
171GENETIC PROGRAMMING: POSTER PAPERS

172 GENETIC PROGRAMMING: POSTER PAPERS

Knowledge Based Evolutionary Programming for Inductive Learning
in First-Order Logic

Federico Divina and Elena Marchiori
Department of Mathematics and Computer Science

Vrije Universiteit, Amsterdam, The Netherlands
email: {divina,elena}@cs.vu.nl

Learning from examples in First-Order Logic (FOL),
also known as Inductive Logic Programming (ILP) ,
constitutes a central topic in Machine Learning, with
relevant applications to problems in complex domains
like natural language and molecular computational bi-
ology [Muggleton, 1999].

This paper introduces a knowledge based evolution-
ary program for inductive concept learning in (a frag-
ment of) FOL, called KBGL (Knowledge Based Ge-
netic Learner). KBGL adopts a Michigan’s approach,
which means that every individual represents one rule,
and individuals co-operate and compete in the evo-
lutionary process. The algorithm uses (a subset of)
the background knowledge for constructing the ini-
tial population of clauses, and uses novel generaliza-
tion/specialization operators, based on ILP concepts,
in the mutation process. At the end of the evolutionary
process, the best subset of clauses (a logic program) is
extracted from the final population by means of a fast
heuristic procedure. KBGL employs two restriction
biases which are controlled by the user: a language
bias for reducing the size of the search space, and a
stochastic bias on the background knowledge for re-
ducing the computational resources used during the
search. At each iteration the probabilistic tournament
selection mechanism is used for selecting a number of
individuals. Every selected individual undergoes the
mutation process, which consists of the repeated ap-
plication of one, among four, greedy operator until the
fitness of the individual increases (the fitness is in-
tended to be minimized), or a maximum number of
iterations is reached. If the fitness has increased after
the application of a mutation, then the last mutation
applied is retracted. As stated before, KBGL uses four
mutation operators, namely two operators are used for
generalizing a clause , while the other two are used for
the specialization of the clause . Every time an indi-
vidual has to be mutated, the choice of the particular
operator to be applied, is made taking into account

the features of the individual, in particular the num-
ber of positive and negative examples covered by the
individual. The chosen operator then will try to apply
the best mutation in order to reduce the fitness of the
individual.

The method is tested on two ILP case studies: learning
illegal white-to-move positions in the chess endgame
White King and Rook versus Black King, and learning
the mutagenic activity of nitroaromatic compounds.
On these problems, the algorithm yields results com-
parable to those obtained by state-of-the-art ILP algo-
rithms. For the KRK problem, the dataset consists of
5 training sets of a 100 examples, and one test set of
1000 examples. The background knowledge consists of
50 facts that describe the ordering of rows or columns
on a chess board. The average accuracy obtained was
of 93%, which is comparable to the results achieved
by FOIL, while it is slightly inferior to DOGMA’s.
The dataset regarding the mutagenic problem consists
of a set of 42 examples, 13 positive and 29 negative.
The background knowledge contains 12,203 elements
on atomic structure and bonding. The average ac-
curacy obtained was of 73%. In particular, for the
mutagenesis dataset, the use of the biases on both the
language and the background knowledge sensibly im-
proved the efficiency of the system, letting, however,
the system achieve good results. The results indicate
that knowledge based evolutionary programming pro-
vides an effective method for learning in FOL. More-
over, experiments on datasets containing noise indicate
that the algorithm is capable of handling also imper-
fect data.

References

[Muggleton, 1999] Muggleton, S. (1999). Inductive
logic programming: issues, results and the challenge
of learning language in logic. Artificial Intelligence,
114:283–296.

173GENETIC PROGRAMMING: POSTER PAPERS

 Estimating Stock Price Predictability Using Genetic Programming

Minglei Duan

Dept. of Electrical and Computer Engineering
Marquette University

PO Box 1881, Milwaukee, WI 53201-1881

Richard J. Povinelli

Dept. of Electrical and Computer Engineering
Marquette University

PO Box 1881, Milwaukee, WI 53201-1881

A new method that quantifies the predictability of a
stock’s price is presented. This new method overcomes
some problems with previous approaches to stock price
predictability. The new method shows which stocks are
more predictable, and hence can help in making
investment decisions. Genetic Programming is used as the
modeling tool. Preliminary experiments are conducted to
show the advantages of this method.

Time series predictability is a measure of how well future
values of a time series can be forecasted. Measuring the
predictability of a time series is important because it can
tell whether a time series can be predicted before making
a prediction. Therefore prediction of time series with low
predictability, such as a random walk time series, can be
avoided. A good metric for time series predictability also
provides a measure of confidence in the accuracy of a
prediction. This is especially helpful to minimize the risk
when making an investment decision.

An η -metric was introduced by Kaboudan [1], which
measures the probability that a series is GP -predictable
using Genetic Programming [2]. By design, the computed
metric should approach zero for a complex signal that is
badly distorted by noise. Alternatively, the computed
metric should approach one for a time series with low
complexity and strongly deterministic signal.

This metric is based on comparing two outcomes: the best
fit model generated from a single data set before shuffling
with the best fit model from the same set after shuffling.
The shuffling process is done by randomly scrambling the
sequence of an observed data set using Efron’s bootstrap
method. Specifically, the unexplained variations, which
are measured by the sum of squared error before and after
shuffling of a time series are compared.

While applying the η-metric to estimate stock price
predictability, two main problems have been observed.
First, the value of the metric largely depends on the length
of the time series. The source of this effect is mainly due
to the nonstationarity of stock price time series, and the
nonstationarity becomes more evident as the sample size
increases. The second problem is a derivation of the first
one. For a long-term stock series, the value of the η -
metric will be distributed in a very narrow range. Hence,
it largely reduces the resolution of the metric.

These problems are resolved by using a shifting window,
so that the η-metric can be estimated on the same sample
size, as long as the window length is fixed. By changing
the window length, the range of the metric can be
adjusted. The overall predictability of a time series can be
estimated by calculating the average η over all windows.

In order to test the new metric, it is applied to three
different kinds of time series: a deterministic time series
(Mackey-Glass map), a stock price time series, and a
random walk time series. It can be seen clearly from the
experiments that different kinds of times series yield
significantly different results (Table 1).

Table 1: Experimental results

Time series Predictability

Mackey-Glass 0.996

Random Walk 0.140

GE Stock 0.485

This method has been shown to be able to distinguish
stock price time series and random walk time series
effectively. Future work needs to be done comparing
more different stocks to test whether the metric can
quantify the predictability accurately. This method may
be helpful in making investment decisions.

References

[1] Kaboudan, M. 1998. A GP approach to distinguish
chaotic from noisy signals. Genetic Programming 1998:
Proceedings of the Third Annual Conference, San
Francisco. CA: Morgan Kaufmann, pp. 187-192

[2] Koza, John 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press.

[3] Kaboudan, M. Genetic Programming Prediction of
Stock Prices, Computational Economics, to appear.

174 GENETIC PROGRAMMING: POSTER PAPERS

A new methodology for the Placement and Routing problem based on
PADGP

F. Fernández

Centro Universitario de Mérida
Universidad de Extremadura

C/ Calvario, 4. 06800 Mérida. Spain
fcofdez@unex.es

J.M Sánchez

Escuela Politécnica
Universidad de Extremadura

Avda de la Universidad. Cáceres.
Spain.

M. Tomassini

Institut d'Informatique
Université de Lausanne

Switzerland

Abstract
We present results from the application of a new
methodology based on Parallel and Distributed
Genetic Programming (PADGP). It allows us to
automatically perform the placement and routing
of circuits on reconfigurable hardware. For each
of the problems we have dealt with, the
methodology finds several different solutions.

1 DESIGN BASED ON FPGAS

Field Programmable gate arrays (FPGAs) are powerful
devices for implementing complex digital systems.
FPGAs are arrays of prefabricated logic blocks and wire
segments with user-programmable logic and routing
resources. When programming an FPGA, we previously
obtain a circuit description via logic synthesis. We take
this description and we map and convert it into the
modules and routing resources available in FPGAs.
Bearing in mind that both logic blocks and routing
resources are predefined in an FPGA chip, circuits must
be laid out within it.

2 METHODOLOGY.

As we are using GP, it is customary to codify the problem
by means of trees. Each circuit to be placed and routed
should thus be coded as a tree. Figure 1 graphically
depicts the way circuits are encoded as trees. In
[Fernández et al 2000] we can find a more detailed
description of the encoding process.

