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Abstract

In the last two years the schema theory for Ge-
netic Programming (GP) has been applied to the
problem of understanding the length biases of a
variety of crossover and mutation operators on
variable length linear structures. In these initial
papers, operators were studied in isolation. In
practice, however, they are typically used in var-
ious combinations, and in this paper we present
the first schema theory analysis of the complex
interactions of multiple operators. In particular,
we apply the schema theory to the use of standard
subtree crossover, full mutation, and grow muta-
tion (in varying proportions) to variable length
linear structures in the one-then-zeros problem.
We then show how the results can be used to
guide choices about the relative proportion of
these operators in order to achieve certain struc-
tural goals during a run.

1 Introduction

Most (if not all) Genetic Programming (GP) operators have
a variety of biases with respect to both the syntax and the
semantics of the trees they produce. These biases can work
against or in favor of the biases implied by the fitness func-
tion, which makes understanding these biases crucial to un-
derstanding the behavior of and relationships among the
various operators.

These interactions can be quite complex, however, and con-
sequently understanding them can be difficult. While there
is a considerable literature examining the interactions of
mutation and crossover in areas like Genetic Algorithms
(GAs), there is much less reported work on the interactions
of operators in GP. Notable exceptions include the work
of O’Reilly [10], Banzhaf, et al [1], and Luke and Spec-
tor [5, 6, 4]. These studies are primarily experimental in

nature, and all suggest that understanding operator interac-
tions is difficult. It would thus be useful to have a theoreti-
cal approach to these problems that might allow us to better
understand operator interactions, and choose combinations
of operators in a more principled manner.

In the last few years work on schema theory for GP has
made huge progress, generating not only an exact the-
ory, but also one applicable to a variety of operators used
in practice, including: one-point crossover [12, 14, 11,
13], standard and other subtree-swapping crossovers [14,
16, 7], different types of subtree mutation and headless
chicken crossover [15, 8], and the class of homologous
crossovers [17].

In [16, 7] we showed how these recent developments in GP
schema theory can be used to better understand the biases
induced by the standard subtree crossover when genetic
programming is applied to variable length linear structures.
In particular we showed that subtree crossover has a very
strong bias towards oversampling shorter strings and, in
some senses, works against bloat. In [15, 8] we derived ex-
act schema equations for subtree mutation on linear struc-
tures, using both the full and grow methods to generate the
new, random subtrees. Iterating those equations on both a
flat fitness landscape and a needle-in-a-haystack style prob-
lem, called the one-then-zeros problem, we showed that
both of these subtree mutation operators have strong biases
with regard to the population’s length distribution. Similar
to the bias of subtree crossover, we found that these muta-
tion operators are strongly biased in favor of shorter strings
in both these fitness domains.

In this paper we combine the schema theory for different
operators and apply them to the problem of better under-
standing the behavior produced by their interaction. Study-
ing these complex interactions is particularly easy using
the schema formalization because we can simply use a
weighted sum of the schema equations generated for each
operator in isolation. We also show how the theory can be
used to design competent GP systems by guiding the choice



of combinations of operators together with their parameter
settings.

The work reported here is all on GP with linear structures
(not unlike those used in, e.g., [9, 2]), although the schema
theory on which it is based is much more general. We have
chosen in these applications to focus on linear structures
because the theoretical analysis is more manageable and
the computations are more tractable. This has yielded a
number of important results for the linear case, and prelim-
inary results further suggest that many of the key ideas here
are also applicable (at least in broad terms) to the non-linear
tree structures typically used in GP.

In Sec. 2 we will introduce the schema theorem for GP us-
ing linear structures, standard crossover and mutation, and
we will show how easily the theory for different operators
can be combined. We then apply the theory in Sec. 3 to
the one-then-zeros problem and use the theory to both pre-
dict and better understand the changes in the distribution of
fit individuals and of sizes (Sec. 4). We finish with some
conclusions and ideas for future research (Sec. 5).

2 Schema theory for GP on linear structures

2.1 Operators

In this paper we will consider three common GP operators:
the standard subtree-swapping GP crossover operator, and
the full and grow mutation operators. Each operator acts by
removing a non-empty suffix of an individual and replacing
it with a new suffix, with the production of that suffix being
the primary difference between the operators.

