand “algorithm engineering”
challenge for clever GP researchers.

Structural synthesis is not the only opportunity for GP in analog CAD. We
demonstrated GP as applied to two other applications, symbolic modeling and
behavioral modeling, where the barrier to entry was far lower, and the industrial
payoff much sooner.

GP is not barnstorming the field of analog design... yet. But it is slowly
gaining groundin multiple aspects of analog CAD.

9. Acknowledgements

The first author would like to thank John Koza, Matthew Streeter, Sameer
Al-Sakran, Lee Jones, and Martin Keane for the invigoratingdiscussions which
motivated the writing of this paper.

References

Alpaydin, G., Balkir, S., and Dundar, G. (2003). An evolutionary approach to
automatic synthesis of high-performance analog integrated circuits. IEEE
Transactions on Evolutionary Computation, 7(3):240–252.

Bhattacharya, Sambuddha, Jangkrajarng, Nuttorn, Hartono, Roy, andShi, Richard
(2004). Correct-by-construction layout-centric retargeting of large analog
designs. InProceedings of the Design Automation Conference.

Cadence (2005a). Neocell product.Website of Cadence Design Systems Inc.
Cadence (2005b). Neocircuit product.Website of Cadence Design Systems Inc.
Dastidar, T.R., Chakrabarti, P.P., and Ray, P. (2005). A synthesis system for

analog circuits based on evolutionary search and topological reuse.IEEE
Transactions on Evolutionary Computation, 9(2):211–224.

DeSmedt, B. and Gielen, Georges G.E. (2003). Watson : Designspace boundary
exploration and model generation for analog and rf ic design. IEEE Trans-
actions on Computer-Aided Design, 22(2):213–223.

Drennan, P.C. and McAndrew, C.C. (2003). Understanding mosfet mismatch
for analog design.IEEE Journal of Solid State Circuits, 38(3):450–456.

Gielen, G.E. (2002). Techniques and applications of symbolic analysis for ana-
log integrated circuits: A tutorial overview. In Rutenbar,R.A., Gielen, G.E.,
, and Antao, B.A., editors,Computer Aided Design of Analog Integrated
Circuits and Systems, pages 245–261. IEEE Press, Piscataway, NJ.

Gielen, G.E. and Rutenbar, R.A. (2002). Computer-aided design of analog and
mixed-signal integrated circuits. In Rutenbar, R.A., Gielen, G.E., , and Antao,
B.A., editors,Computer Aided Design of Analog Integrated Circuits and
Systems, chapter 1, pages 3–30. IEEE Press, Piscataway, NJ.

Hastings, Alan (2000).The Art of Analog Layout. Prentice-Hall.

GP and Industrial Analog CAD 15

Hu, J. and Goodman, E. (2004a). Robust and efficient genetic algorithms with
hierarchical nichingand sustainable evolutionarycomputation model. InPro-
ceedings of the Genetic and Evolutionary Computing Conference.

Hu, Jianjun and Goodman, Erik (2004b). Topological synthesis of robust dy-
namic systems by sustainable genetic programming. In O’Reilly, Una-May,
Yu, Tina, Riolo, Rick L., and Worzel, Bill, editors,Genetic Programming
Theory and Practice II, chapter 9. Kluwer, Ann Arbor.

Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).
Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Koza, John R., Jones, Lee W., Keane, Martin A., and Streeter,Matthew J.
(2004a). Towards industrial strength automated design of analog electrical
circuits by means of genetic programming. In O’Reilly, Una-May, Yu, Tina,
Riolo, Rick L., and Worzel, Bill, editors,Genetic Programming Theory and
Practice II, chapter 8. Kluwer, Ann Arbor.

Koza, John R., Keane, Martin A., and Streeter, Matthew J. (2004b). Routine
high-return human-competitive evolvable hardware. In Zebulum, Ricardo S.,
Gwaltney, David, Horbny, Gregory, Keymeulen, Didier, Lohn, Jason, and
Stoica, Adrian, editors,Proceedings of the 2004 NASA/DoD Conference on
Evolvable Hardware, pages 3–17, Seattle. IEEE Press.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William,
Yu, Jessen, and Lanza, Guido (2003).Genetic Programming IV: Routine
Human-Competitive Machine Intelligence. Kluwer Academic Publishers.