Figure 1

3 RESULTS

Figure 2 graphically depicts the circuits that we have
tested to see if the methodology is capable of placing and

routing circuits. Figure 3 shows one of the solutions that
PADGP finds for this benchmark problem

Figure 2

Figure 3

We have designed experiments using several populations,
a migration rate of 1 individual per generation and
random communication topology. We have performed
several trials each time with a different number of
individuals or populations. In figure 4 we can see that
using 2 or 5 population we get better results than using
only 1 when the total number of individuals is 500.

Figure 4

4 REFERENCES

[Fernández et al 2000] F. Fernández, J.M. Sánchez. M. Tomassini.
Proceedings XV Design of Circuits and Integrated Systems 2000.

i i i ii
i

i
i

i
i i i ii

i

i
i

i

C lb
1 ,0

S w
1 ,0

C lb
2 ,0

S w
2 ,0

C lb
3 ,0

S w
3 ,0

C lb
4 ,0

S w
4 ,0

C lb
5 ,0

S w
5 ,0

C lb
6 ,0

S w
6 ,0

C lb
7 ,0

S w
7 ,0

C lb
8 ,0

S w
8 ,0

C lb
1 ,1

S w
1 ,1

C lb
2 ,1

S w
2 ,1

C lb
3 ,1

S w
3 ,1

C lb
4 ,1

S w
4 ,1

C lb
5 ,1

S w
5 ,1

C lb
6 ,1

S w
6 ,1

C lb
7 ,1

S w
7 ,1

C lb
8 ,1

S w
8 ,1

C lb
1 ,2

S w
1 ,2

C lb
2 ,2

S w
2 ,2

C lb
3 ,2

S w
3 ,2

C lb
4 ,2

S w
4 ,2

C lb
5 ,2

S w
5 ,2

C lb
6 ,2

S w
6 ,2

C lb
7 ,2

S w
7 ,2

C lb
8 ,2

S w
8 ,2

C lb
1 ,3

S w
1 ,3

C lb
2 ,3

S w
2 ,3

C lb
3 ,3

S w
3 ,3

C lb
4 ,3

S w
4 ,3

C lb
5 ,3

S w
5 ,3

C lb
6 ,3

S w
6 ,3

C lb
7 ,3

S w
7 ,3

C lb
8 ,3

S w
8 ,3

C lb
1 ,4

S w
1 ,4

C lb
2 ,4

S w
2 ,4

C lb
3 ,4

S w
3 ,4

C lb
4 ,4

S w
4 ,4

C lb
5 ,4

S w
5 ,4

C lb
6 ,4

S w
6 ,4

C lb
7 ,4

S w
7 ,0

C lb
8 ,4

S w
8 ,4

C lb
1 ,5

S w
1 ,5

C lb
2 ,5

S w
2 ,5

C lb
3 ,5

S w
3 ,5

C lb
4 ,5

S w
4 ,5

C lb
5 ,5

S w
5 ,5

C lb
6 ,5

S w
6 ,5

C lb
7 ,5

S w
7 ,1

C lb
8 ,5

S w
8 ,5

C lb
1 ,6

S w
1 ,6

C lb
2 ,6

S w
2 ,6

C lb
3 ,6

S w
3 ,6

C lb
4 ,6

S w
4 ,6

C lb
5 ,6

S w
5 ,6

C lb
6 ,6

S w
6 ,6

C lb
7 ,6

S w
7 ,2

C lb
8 ,6

S w
8 ,6

C lb
1 ,7

S w
1 ,7

C lb
2 ,7

S w
2 ,7

C lb
3 ,7

S w
3 ,7

C lb
4 ,7

S w
4 ,7

C lb
5 ,7

S w
5 ,7

C lb
6 ,7

S w
6 ,7

C lb
7 ,7

S w
7 ,3

C lb
8 ,7

S w
8 ,7

C lb
1 ,8

S w
1 ,8

C lb
2 ,8

S w
2 ,8

C lb
3 ,8

S w
3 ,8

C lb
4 ,8

S w
4 ,8

C lb
5 ,8

S w
5 ,8

C lb
6 ,8

S w
6 ,8

C lb
7 ,8

S w
7 ,0

C lb
8 ,8

S w
8 ,8

C lb
1 ,9

C lb
2 ,9

C lb
3 ,9

C lb
4 ,9

C lb
5 ,9

C lb
6 ,9

C lb
7 ,9

C lb
8 ,9

C lb
9 ,6

C lb
9 ,7

C lb
9 ,8

C lb
9 ,9

C lb
9 ,0

C lb
9 ,1

C lb
8 ,8

S w
8 ,8

C lb
8 ,9

S w
8 ,9

C lb
9 ,2

C lb
9 ,3

C lb
9 ,4

C lb
9 ,5

 IN

O U T

IN

IN

IN

Classic 500

Random 2-250

Random 5-100

120000

100000

80000

60000

40000

20000

0 500000 1000000 1500000 20000000 2500000 3000000 3500000 4000000

175GENETIC PROGRAMMING: POSTER PAPERS

EvolVision – an Evolvica visualization tool

Tim Fühner
Department of Computer Science II
University of Erlangen-Nuremberg

Martensstr. 3
D-91058 Erlangen, Germany

tim.fuehner@stud.informatik.uni-erlangen.de

Christian Jacob
Department of Computer Science

The University of Calgary
2500 University Drive N.W.

Calgary, Alberta T2N 1N4, Canada
jacob@cpsc.ucalgary.ca

1 INTRODUCTION

EvolVision is an evolutionary algorithm visualization
tool, designed for the Evolvica framework—a Mathe-
matica library, which provides notebooks and routines
for a wide range of evolutionary algorithms [Jac01].
Owing to an open architecture, EvolVision is not lim-
ited to the Evolvica framework or any specific pro-
gramming language or computer platform but can be
used in various environments [Füh00].

The visualization tool aims at applying and explor-
ing standard visualization techniques, being easily
extendible by new (experimental) visualization tech-
niques, and visualizing different levels of the evolu-
tionary algorithm. It gives a coarse overview of an
algorithm’s behavior, displays detailed views of indi-
viduals and their properties, and provides fine grained
views of the algorithm’s data structures.

2 ARCHITECTURE

EvolVision is implemented in the Java programming
language and designed as a client/server application.
Thus the visualized program has to undergo only
marginal modifications and the visualization tool has
no remarkable influence on its runtime behavior. An-
other benefit is its independence from a specific plat-
form or operating system.

The communication between EvolVision and the vi-
sualized program is realized by a protocol language,
which uses a grammar similar to the Mathematica pro-
gramming language [Wol96]. This language is also
used to store and review former experiments.

EvolVision is a core program that can be adjusted to
the needs of the specific visualization task. Its flex-
ibility is achieved by a plug-in architecture that al-
lows easy extension of the visualization features. Cur-
rently there are four plug-in categories: 1. in-line vi-

sualization plug-ins (i.e., visualization of individuals
on the main canvas), 2. singled out visualization plug-
ins (i.e., visualization of individuals in separate win-
dows), 3. population-wide visualization plug-ins, and
4. experiment-wide visualization plug-ins.

3 VISUALIZATION FEATURES

EvolVision’s main canvas provides an overview over
the whole evolutionary algorithm. It displays the pop-
ulations of each generation and the fitness value of the
best individual and the average fitness. A population
consists of its individuals, each of which is represented
by its fitness value and a schematic, genotypic, or phe-
notypic view. All representations are implemented as
plug-ins.

Another core feature of EvolVision is the interactive
generation of pedigree diagrams. The descent of indi-
viduals is depicted on demand. In order to identify the
differences between the genomes of an offspring and its
parents, the effect of genetic operators can additionally
be highlighted in an individual’s genotypic view.

REFERENCES

[Füh00] Tim Fühner. EvolVision – Visualization
of Artifical Evolution in the Evolvica
Framework. Studienarbeit, Department of
Computer Science II, University Erlangen-
Nuremberg, Erlangen, 2000. see also:
http://www.cpsc.ucalgary.ca/~jacob/
Evolvica/EvolVision.

[Jac01] Christian Jacob. Illustrating Evolutionary
Computation with Mathematica. Morgan
Kaufmann, San Francisco, CA, 2001.

[Wol96] S. Wolfram. The Mathematica Book. Wolfram
Media/Cambridge University Press, Cam-
bridge, MA, 3. edition, 1996.

176 GENETIC PROGRAMMING: POSTER PAPERS

An Engineering Approach to Evolutionary Art

J.I. van Hemert

jvhemert@cs.leidenuniv.nl

Leiden Institute for Advanced Computer Science

Leiden University, The Netherlands

M.L.M. Jansen

mjansen@cs.leidenuniv.nl

Abstract

We present a general system that evolves art

on the Internet. The system runs on a server

which enables it to collect information about

its usage world wide; its core uses operators

and representations from genetic program-

ming. We show two types of art that can

be evolved using this general system.