More formally, in a linear-structure GP where F is the
set of non-terminal nodes and T is the set of terminal
nodes, individuals can be seen as sequences of symbols
c0c1 : : : cN�1 where ci 2 F for i < N � 1 and cN�1 2 T .
Each of the operators, then, starts by removing a non-empty
suffix cjcj+1 : : : cN�1 (where j is chosen uniformly such
that 0 � j < N ) and replacing it with a new non-empty
string.1

In the case of crossover, the new string is taken to be a
suffix dj0dj0+1 : : : dN 0

�1 of another parent d0d1 : : : dN 0
�1,

where j0 (which could differ from j) is chosen uniformly
such that 0 � j

0
< N

0.

1The requirement that suffixes be non-empty while prefixes
are allowed to be empty comes from standard practice in GP. It
does, however, create a number of mild but annoying asymmetries
which often clutter up the analysis (see, e.g., [18]).

Both full and grow mutation generate the new suffix ran-
domly, and they differ in how the new random subse-
quences are generated, and in particular how their sizes are
determined. In full mutation, the subsequence has a spec-
ified length D; thus non-terminals are selected uniformly
from F until length D � 1 is reached, at which point a ter-
minal is selected uniformly from T . In grow mutation, on
the other hand, one chooses from the set of all functions
and terminals every time, only terminating the creation of
the subsequence when a terminal is chosen; thus for grow
mutation there is no a priori limit on the size of the result-
ing sequences.

2.2 Schema theory definitions

In this section we will present a series of crucial definitions
that allow us to represent schemata, and count and build
instances of schemata.

Just as we defined a linear GP structure to be a sequence
of symbols, we will also define a linear GP schema as
the same kind of sequence c0c1 : : : cN�1 except that a new
“don’t care” symbol ‘=’ is added to both F and T .2 Thus
schemata represent sets of linear structures, where the po-
sitions labelled ‘=’ can be filled in by any element of F (or
T if it is the terminal position). A few examples of schema
are:3

� (=)N : The set of all sequences of length N .

� 1(=)a: The set of all sequences of length a+1 starting
with a 1.

� 1(0)a: The singleton set containing the symbol 1 fol-
lowed by a 0’s.

Now that we can represent schemata, we present a series of
definitions that allow us to count instances of schemata.

Definition 1 (Proportion in population) �(H; t) is the
proportion of strings in the population at time t matching
schema H . For finite populations of size M , �(H; t) =

m(H; t)=M , where m(H; t) is the number of instances of
H at time t.

Definition 2 (Selection probability) p(H; t) is the proba-
bility of selecting an instance of schema H from the pop-
ulation at time t. This is typically a function of �(H; t),
the fitness distribution in the population, and the details

2This new ‘=’ symbol plays a role similar to that of the ‘#’
“don’t care” symbol in GA schema theory. For historical reasons,
however, ‘#’ has been assigned another meaning in the more gen-
eral version of the GP schema theory [14].

3We will use the superscript notation from theory of computa-
tion, where xn indicates a sequence of n x’s.



of the selection operators. With fitness proportionate se-
lection, for example, p(H; t) = �(H; t) � f(H; t)=f(t),
where f(H; t) is the average fitness of all the instances of
H in the population at time t and f(t) is the average fitness
in the population at time t.

Definition 3 (Transmission probability) �(H; t) is the
probability that an instance of the schema H will be con-
structed in the process of creating a new individual for the
population at time t+1 out of the population at time t. This
will typically be a function of p(K; t), the various schemata
K that could play a role in constructing H , and the details
of the various recombination and mutation operators being
used.

Definition 4 (Creation probability) �mut(H; t) is the
probability that some GP subtree mutation operator will
generate a new, random subtree that is an element of the
schema H in generation t.

To clarify which operator we are working with, we in-
troduce specialized forms of the transmission probability
function �, namely �xo for the transmission probability due
specifically to crossover, �FULL for the transmission prob-
ability due specifically to subtree mutation using the full
method, and �GROW for the transmission probability due
specifically to subtree mutation using the grow method.