Lampaert, Koen, Gielen, Georges G.E., and Sansen, Willy (1999).Analog Lay-
out Generation for Performance and Manufacturability. Kluwer Academic
Publishers.

Lohn, J.D. and Colombano, S.P. (1998). Automated analog circuit synthesis
using a linear representation. InProceedings of the Second International
Conference on Evolvable Systems: From Biology To Hardware, pages 125–
133. Springer-Verlag.

McConaghy, Trent, Eeckelaert, Tom, and Gielen, Georges G. E. (2005). Caf-
feine: Template-free symbolic model generation of analog circuits via canon-
ical form functions and genetic programming. InProceedings of the Design
Automation and Test Europe Conference.

McConaghy, Trent and Gielen, Georges G. E. (2005a). Analysis of simulation-
driven numerical performance modeling techniques for application to analog
circuit optimization. InProceedings of the International Symposium on Cir-
cuits and Systems.

McConaghy, Trent and Gielen, Georges G. E. (2005b). Ibmg: Interpretable
behavioral model generator for nonlinear analog circuits via canonical form
functions andgenetic programming. InProceedings of the International Sym-
posium on Circuits and Systems.

16 GENETIC PROGRAMMING THEORY AND PRACTICE III

Phelps, R., Krasnicki, M., Rutenbar, R.A., Carley, R., and Hellums, J.R. (2000).
Anaconda: Simulation-based synthesis of analog circuits via stochastic pat-
tern search.IEEE Transactions on Computer Aided Design.

Power, J.A., Donellan, B., Mathewson, A., and Lane, W.A. (1994). Relating
statistical mosfet model parameters to ic manufacturing process fluctuations
enabling realistic worst-case design.IEEE Transactions on Semiconductor
Manufacturing, 7:306–318.

Razavi, Behzad (2000).Design of Analog CMOS Integrated Circuits. McGraw-
Hill.

Rutenbar, Rob A. and Cohn, John M. (2000). Layout tools for analog ics and
mixed-signal socs: A survey. InProceedings of the ACM International Sym-
posium on Physical Design, pages 76–83.

Schenkel, F., Pronath, M., Zizala, S., Schwencker, R., Graeb, H., and Antreich,
K. (2001). Mismatch analysis and direct yield optimizationby spec-wise
linearization and feasibility-guided search. InProceedings of the Design
Automation Conference.

Smedt, B. De and Gielen, Georges G.E. (2003). Holmes: Capturing the yield-
optimized design space boundaries of analog and rf integrated circuits. In
Proceedings of the Design Automation and Test Europe Conference, page
10256.

Soens, C., Wambacq, P., Plas, G. Van Der, and Donnay, S. (2005). Simulation
methodology for analysis of substrate noise impact on analog / rf circuits
including interconnect resistance. InProceedings of the Design Automation
and Test Europe Conference.

Sripramong, T. and C.Toumazou (2002). The invention of cmosamplifiers us-
ing genetic programming and current-flow analysis.IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems.

Synopsys (2005). Circuit explorer product.Website of Synopsys Inc.
Teller, Astro and Andre, David (1997). Automatically choosing the number

of fitness cases: The rational allocation of trials. In Koza,John R., Deb,
Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi,
and Riolo, Rick L., editors,Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 321–328, Stanford University, CA, USA.
Morgan Kaufmann.

Zebulum, R., Pacheco, M., and Vellasco, M. (2002).Evolutionary Electronics:
Automatic Design of Electronic Circuits and Systems by Genetic Algorithms.
CRC Press.

Zhang, Gang, Dengi, E. Aykut, Rohrer, Ronald A., Rutenbar, Rob A., and
Carley, L. Richard (2004). A synthesis flow toward fast parasitic closure for
radio-frequency integrated circuits. InProceedings of the Design Automation
Conference, pages 155–158.