In evolutionary art we strive for a system that creates

art using the principle of evolution: The survival of

the �ttest, or in this case, the survival of the most

beautiful. Often this goal is achieved using an evol-

utionary algorithm of some form. All systems share

a common feature: Human intervention to determine

what is nice and what is ugly, in other words, a human

�tness function.

The evolutionary algorithm used here is a crossing

between a genetic program and a generic evolutionary

algorithm. Most of its features are from genetic pro-

gramming, but it does not share the main paradigm

of creating executable material that can be applied to

many di�erent inputs. We point the reader to (van

Hemert and Jansen, 2001) for all the details about the

implementation of the system.

Most evolutionary art systems run on a single machine,

which, in itself, is not a striking property, but the main

restrictions these systems have is that they interact

solely with the person behind the same machine. Even

if such a system would be popular its output will not

go beyond the user and her machine. Here we strive

for a system that is accessible for many people at the

same time, gathering information about the decisions

these people make. All of this is made possible through

the Internet and the common gateway interface (cgi).

The fact that the system is on-line all of the time

helps us, the researchers, to get the assistance of many

people. To be able to make statements on these de-

cisions we require a large amount of data, because

this type of research is based largely on subjective de-

cisions. Normally we would have to search actively for

subjects that are willing to assist in these experiments,

but here they can voluntarily and anonymously visit

the page on the Internet and use the system.

If we want to gain information on what the average

person likes and dislikes, we need to record the actions

of many visitors. Hence, we connect the system to

a database that stores the paintings that have been

presented to users that have visited. Using this we are

slowly building up a gene bank of evolved art.

Although the gene bank of images is constantly chan-

ging we provide pieces of art that are currently ranked

high.

Figure 1: A Mondriaan (left) and mandala (right)

We invite the reader to visit our system on the Internet

to fully experience its dynamics, it can be found at

http://www.liacs.nl/~jvhemert/eartweb/

References

van Hemert, J. and Jansen, M. (2001). An engineering

approach to evolutionary art. Technical Report ?,

Leiden Institute for Advanced Computer Science,

Leiden University.

177GENETIC PROGRAMMING: POSTER PAPERS

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5

Figure 1: Path to be predicted

Fault-Tolerant Computing with N-Version Genetic Programming

Kosuke Imamura, James A. Foster

Initiative for Bioinformatics and Evolutionary Studies (IBEST)
Computer Science Dept. University of Idaho

Moscow, ID 83844-1010
{kosuke,foster}@cs.uidaho.edu

Abstract
We applied N-version genetic programming
(NVGP) to a path prediction problem, and
compared the results with a single version GP.
Statistics from the experiment suggest that
NVGP is a viable method to increase reliability,
which reduces output variance and thereby
expected meantime to system failuer.

1 INTRODUCTION
Programs inferred by sample training based methods such
as genetic programming are likely to be incorrect, unless
the sampling is exhaustive [1]. To cope with this
dilemma, we developed an redundant module software
system with an isolated island model GP, and applied it to
predict the next location of a moving object. A
fundamental assumption of N version programming is
that independent modules will have uncorrelated faults, so
that a composite system will be more reliable by avoiding
simultaneous faults in different modules [2].

2 EXPERIMENT
Our NVGP consists of 5 GPs and one master. The master
averages each GP’s prediction at time ti to predict the next
location of a moving object at time ti+1. After the
prediction is output, the master receives the actual
location from an external source as feedback. If a GPs
prediction error is beyond a pre-determined threshold, the
GP is retrained using the 5 most recent actual locations
received by the master. The moving object traverses the
hand made path shown in Figure 1.

Figure 2 plots the prediction errors margin of NVGP and
a single version GP. The plot band of NVGP is narrower
than the single GP band with statistcal significance.

Table 1 shows the increased reliability of NVGP over a
single version measured in terms of number of prediction
errors on the entire path. All the NVGP predictions use a
0.05 error threshold.

Error Threshold Reliability Increase

0.02 22.9%

0.03 163.2%

0.04 332.0%

 Table 1: Reliability Increase by NVGP

3 CONCLUSIONS
The NVGP predicts the target path with a statistically
significantly narrower error band than a single GP system,
even though the NVGP and the single GP produce the
same mean of errors. This indicates a longer meantime to
system failure, and suggests a degree of fault in the
isolated island NVGP.

References
[1] Kosuke Imamura, James A. Foster and Axel Krings,
“The test vector problem and limitations to evolving
digital circuits”, Proc. NASA/DoD Workshop on
Evolvable Hardware (EH), IEEE Press, pp. 75-80, 2000
[2] Avizienis, A. and J.P.J. Kelly, “Fault Tolerance by
Design Diversity: Concepts and Experiments”, IEEE
Computer, vol. 17 no. 8, pp. 67-80, August 1984

-0.1

-0.05

0

0.05

0.1

1 11 21 31 41 51

-0.1

-0.05

0

0.05

0.1

1 11 21 31 41 51

NVGP Single Version GP

Figure 2: Prediction Error Plot

178 GENETIC PROGRAMMING: POSTER PAPERS

Network Structure Oriented Evolutionary Model{Genetic Network
Programming{and Its Comparison with Genetic Programming

Hironobu Katagiri

Dept. of Electrical and

Electronic Systems Eng.

Kyushu Univ., 6-10-1,

Hakozaki, Higashi-ku

Fukuoka 812-8581, Japan

Kotaro Hirasawa

Dept. of Electrical and

Electronic Systems Eng.

Kyushu Univ., 6-10-1,

Hakozaki, Higashi-ku

Fukuoka 812-8581, Japan

Jinglu Hu

Dept. of Electrical and

Electronic Systems Eng.

Kyushu Univ., 6-10-1,

Hakozaki, Higashi-ku

Fukuoka 812-8581, Japan

Junichi Murata

Dept. of Electrical and

Electronic Systems Eng.

Kyushu Univ., 6-10-1,

Hakozaki, Higashi-ku

Fukuoka 812-8581, Japan

A large number of studies have been made on the plan-

ning of real mobile robots and virtual agents. The

planning, generating the behavior sequences, is gen-

erally complex and hard to design for us. To over-

come these problems, we need to make the planning

without human. Many studies on automatic design of

the behavior sequences, therefore, have been reported.

There are many kinds of such studies and especially

the evolutionary optimization techniques, such as Ge-

netic Programming (GP) and Evolutionary Program-

ming (EP), stand out. In this paper, the evolution-

ary optimization technique is also used to generate

the behavior sequences for agents in virtual worlds.

The distinguished point of this study is that it bases

on the network structure to express the behavior se-

quences, while GP bases on the tree structure. To

distinguish the proposed method in this paper from

conventional GP, we call the proposed method Genetic

Network Programming (GNP). The comparative sim-

ulations are executed using the tileworld environment,

which is famous for as a test bed problem, to show

the di�erences between GNP and GP. The tileworld

is two-dimensional latticed world. There are agents,

tiles, holes and barriers. In this world, the goal of

these agents is to drop all the tiles into the holes.

GNP is especially developed to express the behav-

ior sequences of the agents, and is based on the net-

work structure. Tree based structure well describes the

knowledge and rules, but it seems to be the structure

consisted of static knowledge and rules. The
exible

behavior may be obtained by using the past behaviors

indirectly rather than by using only the current sit-

uation or using the past behaviors intentionally. Al-

most all the studies insisted on the determination of

the agent's behavior from the root node or start node

every each agent's behavior. On the contrary, GNP

won't determine the agent's behavior from the speci-

�ed node, that is, all behaviors are considered to be

sequences. This is the main reason why GNP adopts

the network structure.

GNP is composed of many and various nodes. These

nodes are roughly classi�ed into two kinds of nodes:

JUDGEMENT NODE and PROCESSING NODE. The former

nodes are still more classi�ed into some kinds of con-

crete functional nodes, and in the same way the latter

nodes are. The nodes belong to JUDGEMENT NODE de-

scribe some kinds of judgement, e.g. "Is there some-

thing in front of the agent?", and the nodes belong to

PROCESSING NODE describe some kinds of action, e.g.

"Move forward". The behavior sequence is described

by connecting these nodes with each other. A token

that shows the current node moves through the net-

work, and the transfer rule of the token is determined

by the consequent of judgement and action. Take care,

the token starts from the start node at the beginning,

but subsequent transfer depends only on the conse-

quent of judgement and action. In this way, the agents

behave according to the network
ow.

The evolutionary operator such as crossover and muta-

tion are used to evolve the GNP structure. These oper-

ators are applied almost the same way in Genetic Algo-

rithm, and applied only to the connection between the

nodes. In the other words, the functions of the nodes

are never changed but the connections are changed.