We can now model the standard evolutionary algorithm as
the transformation

�(H; t)
select
�! p(H; t)

mutate
XO
�! �(H; t)

sample
�! �(H; t+ 1):

Here the arrows indicate that some new distribution (on
the RHS of the arrow) is generated by applying the speci-
fied operation(s) to the previous distribution (on the LHS).
So, for example, the process of selection can be seen as a
transformation from the distribution of schemata �(H; t) to
the selection probability p(H; t). A crucial observation is
that, for an infinite population, �(H; t + 1) = �(H; t) for
t � 0, which means we can iterate these transformations
to exactly model the behavior of an infinite population over
time.

To formalize the creation of instances of a linear schema
H = c0c1 : : : cN�1 we define

u(H; i; k) = c0c1 : : : ci�1(=)
k�i

l(H; i; n) = (=)n�N+i
cici+1 : : : cN�1

Here u(H; i; k) is the schema of length k matching the left-
most i symbols of H , and l(H; i; n) is the schema of length
nmatching the rightmostN�i symbols ofH .4 The impor-
tant property of u and l is that if one uses standard crossover

4
u and l are based on operators U and L (see, e.g., [14])

which match the upper and lower parts of general, non-linear, GP
schemata.

to crossover any instance of u(H; i; k) at position i with
any instance of l(H; i; n) at position n � N + i, the re-
sult will be an instance of H , provided5

k + n > N , and
0 " (N � n) � i < N # k. Further, these are the only
ways to use standard crossover to construct instances ofH ,
so these definitions fully characterize the mechanism for
constructing instances of H .

2.3 The schema theorem

[7, 8] provide schema theorems for each of our three opera-
tors when used in isolation. Here we extend these results to
the case where all three operators can be used in the same
run, each with specified proportions. Since we use exactly
one operator to generate any given individual, the probabil-
ity that we construct an instance of a schema (i.e., �(H; t))
is simply the sum of the probabilities of each specific op-
erator constructing such an instance, each weighted by the
likelihood of choosing that operator. This leads to the fol-
lowing:

Theorem 1 (Schema theorem for combined operators)
For GP on linear structures using standard crossover with
probability pxo, full mutation with length D and probability
pFULL, and grow mutation with probability pGROW, such that
pxo + pFULL + pGROW = 1, we have

�(H; t) = pxo � �xo(H; t)

+ pFULL � �FULL(H; t) + pGROW � �GROW(H; t)

where

�xo(H; t) =
X
k>0
n>0

k+n>N

� 1

k � n

�
X

0"(N�n)�i<N#k

p(u(H; i; k); t)

�p(l(H; i; n); t)
�
;

�FULL(H; t) =
X
k>0

0�i<N#k

�
1

k
� p(u(H; i; k); t)

� �FULL(cici+1 : : : cN�1)

�

�GROW(H; t) =
X
k>0

0�i<N#k

�
1

k
� p(u(H; i; k); t)

� �GROW(cici+1 : : : cN�1)

�
;

and q = jFj=(jFj+ jT j).

5We will use " as a binary infix max operator, and # as a binary
infix min operator.



Due to space restrictions we simply report the general ex-
pressions for the quantities �xo, �FULL, and �GROW for the
linear case without providing any proofs. The interested
reader can find these, together with extensive characteriza-
tions of the behavior of crossover and mutation when used
separately, in [7, 8].

3 The one-then-zeros problem

We will now apply the Schema Theorem to the one-then-
zeros problem. We will start by defining and motivating the
problem, and then show how the schema theorem can be
used to better understand the effects of multiple operator
interaction on this problem.

3.1 One-then-zeros problem definition

In this problem we have F = f0; 1g and T = f0g, where
both 0 and 1 are unary operators. This gives us a prob-
lem that is essentially equivalent to studying variable length
strings of 0’s and 1’s, with the constraint that the strings
always end in a 0. Fitness in this problem will be 1 if the
string starts with a 1 and has zeros elsewhere, i.e., the string
has the form 1(0)a where a > 0; fitness will be 0 otherwise.

One of the reasons for studying this problem is that un-
der selection and crossover this problem induces bloat [7],
whereas this does not happen when using the full and grow
mutation operators [8]. The key advantage of this prob-
lem is that in order to fully and exactly describe the length-
evolution dynamics and the changes in solution frequency
of infinite populations, it is necessary to keep track of only
two classes of schemata: those of the form (=)N and those
of the form 1(0)a. Unfortunately most problems are not so
restricted, and one is typically forced to track the propor-
tion of many (possibly intractably many) more schemata.