From the simulations, although it is di�cult to com-

pare completely fair between GNP and GP because

of the di�erences of the structure and evolutionary

method, better results were achieved with GNP than

with GP in three points, for this particular problem

and the parameters tested. The �rst is the memory

e�ciency, the second is quick convergence and the last

is the high success rate.

179GENETIC PROGRAMMING: POSTER PAPERS

Controlling the Genetic Programming Search

Emin Erkan Korkmaz

Department of Computer Engineering

Middle East Technical University

Ankara-Turkey

korkmaz@ceng.metu.edu.tr

G�okt�urk �U�coluk

Department of Computer Engineering

Middle East Technical University

Ankara-Turkey

ucoluk@ceng.metu.edu.tr

There has been a big interest in inducing classes of

grammars in the area of machine learning. The sym-

bolic nature of the grammar induction problem makes

it suitable for the GP-approach. However the straight-

forward application of the GP on Context Free

Grammar Induction problem fails to generate a sat-

isfactory solution. In this paper a new approach is pre-

sented where the aim is to formalize a control module

for GP which would direct the search only among well-

�t grammars.

GP is an induction method used to search over a huge

state space consisting of structured representations.

Induction of context-free grammars can be considered

as a suitable symbolic task for the GP method. The

left-hand side of a rewrite rule in a grammar can be

treated as a function which is composed of the right-

hand side elements of the same rule. Thus, it is pos-

sible to represent context-free grammars as as struc-

tured trees. When the GPmethod is used in a straight-

forward manner for the CFG-induction problem, the

output grammar induced is far away from a reasonable

abstraction over the training sentences. It seems that

the limitations for the convergence appear due to the

nature of the problem. The interdependency among

subparts of a context free grammar is high. That is,

the contribution of a part of a grammar to the �t-

ness function heavily depends on some other subparts.

Hence the risk of destroying the interdependent over-

all structure and causing a dramatic fall of the �tness

value after a genetic operation is quite high.

It can be claimed that the above problem is based on

the limitations of the tree representation used in GP.

The tree abstraction is capable of representing sub-

parts of a problem and how these subparts are con-

nected to each other. However it fails to capture the

global information based on the interdependency rela-

tion existing in a grammar, hence it becomes possible

to destroy this global structure throughout a genetic

operation ending up with invalid o�springs that can-

not parse any of the training sentences at all.

The control module proposed tries to overcome the

problem by using a representation that would capture

the dependency information in a grammar. In order

to achieve this goal the chromosomes are transformed

to single points in an n-dimensional space which will

be used by the control module. It is aimed that the

control module would use these atomic representations

and would try to determine prototypes for the valid

and invalid elements in the domain. Then, these pro-

totypes can be feeded in the genetic search and the

genetic search can use them to determine the conse-

quences of a genetic operation beforehand and perform

the right genetic operations that would keep the search

only among the well-�t elements.

The transformation of the chromosomes is carried out

by mapping terminal elements to base vectors and

non-terminal elements to vectors obtained by adding

the vectors of their arguments. On the other side,

the interaction between the genetic search and the

control module is formalized as follows: The genetic

search is started and for each chromosome that ap-

pears, the corresponding vector representation and its

�tness value are sent to the control module. After col-

lecting a certain amount of data, the control module

uses a classi�cation algorithm and forms prototypes

for the valid and invalid chromosomes. After the pro-

totypes are determined, before each genetic operation

di�erent alternatives are analyzed and the best alter-

native that is the one that would produce o�springs

closest to the valid prototypes is chosen.

Several trials have been carried out and it has been

observed that the controlled genetic search can out-

perform the straight-forward application of GP on the

problem.

180 GENETIC PROGRAMMING: POSTER PAPERS

Using Heuristics Related to Cellular Automata Behavior Forecast to
Improve Genetic Search for a Grouping Task

Gina M. B. Oliveira

Univ. Presbiteriana Mackenzie,
R. da Consolação 896, 5º Andar,

São Paulo, SP - Brazil

Pedro P. B. de Oliveira

Univ. do Vale do Paraíba,
Av. Shishima Hifumi 2911,

São José dos Campos, SP - Brazil

Nizam Omar

Inst. Tecnológico de Aeronáutica,
Praça Marechal Eduardo Gomes 50,
São José dos Campos, SP - Brazil

Cellular automata (CA) are discrete complex systems
which possess both a dynamic and a computational
nature. Based only upon their definition, it is not possible
to forecast their dynamic behavior. Various studies in the
context of one-dimensional CA have been carried out on
defining parameters, directly obtained from their
transition rule, which have been to shown to help forecast
their dynamic behavior. From the analysis of the
parameters published in the literature, and also from
others investigated by the authors of this paper, we
selected a set of five parameters (Oliveira, 1999, 2001).

Various investigations have been carried out on the
computational power of CA, with concentrated efforts in
the study of 1D CA and their computational abilities. One
of the approaches is the use of Genetic Algorithms (GA)
to look for CA with a predefined computational behavior
(Mitchell, 1994). Our approach being the use of the
parameter set as an auxiliary metric to guide the GA
search. We rely on a simple GA, similar to that used in
(Mitchell, 1994), with the appropriate modifications.

We show here the experiments involving an adaptation of
the Ordering Task (Sipper, 1998) which yielded what we
named the Grouping Task (GT) (Oliveira, 1999): Let us
consider an arbitrary initial configuration (IC) of a lattice
formed by N0 0s and N1 1s, randomly distributed. The CA
transition rule is said to be able to solve the GT if, after T
time steps, it still has N0 0s and N1 1s, but distributed in a
such way that from the left to the rightmost cell there can
only be one transition from 1 to 0.

The environment built to evolve the GT used radius 2 CA,
using a population of 100 individuals, evolving during 50
generations. Elitism was used at a rate of 20%. One-point
crossover was used at a rate of 80%. Mutation was
applied at a rate of 2% per bit. Each individual evaluation
was obtained, at each generation, out of testing the
performance of the automaton in 100 different ICs, which
accounted also for partial solutions. The final efficacy of
the GA run was measured by testing the performance of
the best rule found in 104 different ICs, without
considering partial solutions. The GA environment was
modified so as to incorporate the parameter-based
heuristic. Basically, the parameter-based heuristic is
coded as a function (referred to as Hp), which returns a
value between 0 and 100, depending on the rule’s

parameter values. Hp is then used to bias the GA
operation, in the following ways. The fitness function of
rule was made by the weighted average of the efficacy in
100 ICs and the function Hp. The reproduction was
biased: in order to select the crossover point and the bits
to be mutated, various attempts were made; only those
that generated rules with high Hp value were selected.

The experiments was performed for three different sizes
of lattice: 9, 19 and 49 cells. A series of GA runs was
performed for each size. The introduction of the
parameter-based heuristic entailed a substantial
improvement in the best rule found: 29%, 73% and 119%
for lattice 9, 19 and 49, respectively (Oliveira, 1999).
Other computational tasks were studied in our parameter-
based heuristic approach (Oliveira, 2000). However, the
current experiments involving GT differ from those
experiments precisely in the fact that, since it is a new
task in the literature, our approach was left without any a
priori knowledge for usage as heuristic information. In
spite of that, the results were extremely encouraging, a
clear suggestion that even with no previous knowledge
about a task, the heuristic based on the forecast
parameters alone, can still guide the GA search towards
higher efficiency regions of the search space.

References

M. Mitchell, P. Hraber and J. Crutchfield (1994).
Evolving Cellular Automata to Perform Computations:
Mechanisms and Impediments. Physica D, 75:361-391.

G.M.B. Oliveira (1999). Dinamics and Evolution of One-
Dimensional Cellular Automata. PhD Thesis, Aeronautics
Institute of Technology, SP, Brazil. (In Portuguese).

G.M.B. Oliveira, P.P.B. de Oliveira and N. Omar (2000).
Evolving solutions of the density classification task in 1D
cellular automata, guided by parameters that estimate
their dynamic behaviour. Artificial Life VII, MIT Press.

G.M.B. Oliveira, P.P.B de Oliveira and N. Omar
(2001).Guidelines for Dynamics-Based Parameterization
of 1D Cellular Automata Rule Spaces. Complexity, 6 (2).

M. Sipper (1998). A simple Cellular Automata that solves
the density and ordering problems. International Journal
of Modern Physics, 9 (7).

181GENETIC PROGRAMMING: POSTER PAPERS

Building a Taxonomy of Genetic Programming

Peter Martin

School of Computer Science,

Birmingham University,

Birmingham, B152TT, England

E-mail: peter.martin@marconi.com

Abstract

There is still a lack of theoretical guidance on

the selection of operational parameters and

only a handful of empirical studies have pro-

vided help with parameter selection, usually

for a limited set of problems. By building a

taxonomy of GP it is envisaged that further

guidance will emerge to assist users of GP to

choose appropriate parameters.

1 THE APPROACH OF THIS

CONTRIBUTION

The primary aim of this work is to create a taxonomy

by analysing the results of previous experiments and

systems. It is then hoped that the application of the

taxonomy to new problems will help workers in GP

arrive at suitable parameter sets. It is noted that there

is little in the way of a taxonomic analysis of GP in

the literature.

This contribution starts by considering a variety of

problems that have been tackled using GP. For each

problem a number of attributes are collected and an-

alyzed. In general the attributes include those which

are commonly discussed in the GP literature. In addi-

tion, the problems themselves are analyzed to identify

some more general attributes that may be of use when

constructing the taxonomy. Once identi�ed, the at-

tributes can be used to construct the groups (taxa)

and to separate these groups into subgroups (taxons).

A number of key characteristics of a taxonomy

are identi�ed and the resultant taxonomy evaluated

against these criteria.

The attributes identi�ed are placed into one of three

high level categories. These three categories re�ect the

process of decomposition often encountered in problem

solving and were chosen to re�ect the process of solving

a problem using GP.

2 A PRELIMINARY TAXONOMY

The attributes analysed so far have been used to con-

struct a taxonomy, where the x axis represents the 3

main categories of attributes. Within each category

the major attributes are placed. Where appropriate

these have �rst been grouped together into distinct

taxa, and these taxa then further separated into tax-

ons. This taxonomy is shown in �gure 1.

External GP Specific Results

Problem Category

Formal Spec

Problem Type
Continuous
Linear

Fitness Cases

Input/Output
Input Data
Output Data

Multi Objective

Fitness
Implementation

Primitives
Terminals
Functions
Number
Abstraction

ADF

Polymorphism

Data Typing

Population size

Generations

Representation

Size

Shape

Success

EffortOperators

Xover
Mod
Std

Copy
Mod
Std

Mutation
Mod
Std

Creation

Parsimony

Figure 1: A Taxonomy of genetic programming

At the time of writing, over 130 examples of GP have

been identi�ed, and are being analysed, though the

data set is not complete for these examples. The col-

lection and analysis is ongoing work.

Acknowledgment

This work was sponsored by Marconi Communications

Limited.

182 GENETIC PROGRAMMING: POSTER PAPERS

Discovering Fuzzy Classification Rules with Genetic Programming and Co-Evolution

Roberto R. F. Mendes Fabricio de B. Voznika Julio C. Nievola Alex A. Freitas

PUC-PR
PPGIA - CCET

Av. Imaculada Conceição, 1155,
Curitiba - PR, 80215-901. Brazil
{alex, nievola}@ppgia.pucpr.br
http://www.ppgia.pucpr.br/~alex

+55 41 330-1669

CEFR-Miner (Co-Evolutionary Fuzzy Rule
Miner) is a data mining system for the classification
task. It uses two evolutionary algorithms: a genetic
programming (GP) algorithm evolving a population of
fuzzy rule sets and a (1+5)-evolution strategy (ES)
evolving membership function definitions. These
algorithms co-evolve in order to generate a fuzzy rule
set and a set of membership function definitions that
are well adapted to each other.

CEFR-Miner can handle both categorical (nominal)
and continuous attributes. For continuous attributes,
instead of using crisp conditions such as (Age < 25),
our system represents these attributes using fuzzy
conditions like (Age = young), where young is a fuzzy
linguistic term. Fuzzy linguistic terms are intuitively
more comprehensible to the end user, and they
overcome the sudden and unnatural transition between
categories associated with crisp conditions.

Fig. 1 GP individual with 5 rule antecedents

Each GP individual corresponds to a set of fuzzy
rule antecedents (IF part) encoded in disjunctive
normal form (DNF) – see e.g. Fig. 1. (All rules have
the same consequent, i.e. THEN part, which does not
need to be encoded in the individual.) Each rule
condition represents an attribute-value pair <A = V>. If
the condition is fuzzy the definitions of the
membership functions required to interpret it are
provided by a (1+5)-ES algorithm. Hence, the
membership function definitions of the ES individual
are used to evaluate the fitness of GP individuals.

The (1+5)-ES algorithm evolves a “population”
of a single individual using only mutation (and not
crossover). This single individual represents a set of
membership functions definitions for all linguistic
terms of all fuzzy attributes. The fitness of this ES
individual is based on the average fitness of several GP
individuals (i.e. fuzzy rule sets) interpreted with the
membership function defined by the ES individual,
rather on the fitness of a single GP individual. This
improves the robustness of the ES’s fitness evaluation.

CEFR-MINER was evaluated on five public
domain datasets and the results were compared to BGP
[Rouwhorst & Engelbrecht 2000] and ESIA [Liu &
Kwok 2000]. Table 1 shows the accuracy rate on the
test set for the three systems. (The results for CEFR-
MINER were obtained by running a 5-fold cross-
validation procedure. The results for BGP and ESIA
were taken directly from the above references.) The
numbers between brackets are standard deviations.

Table 1: Accuracy rate (on test set)
Data set CEFR-

MINER
ESIA BGP

CRX 84.7
(±3.5)

77.39
(±0.23)

N/A

Heart
(statlog)

82.2
(±7.1)

74.44
(±0.26)

N/A

Ionosphere 88.6
(±6.0)

N/A 89.2

Iris 95.3
(±7.1)

95.33
(±0.03)

94.1

Hepatitis 87.5
(±13.1)

N/A N/A

References
J.J. Liu & J.T. Kwok (2000) An Extended genetic rule

induction algorithm. Proc. Congress on Evolutionary
Computation (CEC-2000). IEEE.

S.E. Rouwhorst & A.P.Engelbrecht (2000) Searching
the forest: using decision tree as building blocks for
evolutionary search in classification. Proc. Congress
on Evolutionary Computation (CEC-2000). IEEE.

183GENETIC PROGRAMMING: POSTER PAPERS

Evolution of Program Size in Cartesian Genetic Programming

Julian Miller
School of Computer Science, University of
Birmingham, Birmingham, B15 2TT, UK

Telephone: +44 121 414 3710
Email: j.miller@cs.bham.ac.uk

Abstract
This paper presents an empirical study of the
variation of program size over time, for a form of
Genetic Programming called Cartesian Genetic
Programming. Two main types of Cartesian genetic
programming are examined: one uses a fully
connected graph, with no redundant nodes, while
the other allows partial connectedness and has
redundant nodes. Studies are reported here for
fitness based search and for a flat fitness landscape.
The variation of program size with generation does
not behave in a similar way to that reported in
other studies on standard Genetic Programming.
Depending on the form of Cartesian genetic
programming, it is found that there is either very
weak program bloat or zero bloat. It is argued that
an important factor in the analysis of the change of
program length is neutral drift, and that if genotype
redundancy is present, the genetic neutral drift
simultaneously improves search and compresses
program code.

1 DISCUSSION

The view that sees neutral drift as a causative factor in
program bloat has received little attention in the literature.
Programs that have varying amounts of junk code within
them all have the same fitness. Evolutionary algorithms,
unlike strict hillclimbers (which don’t exhibit bloat), do not
typically demand that promotable programs (to the next
generation) have an improved fitness, thus they may accept
equally good solutions (i.e. fitness neutral) or even slightly
worse solutions. Consequently, if there is a mechanism that
can create neutral solutions a genetic drift process will
occur, particularly during periods of no fitness improvement
(which is when implicit bloat can be at its worse). In
program representations that do not distinguish genotype
from phenotype (i.e standard tree-based GP) this process of
drift must largely occur by the insertion of junk code. In
other work [1] it has been shown that genetic drift is highly
beneficial in CGP as it allows constant innovation and
removes genetic stagnation. This is also observed in other
systems. However genetic drift with implicit introns appears
to cause stagnation and supresses constant innovation. One
advantage of making a distinction between genotype and

phenotype is that the exploratory nature of genetic drift can
occur mainly in fitness neutral space and only occasionally
affect phenotype space. This means that there is no penalty
associated with the neutral exploration as it is never
evaluated when the fitness of a program is calculated. The
argument that program bloat provides a protective
mechanism for the destructive effects of both crossover and
mutation (i.e. it is a good thing) applies equally well to
explicit redundancy. Thus one can take advantage of it in
CGP without paying the penalty of evaluating it. To some
extent one can see fully-connectedness as an invitation for
program bloat and it is really difficult to see any virtues it
may have over representations that allow explicit code
redundancy.

Standard CGP (without insert/delete-node operators) has a
bounded program size. However this does not seem to be a
large factor in program size suppression as in a flat fitness
landscape the average size of the programs is always a
fraction of the maximum bound. Clearly it would be a
problem in a fitness based search if the bound chosen was
less than the minimum size to construct a correct program.