3.2 Analyzing one-then-zeros

To apply the schema theorem to the one-then-zeros prob-
lem one needs to calculate the probabilities �xo, �FULL, and
�GROW for both of the schema (=)N and 1(0)a, and the
probabilities �FULL and �GROW for both of the schema 1(0)a

and (0)a. These can be calculated from the equations re-
ported above and are also provided in explicit form in [7, 8],
so we will not re-derive these results here.

If we assume an infinite population, we can numerically
iterate the equations in the Schema Theorem to better un-
derstand the behavior of an infinite GP population on this
problem. Tracking these distributions over time becomes
expensive in terms of computational effort.6 A crucial

6We have found, though, that ignoring values of � below some
small threshold (we have used 10

�10) seems to have little impact
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Figure 1: The distributions of lengths after 50 generations when
using the three recombination operators individually on the one-
then-zeros problem. The tail of the crossover distribution contin-
ues past the right hand side of the graph, with lengths above 300
still having proportions above 10�10 .

point, though, is that these equations only need to be run
once, and have no stochastic effects. They are exact cal-
culations of the relevant quantities (up to the limitations
of the floating point representation), and once computed
need never be computed again. This is in contrast to typical
empirical results in evolutionary computation, where com-
binations of large populations and multiple runs are nec-
essary to smooth out the stochastic effects, and even then
there is no guarantee that any two sets of runs will have
similar behavior.

4 One-then-zeros results

We know (see, e.g., [7, 16, 8, 15]) that each of these op-
erators has significant biases when used on its own, and
Fig. 1 summarizes some of the earlier results by presenting
the final length distributions for each of the operators when
acting alone on the one-then-zeros problem. This makes it
clear that the three operators all have very different length
biases, which suggests that they may indeed demonstrate
interesting behaviors when used in combination.

We can now iterate this new combined schema equation to
study these combined interactions and their biases, and to
use such results to guide the choices of the proportions of
operators to help satisfy a variety of goals. As an example
in this paper we will consider the following goals:

1. Avoid both bloating and shrinking, by having the av-
erage size after 50 generations be as close as possible
to the initial average size.

on the numeric results and can greatly speed up the calculations
since it significantly slows the growth of the number of strings
that need to be tracked.



2. Avoid both bloating and shrinking (as above), but also
maximize the number of correct individuals.

3. Maximize the proportion of small solutions (as op-
posed to just short strings).

4. Reach a state where the proportion of 1(0)30 exceeds
0.01 as early as possible.

In all these simulations we will be applying the three oper-
ators discussed earlier (standard subtree crossover, full mu-
tation, and grow mutation) on the one-then-zeros problem.
A depth limitD = 5will be used for full mutation. Our ini-
tial population will consist of equal proportions (10% each)
of the strings 1(0)i for 1 � i � 10; thus the average length
in the initial population is 6.5.

To study the interaction of the operators, the schema equa-
tions from Theorem 1 were iterated 66 different times, us-
ing each of the legal combinations of proportions of (stan-
dard) crossover, grow mutation, and full mutation with val-
ues from the set f0; 0:1; 0:2; 0:3; : : : ; 0:9; 1g. We’ll use
triples of the form (pxo; pFULL; pGROW) to indicate a combi-
nation of parameter settings where the first is always the
proportion of crossover, the second the proportion of full
mutation, and the third the proportion of grow mutation.

4.1 General observations

While the majority of these iterations had converged after
50 generations, there were several which had not. These
were typically those with sufficiently high crossover prob-
abilities that bloat was occurring and the average lengths
were clearly still growing after 50 generations. As an ex-
ample, the configuration (0.8, 0, 0.2) has an average length
of 7.98 after 50 generations, and is thus not a terrible so-
lution to the problem of avoiding bloat and shrinkage as
defined in Sec. 4.2 below. It seems highly likely, how-
ever, that if we were to continue iterating the equations with
these parameters for another 100 generations we would get
higher average length, thereby doing a worse job of meet-
ing the goal of avoiding bloat and shrinkage. This isn’t
necessarily a concern, however, since actual GP runs al-
ways have a finite number of generations. Thus if we know
we’re likely to run our GP for 100 generations, we can it-
erate these schema equations and try to find settings that
meet our goals (whatever they happen to be) at the end of
100 generations regardless of whether further generations
would take us away from our goals.