Experiments performed indicate that implicit intron growth
is not a problem and no measures need to be taken to
suppress it (at least for a challenging Boolean problem).
Evidence has been provided of the unbiased nature of the
mutation operator by examining the behaviour of the
programs under evolution in a flat fitness landscape. The
central concept of the work is that allowing unconnected
program nodes is very useful and improves the effectiveness
of the search without having to be evaluated in the fitness
function. Such representations benefit from explicit introns
that allow program exploration through genetic drift.

References

1. T. Yu, and J. F. Miller (2001). Neutrality and
Evolvability of a Boolean Function Landscape. In J. F.
Miller, M. Tomassini, P. L. Lanzi, C. Ryan W.
Langdon (eds.), Genetic Programming Fourth
European Conference on Genetic Programming.
(EuroGp2001). Lecture Notes in Computer Science,
Vol. 2038, pp. 204-217, Springer-Verlag.

184 GENETIC PROGRAMMING: POSTER PAPERS

Increasing the diversity of a population in genetic programming

Patrick Monsieurs

Expertise Center for Digital Media
Limburg University Center

Diepenbeek, Belgium

Eddy Flerackers

Expertise Center for Digital Media
Limburg University Center

Diepenbeek, Belgium

Abstract

In this work we describe a method to remove
individuals from a genetic programming
population that are similar to fitter individuals in
the population. As a result, the diversity of the
population as well as the convergence speed will
be increased.

1 DETECTING IDENTICAL NODES
Genetic programming uses a variable length encoding to
represent a solution for a problem. This encoding is
usually a tree consisting of internal nodes and terminal
nodes. To detect similarity between different trees, it is
necessary to be able to detect identical subtrees.

To accomplish this, before a node is created, a test is done
to check if an identical node is already present. In this
case, no new node is created but the existing node is re-
used instead. A terminal node can be tested for
uniqueness by storing the contents of all the existing
terminals in a hash-table or a sorted tree. To test a non-
terminal node, a unique ID is given to every node when it
is created. A non-terminal node is uniquely defined by the
vector of ID’s of its children. These vectors can be stored
in a sorted tree, and the uniqueness of a non-terminal
node can be tested by looking if the vector is present in
the sorted tree. As a result of this operation, individuals
that have an identical subtree share the same node that
represents this subtree.

2 CALCULATING THE DIVERSITY
The diversity of the individuals in the population is
calculated after a generation has been created. Every node
of every individual contains a mark field, and is initially
set to a default value. First, a new mark value M is
selected, that is different from the mark values of every
node in the population. Next, the algorithm iterates over
all the individuals of the population, ordered by fitness,
starting with the fittest one. The diversity of an individual
is equal to 1 – (the number of nodes marked with M)/(the

total number of nodes of the individual). Then, the mark
fields of all the nodes of this individual are set to M.
Because nodes representing identical subtrees are shared
between individuals, these shared nodes of the other
individuals are also marked.

The diversity is a number between 0 and 1, where 1
means none of the individual’s nodes have been used by
fitter individuals, and 0 means the entire individual has
been used. If the diversity of an individual is not large
enough, it will be removed from the population. A
possible simple test is to remove all individuals that have
a diversity that is less than a fixed constant. This approach
has been tested on a symbolic regression problem, with
the target function x5 – 2x3 + x. The set of terminal nodes
was {x}, and the set of non-terminal nodes were {+, -, *,
/}, and a population size of 300 was used. The average
number of generations (averaged over 50 runs) required to
solve this function without using the diversity test was 17.
When the minimum diversity was set to a value between
0.38 and 0.46, the average number of generations was 10.
However, when the minimum diversity became too high
(> 0.47), only a few individuals had sufficient diversity to
survive and the performance rapidly degraded.

The disadvantage of using a constant minimum diversity
is that fit individuals can also be removed. This can be
solved by setting the minimum diversity to the following
value: MinDiversity(i) = i/PopulationSize, where i is the
position of the individual in the sorted population (i = 0
for the best individual). In this case, fitter individuals
require a lower diversity to survive than less fit
individuals. Using this test, the average number of
generations required to find the solution for the above
symbolic regression problem was 7.7.

3 CONCLUSIONS
In this work, a method is presented that increases the
speed of genetic programming by a factor of more than 2,
and does not require any fixed constants.

Acknowledgements

Part of this work is funded by the NFWO (National Fund
for Scientific Research), project G0083.97.

185GENETIC PROGRAMMING: POSTER PAPERS

������� ���	
���	�
�� ������ ����
� �� ���
	�
��
�������

����� �� ��	
��
 ��� ����
� ������
������	
 ���
����� �
��	
� ���� ����

���� ��
�
	�� ��	�
��
	���	
 ���� !�� �"
�����	�#�
	�$%��$�&� '

(��)�*+�)+,��+�

���� �� ����
������	� ����
	���-�
.�� �
���� �� ,��/
&�0�#������	�$
��

'��� 1�1
	 ���1�	
� ��
 ���1

 ��2�	

���1��
�����
���
�
 ���	����
� �� 3/4 �%����� ��5� ��	 ��
���% ��

�
�)�)1�	��- 1	�2

�$

5�%�	
 � ����� ��

���1��
����� 1	��
��	
$ � 6	��

��
����� ���%
 ��
� ��
��1

 ���	� 7! 	��� �� 1	�)
�
�� �� ������
 �
	����
 �
�$ '�
 2
�� 	�� ��� ��
�
���
-�
� �� ��
����- �

 ��
 �������� ��2�	

� ����� ��)
���
� ��

��
�����$ ��2�	

� ����� �
	
 ��	����	�

-
�������� 2�� ����� 1	����
� �� ��
�����
 ���1�� ��	
�

 �	�����% ���
� �
	
 ���� �� 2
 ����������		
 ����
��
	���$ ���� ��2�	

� �
	
 %	��1
� ��� 	
1	
�
��
� 2-
��
 ���

�� ��������
�� ��2�	

$ '�

��
������� ��	
��2�	

� ����� �11
�	
� �� ��
��1

 �������
� �� ��

6��
 1�1�
����� �
	
 ��
� ���	
� �� ���� ��
- ���
�
2
 ��
� �� �
	����
 ���� ��	 � �
����
��
����� ���%
$

5�%�	
 �(��2�	

���1��
����� 1	��
��	
$

'�2

 � ���1�	
� ��8
	
�� 7! ���
�
� ��	 ��
���% ��

�
�)�)1�	��- 1	�2

�� ���
����% ��
 69
� �	����
���	

��� ��

��
�
� �	����
���	
 ��5 ���
�
� �� 3�4$ ���
	��� �
	
 �������
� ��	
��� ���
�
 ���
��� 	��

��
�
� � 1�1�
����� �� ���� 1	�%	��� ��	 �� %
�
	�)
�����$ '�
 ��2

 %��
� ��
 ���2
	 �� 	��� ����� ��
�
�

'�2

 �(!
	��	����
 �� ��8
	
�� 7! ���
�
�$

���
�
 ���
8�	� :�����;
������	� 7! :�7!; / ��*++
/��
���1��
��
� ��2�	

� �� +��
� ��5 �� *</
/ ��5� */ ��*
 ��5� �, ���

��
�
� ��5 �	����
���	
 �� +*�

��
 1	�2

� 2- %
�
	����� �� :���; ��� ��

������
�

8�	� 3�4$ '�
 6	�� ���%
 �� ��

���1��
����� 1	��
)
��	
 ���
��
�
� ��	 �� %
�
	������ ��� ��
 2
�� 	��
-�

�
� ��� �������� ��2�	

�$ ���� �
���� ���%
 	��
���
��
�
� ��	 � %
�
	������ ����% /�� 	�����
- �
)

��
� ��2�	

�$

'�
 ��2

 ����� ���� �

 ����
�	������� ���
�
�
%	
��
- ��1	��
� �1�� �7!$ '�
 ��2�	

���1��)

����� 1
	��	�
� ��	%���

- 2
��
	 ���� ��

��
�
�
��5 �	����
���	
� 2�� �� ��� ���)1
	��	�
� 2- ��

69
� ��5 �	����
���	
�$ '�
�
 ���1�	����� �
���)
��	��
 ��
 1��
	 �� ����
�	�������� ��
	

�
� � ���)
1

 ���
�
 ����% �	�0
� ����

� ��� ����
�� ����
���
�
� ����� ��������

-
��
�
 ����

�$ ���
-���
�� ��
 ���� 2
�
6���
 �

��
� ��2�	

� ���
� 	
�
�

�� ��������	 ��	 � ��2�	

=� 1��
����
 ��
��
�
��$ '���
��������	 ���
� ��
� 2
 ��
� �� �1��� ��5� 2��
� ��
��
 2
�� ��������
 ��2�	

�$

����������

3�4 >$ �$ "�0� :�,,�;$ ������� ����������� ��� �����
����� �����
��
 �� ������	� ��������� �?' !	
��$

3/4 �$ �$ ��2
	��� �$ @���	� ��� >$ �$ "�0� :/���;�
���
���% ����

� �� 7! 2- ��2�	

���1��
������
����������� �� ��� ������ �������� ��!���� ��
������� ������������ ?��
-� �1	�
 /���� �1	��%
	
.A��$

186 GENETIC PROGRAMMING: POSTER PAPERS

No Coercion and No Prohibition - A Position Independent Encoding Scheme
for Evolutionary Algorithms

Conor Ryan, Michael O’Neill and Atif Azad
Department of Computer Science and Information Systems

University of Limerick
Ireland

fConor.RyanjMichael.ONeilljAtif.Azadg@ul.ie

Abstract

We describe an new encoding system, Chorus,
for grammar based Evolutionary Algorithms.
This scheme is coarsely based on the manner in
nature in which genes produce proteins that regu-
late the metabolic pathways of the cell. The phe-
notype is the behaviour of the cells metabolism,
which corresponds to the development of the
computer program in our case. In this procedure,
the actual protein encoded by a gene is the same
regardless of the position of the gene within the
genome.

1 Introduction

The mapping from genotype to phenotype in nature is
rarely as simple as the one gene-one trait methodology of-
ten employed by Evolutionary Algorithms. Moreover, the
function of a gene in nature is rarely dependent on its po-
sition within the chromosome, for they usually produce the
same protein regardless of their situation. It is the proteins
produced by genes that combine to regulate the metabolism
of a cell resulting in the observed phenotypic traits1.

The function independent of location property has proved
notoriously difficuly to implement in EAs. Usually, any
kind of position independence forces the use of a repair op-
erator after crossover, to ensure that every required gene is
present. There can also be an issue of overspecification, but
this is often left unrepaired, as it doesn’t affect the decod-
ing.

Having function inextricably linked to location increases
the difficulty of a problem for an EA, for it is clearly more
difficult for an individual to have a gene at a particular posi-
tion than it is for the individual to simply possess the gene.

1Other factors are also responsible for the regulation of
metabolism, our current model focuses on one of the major factors
- the concentration of specific regulatory enzymes/proteins.

The situation is aggravated by epistatic effects, where an
increase in fitness is associated with having several correct
genes, each in particular places.

There have been some attempts to design position inde-
pendent Genetic Algorithms, most notably the Messy GA,
but this involved a repair mechanism after crossover, and
wasn’t intended to deal with the evolution of grammars.

This paper presents a position independent representation
that we term Chorus. It is so called because when the sys-
tem is transcribing from genotype to phenotype there is of-
ten competition as to which protein should be dominant in
regulating any one of many possible metabolic pathways
that could be taken. This, we believe, is analogous to a
situation where there are a number of voices striving to be
heard. Typically, the loudest voice is heard, and so, the
protein with the greatest claim to be expressed, is chosen.

2 Conclusions

We have described a new, position independent, representa-
tion scheme for Evolutionary Algorithms, termed Chorus.
Chorus has been tested on two standard benchmark prob-
lems, and been shown to outperform GP on one of them.

The results indicate that, while the system does depend on
the initial random seed for individuals, it appears to be ro-
bust enough to cope with relatively poor choices.

187GENETIC PROGRAMMING: POSTER PAPERS

 Genetic Programming Evolves a Human-Competitive Player for a
Complex, On-line, Interactive, Multi-Player Game of Strategy

John Schloman

Department of Computer Science
and Systems Analysis

Miami University, Oxford, OH
45056

Ben Blackford

Department of Computer Science
and Systems Analysis

Miami University, Oxford, OH
45056

This paper describes the use of genetic programming to
evolve a competitive strategy for playing Quake 2. Quake
2 is a difficult on-line game of strategy requiring the
navigation of complex paths, the acquisition of various
offensive and defensive weapons, and the timely use of
those weapons against human-controlled or automated
opponents.

Using the Q2Botcore by Ben Schwartzlander as a
communications platform, our evolved individuals were
able to connect to a Quake 2 server as autonomous
clients. This interface limited us to only the data provided
to a standard Quake 2 client (server sent game entity
information and local map files).

Initial evolution involved a Q2Botcore pathing function to
aid in navigation. Unfortunately inherent flaws in the
algorithm led to unacceptable and suboptimal behavior.
Our second attempt concentrated on omitting dependence
upon pathing functions and pre-generated routing tables
of nodes.

As with the classic Artificial Ant problem (Koza, 1992)
we proposed that success in navigation could result from
basing fitness upon resource collection. Inventory items
in Quake 2 were assigned arbitrary values based upon
their rarity. Inventory was evaluated every 15 seconds
and individuals that reported an increase would be
rewarded with another 15 seconds to continue.
Individuals who were not able to "keep alive" had their
fitness calculated from their inventory and exited the
server. The data type for our function set was a float
representing the yaw value in radians of the individual.
Pitch and roll are unnecessary to navigation in Quake 2.
The terminal returned the current yaw and the function set
included a turn function, which operated upon it. This
function set also included item targeting (returning the
angle to the entity that best satisfies the visibility or
distance condition), obstacle avoidance (returning a safe
angle away from obstructions), and timing (allowing for
decision tree branching at a given rate).

We chose a single population evolution with 200
individuals per generation and three genetic operators
(reproduction, crossover, and mutation).

Figure 1: Maximum and Average Fitness over 100
Generations

After 100 generations, we observed efficient use of the
function set for successful navigation. Early individuals
began by nesting item targeting functions in turn() to
successfully gather items that were not behind obstacles.
Some individuals would run into walls at an angle that
allowed them to continue to where another item was
visible, so they would continue to collect despite the poor
navigation. Later, obstacle avoidance was evolved
increasing the generational averages to that of these select
individuals. The average was also lowered due to
negative fitness of those individuals who perished.
Fitness was limited by the exhausting of local resources.
The static 15-second time limit was insufficient for
individuals who depleted all items to proceed to other
areas of the map.

References

Koza, John R. (1992). Genetic Programming: on the
programming of computers by means of natural selection.
Cambridge, MA: MIT Press.

"Quake 2 Bot Core Homepage", Telefragged.
<http://www.telefragged.com/Q2BotCore/> [Accessed 12
January 2001].

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 11 21 31 41 51 61 71 81 91

188 GENETIC PROGRAMMING: POSTER PAPERS

First Steps toward Automated Design of Mechatronic Systems Using
Bond Graphs and Genetic Programming

Kisung Seo Erik D. Goodman Ronald C. Rosenberg
Genetic Algorithms Research and Applications Group (GARAGe) Department of Mechanical Engineering
Case Center for Computer-Aided Engineering and Manufacturing

Michigan State University, East Lansing, MI 48824
ksseo@egr.msu.edu goodman@egr.msu.edu rosenber@egr.msu.edu

1 OVERVIEW OF THE WORK

This paper suggests a method for automatically
synthesizing designs for mechatronic systems. The
domain of mechatronic systems includes mixtures of, for
example, electrical, mechanical, hydraulic, pneumatic,
and thermal components, making it difficult to design a
system to meet specified performance goals with a single
design tool. Bond graphs are domain independent, allow
free composition, and are efficient for classification and
analysis of models, allowing rapid determination of
various types of acceptability or feasibility of candidate
designs (Karnopp et al). This can sharply reduce the time
needed for analysis of designs that are infeasible or
otherwise unattractive. Genetic programming is well
recognized as a powerful tool for open-ended search
(Koza et al). The combination of these two powerful
methods is therefore an appropriate target for a better
system for synthesis of complex multi-domain systems.
The approach described here will evolve new designs
(represented as bond graphs) with ever-improving
performance, in an iterative loop of synthesis, analysis,
and feedback to the synthesis process.

2 BOND GRAPHS AND GP

Bond graphs consist of elements and bonds. There are
several types of elements, each of which performs
analogous roles across energy domains.

Bond graphs are “grown” by executing the sequence of
GP functions and terminals specified by the tree (at
specific bonds or nodes of the bond graph), using the
embryo as the starting point. In our initial approach, the
GP tree represents a program to construct a bond graph,
not the bond graph per se. The initial studies reported
here use the following set of bond graph elements: {C, I,
R; 0, 1, Sf, Se}, representing generalized capacitances,
inductances, resistances, parallel and series connections,
and sources of flow and effort. This set is sufficient to
allow us to achieve designs that have practical meaning in
engineering terms, while still permitting other methods to
be used for comparison, to help to assess our initial work.