It should also be noted that the initial uniform distribution
of lengths is very unstable in the sense that any combina-
tion of operators will generate a very different distribution
immediately in the first generation. As an example, the
settings (0.1, 0.7, 0.2) have an average length after 50 gen-
erations that’s very close to the average length in the initial

distribution (6.5). The distribution itself (shown in Fig. 3)
is far from uniform, however. This seems to be a general
property of “interesting” operators, namely that they have a
favored length distribution that they move to quite quickly,
and while fitness can modify that tendency, it rarely elimi-
nates it entirely.

4.2 Avoid bloat and shrinkage

In our first example the goal will be to avoid both bloat-
ing and shrinkage by searching for a collection of operator
probabilities such that the average length after 50 genera-
tions is as close as possible to the initial average size.

Out of our 66 configurations, five had a final average fitness
that was less than 0.15 away from the initial average of 6.5
(see Table 1); the next closest combination of parameter
settings had an absolute difference of over 0.23. Note that
in each case the proportion of grow mutation was 0.2. In
fact the 20 configurations whose final average lengths were
closest to 6.5 all had small non-zero proportions for grow
mutation (between 0.1 and 0.4); at the same time, however,
those 20 configurations had a broad range of full mutation
proportions (ranging from 0 to 0.9) and crossover propor-
tions (from 0 to 0.8). Those combinations where the pro-
portion of crossover was over 0.5, however, all had average
lengths that were still climbing after 50 generations, so it’s
likely that they would continue to diverge from 6.5 if we
iterated the equations for more generations. Thus the cru-
cial factors for long-term size stability in this problem seem
to be a small non-zero proportion of grow, and a crossover
proportion of at most 0.5 so the sizes don’t bloat above 6.5.

Most (but not all) of the configurations where the pro-
portion of grow was 0.2 had final average lengths close
to 6.5; the smallest average length after 50 generations
was 6.36 (for (0:4; 0:4; 0:2)), and the largest was 7.98 (for
(0:8; 0; 0:2)). As discussed above, however, those parame-
ter sets with higher crossover proportions probably hadn’t
converged after just 50 generations, and their final averages
would likely continue to grow if we iterated more genera-
tions. Taking that into account the range of final average
lengths is quite small, being from 6.35 to 6.46 when the
proportion of grow is 0.2 and the proportion of crossover is
at most 0.5.

Looking at Fig. 2, we can see that in each of these cases
there was an initial jump away from 6.5 (caused by the in-
stability of the initial uniform length distribution), followed
by a fairly rapid convergence to an average value close to
6.5. The slowest to converge was the case where we had
50% crossover, and that curve in fact looks similar to the
bloating seen in [7], with an asymptote close to 6.5.

Fig. 3 shows the final distribution of lengths for each of
these five parameter settings. While each of these distribu-



XO Full Grow Diff. from 6.5 Prop. fit
0.1 0.7 0.2 0.081 0.19
0.2 0.6 0.2 -0.045 0.26
0.3 0.5 0.2 -0.131 0.31
0.4 0.4 0.2 -0.147 0.37
0.5 0.3 0.2 -0.045 0.43

Table 1: Parameter settings for the five configurations that came
closest to having the same average length after 50 generations as
the average length of the initial distribution. “XO” is the pro-
portion of crossover, and “Full” and “Grow” are the proportions
of full and grow mutation. “Diff. from 6.5” is the difference be-
tween the actual final average length for this set of parameters and
the initial average length (6.5); negative values mean that the final
average length was less than 6.5. “Prop. of fit” is the proportion
of the individuals produced in the last generation that were fit.
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Figure 2: Average lengths over time for the five collections of
parameter settings leading to a final average length closest to the
initial average length (6.5).

tions has an average length that is nearly equal to that of
the initial uniform distributions, none of these distributions
is remotely uniform. They instead exhibit combinations of
features seen in earlier studies of using single recombina-
tion operators on this problem (see Fig. 1). In each case,
for example, we see a peak at length=5 which is due to full
mutation with depth 5, and the height of the peak is clearly
correlated to the full mutation probability.

4.3 Avoid bloat and shrinkage, maximizing correct
proportion

In the preceding example we looked for parameter settings
that avoided both bloat and shrinkage. It’s possible, how-
ever, that this goal was met at the expense of correctness. A
given collection of parameter settings could, for example,
generate the desired average size, but have a very low pro-
portion of fit individuals. This would in turn greatly reduce
the effective population size since most of the generated
individuals can never be selected for recombination.
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Figure 3: Final length distributions of the five parameter settings
whose final average length was closest to the initial average length
(6.5).

We can assess this by looking at the proportion of correct
individuals in the final generation for each set of parameter
values, and we indeed see that there are substantial differ-
ences among these five configurations (see Table 1), with
the values ranging from 0.19 to 0.43. It’s also clear that
increased probabilities of crossover correspond with in-
creased proportion of fit individuals. This is not surprising
since increased probabilities of crossover also correspond
to decreased probabilities of full mutation, and full muta-
tion is rarely going to produce a fit offspring in this prob-
lem [8]. Crossover on the other hand, has a high probability
of generating correct offspring, especially when given two
correct, fairly long individuals as parents [7].

Another approach to optimizing these two criteria would
be to start by identifying the configurations with high pro-
portion of fit individuals in the final generation, and then
choosing from those the parameter settings that also lead to
final average lengths near 6.5. The settings with the highest
proportion of fit individuals are those with high crossover
probabilities, but these configurations also have the highest
final average lengths (because high crossover probabilities
lead to bloat in this problem [7]). One of the best settings
is (0.8, 0.0, 0.2), which has a final average length of 7.98
(nearly 1.5 nodes longer than the original average of 6.5)
but a final proportion of fit individuals of 0.65 (about 0.22
higher than the proportion generated by (0.5, 0.3, 0.2)).

4.4 Maximize proportion of small solutions

Now consider the case where we want to minimize the av-
erage size of the fit individuals (i.e., those of the form 1(0)a

for a > 0). There are quite a few combinations of param-
eter settings that lead to average size of fit individuals that
are just above 3. The three smallest are (0, 0, 1), (0.1, 0,
0.9), and (0.2, 0, 0.8) with final average sizes of fit individu-



als 3.02, 3.04, and 3.07 respectively. This suggests that (for
this problem) the best way to make short correct solutions
is to primarily use grow mutation, with small amounts of
crossover being acceptable as well. Adding small amounts
of full mutation doesn’t lead to much bigger average sizes
(the average size for (0, 0.1, 0.9), for example, is 3.13) de-
spite the fact that depth mutation always generates strings
of length at least 1+D (or 6 in our case). This is probably
due to the fact that full mutation will very rarely generate
correct individuals in this problem.

If one wanted to further maximize the proportion of fit in-
dividuals, then the three candidate combinations have pro-
gressively increasing proportion of fit individuals; the high-
est is (0.2, 0, 0.8), which has a proportion of 0.41. If we
look more broadly, we find that (0.6, 0, 0.4) has a some-
what higher proportion of fit individuals after 50 genera-
tions (0.49), with the average size of fit individuals being
only slightly higher (3.54).

4.5 Find solutions of length 31 quickly

For our final example we will consider the goal of find-
ing solutions of the form 1(0)30 as quickly as possible.
There are a variety of motivations for this sort of goal,
but one might be that instead of only having a two level
fitness function, we might have a three level fitness func-
tion: Fitness 0 for individuals that don’t have the “one then
zeros” pattern, fitness 1 for individuals of the form 1(0)a,
a 6= 30, and fitness 2 for individuals of the form 1(0)30. If
we further assume that our run will terminate as soon as we
discover a target individual 1(0)30, then dynamics of such
a run are identical to the original one-then-zeros problem,
except they terminate upon discovery of a target individual.

Thus we can use our schema theory results to discover what
parameter settings lead most quickly to the discovery of
a target individual. Because of the infinite population as-
sumption, however, we may find that early in a run there
is a very small, but still positive, proportion of target in-
dividuals, yet with such small proportions the likelihood
is minuscule of actually generating a target individual that
quickly in a “real” (finite population) run. We will, there-
fore, look for the collection of parameter settings that first
achieves a proportion of target individuals exceeding 0.01.

Only four of our tested parameter settings ever obtain a pro-
portion of at least 0.01 target individuals (see Table 2), with
all crossover (1, 0, 0) reaching the target the most quickly
(in 26 generations). Adding small amounts of full mutation
still allows the goal to be satisfied, but even a proportion of
0.3 is enough to increase the number of generations by 12.
Grow mutation clearly interferes with this goal, as none of
the four parameter settings that achieve the goal have any
grow mutation.

XO Full Grow First gen to 0.01
1.0 0.0 0.0 26
0.9 0.1 0.0 28
0.8 0.2 0.0 32
0.7 0.3 0.0 38

Table 2: Parameter settings for the four configurations that even-
tually achieve a proportion of 0.01 target individuals 1(0)30 . The
first three columns are as in Table 1. “First gen to 0.01” is the first
generation for a given collection of parameter settings where the
proportion of target individuals exceeded 0.01.

If we relax the target proportion to 0.001 there are a to-
tal of 12 parameter settings that achieve this new goal. Of
these only four have non-zero grow mutation probabilities,
all of which are the lowest possible value (0.1). Similarly,
all but three of these 12 settings have crossover probabil-
ities exceeding 0.5, although one (0.3, 0.7, 0) managed to
reach the target of 0.001 in 21 generations despite the low
crossover probability. It’s interesting to note, however, that
two of the settings with non-zero grow mutation probabili-
ties ((0.7, 0.2, 0.1) and (0.6, 0.3, 0.1)) both reached the goal
more slowly (in 23 and 29 generations respectively) despite
having much high crossover probabilities.

It’s not terribly surprising that crossover is useful in in-
creasing the length of fit strings, since we’ve previously
seen that crossover can lead to bloat (presumably due to
replication accuracy) [7]. Further, one would expect both
mutation operators to at least slow down the process of gen-
erating a target string containing thirty 0’s, and thus having
length 31 (see [18] for details):

� Given a parent string of length l, full mutation gener-
ates (on average) a string of length roughly l=2+D, so
full mutation tends to generate shorter offspring once
l > 2D. Since D = 5 in our examples, full muta-
tion will tend to reduce the size of strings once their
lengths begin to exceed 10.

� Given a parent string of length l, grow mutation in the
one-then-zeros problems will generate (on average) a
string of length roughly l=2 + 3. Thus grow muta-
tion will tend to reduce the size of strings once their
lengths begin to exceed 6.

What’s perhaps more surprising is that grow mutation in-
terferes with the process of finding a target string so much
more than full mutation does. The likely reason is that
grow mutation is more likely to produce fit offspring than
full mutation (see [8, 18] for details). Because of the infi-
nite population assumption, generating unfit offspring has
no substantial effect on the dynamics of the system, as do-
ing so has no effect on the selection probabilities. Gen-
erating short, fit individuals, however, will change the dy-



namics by increasing the probability that short individuals
are selected as parents in the next generation. In our case
its likely that grow mutation creates a sufficient number of
short, fit strings that it can significantly hamper the process
of generating fit strings of length 31.

5 Conclusions and future work

It’s clear, then, that there is a fairly complex set of interac-
tions between these three recombination operators, making
it quite difficult to guess a priori what proportions of oper-
ations would aid in satisfying goals that might be important
in a particular domain. For this problem, however, we were
able to iterate the schema equations on many different com-
binations of operator proportions, generating a useful map
of the interactions.

In this paper the number of different combinations of pro-
portions was small enough to make manual searches for de-
sirable values feasible. With more operators, or a larger va-
riety of different proportions, the number of combinations
would quickly grow out of control, making it prohibitive to
iterate the equations for every combination and then search
the results by hand. Since this is essentially just another pa-
rameter optimization problem, one possibility would be to
apply a GA, although in many cases something simpler like
a hill-climber would probably also work. Another possibil-
ity (which could potentially dramatically reduce the num-
ber of different combinations that would need to be iter-
ated) would be to use factorial design of experiments [3].

Perhaps the key observation here is that there is clearly no
“best” set of operator proportions, and that the desirabil-
ity of a combination of operators will depend critically on
the specific goals. It is therefore particularly important that
we have tools that help us understand not only the general
interactions of operators, but also understand the more spe-
cific interactions in order to guide our choices.
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