3 EXAMPLE: EIGENVALUE SEARCH

In this case, a set of target eigenvalues is given and a
bond graph model with those eigenvalues is desired. The
embryo model used is shown in Figure 1. The dotted box
represents the initial modifiable site (“writehead”). The
construction steps specified in the GP tree are executed at
that point. The numbers in parentheses represent the
parameter values specified (or found) for the elements.

Figure 1: Embryo bond graph model

As a proof of concept for this approach, evolution of a
limited set of bond graphs with specified target
eigenvalues was tested, with good results produced
rapidly using very limited computing resources. This
provides some support for the conjecture that much more
complex multi-domain systems with much more detailed
performance specifications can be automatically designed,
given longer execution times and/or using inexpensive
cluster computing facilities.

Acknowledgment
The authors gratefully acknowledge the support of the
National Science Foundation through grant DMI
0084934, beginning in August, 2000.

References

D. C. Karnopp, R. C. Rosenberg,, D. L. Margolis (2000)
System Dynamics, A Unified Approach, 3rd ed., John
Wiley & Sons
J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, F.
Dunlap (1997), ”Automated Synthesis of Analog
Electrical Circuits by Means of Genetic Programming,”
IEEE Trans. Evol. Computation., 1(2), pp.109-128.

R(500)0

R(250)

Se 1

189GENETIC PROGRAMMING: POSTER PAPERS

Function Sets in Genetic Programming

Terence Soule

Department of Computer Science

University of Idaho

Moscow, ID 83844

Email: tsoule@cs.uidaho.edu

Phone: 208-885-7789

Robert B. Heckendorn

Department of Computer Science

University of Idaho

Moscow, ID 83844

Email: heckendo@cs.uidaho.edu

Abstract
This research examined how the function set

in
uences performance in genetic program-

ming. We �nd that performance can vary

widely with di�erent \appropriate" function

sets. In general, functions that are likely

to produce solutions with very low �tness

degrade the results and are heavily selected

against even when the function could produce

very simple solutions.
1 Introduction
There are three general guidelines used for choos-

ing function and terminal sets in genetic program-

ming(GP). Su�ciency, the sets must be su�cient to

solve the problem. Parsimony, the sets should not con-

tain too many extraneous functions or terminals. Clo-

sure, the functions should be able to gracefully handle

all possible inputs. All three of these guild-lines were

presented in Koza's original text on GP (Koza, 92).

Since that time very little research has been devoted to

re�ning those guild-lines. We examine di�erent func-

tions sets for the linear regression problem to begin

to understand how function sets in
uence the search

process.

2 The Experiment
The target function is a sine function (-2�, 2�). Three

\reasonable" function sets are compared: F1 = f+, -,
*,
p
jjg, F2 = f+, -, *,

p
jj, / g, and F3 = f+, -, *,pjj, /, tangentg. The divide is protected. The termi-

nal set consists of the input variable (x) and constants

in the range (-1,1). We used a generational GP, with

tournament selection (3), populations size 800, 50 gen-

erations, 90=10 crossover, and using ramped half and

half initial generation.

F1 acts as the control set. It is su�cient to produce a

Taylor series approximation of sine (sin(x) = x� x
3

3!
+

x
5

5!
�:::). F2 is includes divide, which is commonly used

in regression problems. F3 allows for a very simple,

exact solution to the problem, sin(x) =
tan(x)p
1+tan2(x)

.

Table 1: Results
Function set Avg. Best Fitness

F1 8.04

F2 7.39

F3 9.14

3 Results
Table 1 shows the error of the best programs averaged

across 25 trials. (The di�erences between any pair

are signi�cant (Student's two-tailed t-test P < 0:05)

for all generations after generation 44.) Interstingly,

for the average programs (not shown) F1 signi�cantly

outperformed F2 which signi�cantly outperformed F3

(Student's two-tailed t-test P < 0:05). In addition, we

measure the frequency of each function. Multiply and

square root tend to increase, whereas divide and tan-

gent decrease. This seemes to re
ect their usefulness

in generating successful programs on average.

4 Conclusions
The primary result is that di�erent reasonable func-

tion sets can have a signi�cant e�ect on performance.

E.g. tangent performed quite poorly, even though it

can create a very simple solution. Interestingly the

e�ect of a function set was di�erent for optimal ver-

sus average performance. We believe that these results

can be partially explained by the tendency of divide

and tangent to produce results with very large errors

near the values where they are unde�ned, which will

often produce large errors for program incorporating

those functions.

Our results also showed that a GP selects against poor

functions. However, this selection is driven by average,

not optimal, individuals. These results con�rm that

better information regarding how to choose function

sets could signi�cantly improve GP performance.
References

J. Koza (1992). Genetic Programming: On the Pro-

gramming of Computers by Means of Natural Selec-

tion. MIT Press, 1992.

190 GENETIC PROGRAMMING: POSTER PAPERS

�����������	
�����
���	���
�����	���	�������������	�	���	�
��������

�������������
���������������
���������	���	�
�
����������	��

�

���������	
���

��������	��
���	�
����

	���	�����	��
����
���	
����
���

��
��
�	���
�	������
��	�������
 ���
!"���
#$���%��&�'�
	��'	���

�����	�
���	

��������	��
�� #
	
�
#��
(��

	�!����	�#�
��	
����
���

��
��
����
��	�))*+&�
 ���
!"�#�#��	%	##�'�,�'���

�

�

 #
	
�
#��
��!��

	�������-��	��
,�!�����!
��,�
	�����
���,��
�� �#
	
�
#�'� ����� !���	
	��-����

��
�� �#
	
�
#�
���	���
�� �!�
��
,�!�,�-�� ����#
������

	�!� ������
�$'��
�
�����	�� !���	
	�� �!�
�
����� ���� ���,� �
� ���������
,
�����	�� ���!���
�� !���	
	�� -����

�'� � �	� ���� !
����������
�����#�	�-��#!���
�
�,�
	�
� �
#
�!� !���	
	���	,�
	,
�
,��!�
!���	
	�'� � �	� ���� �
#
�!� !���	
	��� ���,���� !���	� ��
��
�����
���,���.� �/���
�	#��� ��
!�� ����� !���	� ��
�� ���
��
�	�
�/���
�	#��
	� ����
	,
�
,��!� !���	
	�'� � ����
��!
#��

	��
-�����	��
#
�!�!���	
	���	,�
	,
�
,��!�!���	
	�������-��	�
�������,'� � 0
������� ����.�� �
���
��
���	��
�� ����� ����
�
��!��

	�����!��
��	
��
	!��
	�!��	#�,�-��	
��������
���
-��� �!�
��	���������� ���
�'� � �	�
������
�,���-
���
�� ����
!���	
	�� ���!��� �	,��
��	�
�!� $	
�!�,��� ���#�� #
	��
-����
�
�����
��#
��'��	�������
��������#�	
1����
����
!��

	����
#
������

	�� ���� �
��	�
�!� $	
�!�,��� ���#��
�� ��!���,� �
�
���� �������	���

	�� ������
���� �
�� ��� �������	�� ����
$	
�!�,���
��
	��
�� ���� �
���
��
���	�� ������
	� ����
�#
	
�
#� �
��!��

	'� � 2�	��
#� 3�
�����
	�� ������� ��
��
����
���-������ ���	�
����� ��#�	
1�����
��
�� ���	����!
��,�

	���
�������'�

���� �
�
#� ���,� �
�
	����
����� ����
	�!��	#��
�� �
#
�!�
!���	
	�� �	,�
	,
�
,��!� !���	
	��
�� ���� �
��������� ��
���
��
���� ��
#�� ���� -��	� �� ���
#�!� ������
�$� ���,� �
�
�	,�����	,� ���� -����

��!� �
�	,��

	�
�� �
	�	#�'� � ����
,�	��
#��
�� ���$���
�� ,�����
	�,� -�� �	�
	����#�

	�
��
��	�������
��	�
������	��'� � �#��
�� ������-���,�
	��
��
�
��#����
�� ���� �������� ��/
�
4��� �
�� �/��#��,� ��
!
��'��
������������
�����������
!�-!���
�����,�����
�
	����'��5	��
��
���� �
�$!����
	�������-���
	�� ������ #�!!�,��
����� �	,� ����

�����
�� ���� �
�$�������� $	
�	���� ���� ��
��'� ����,����#�	�

-��
	� �
�$!����
	������� �	,� #���� ,
�
,�	,�� -�� �
!,
	��
�
	����	,� ��
#$� �����#�
��!����� ��#�����

,'� ��
�
,�	,��
#�	� �
!!
�� �� ��
�	������ �

����� 	
�� $	
�	� �
� ���,���'�
������
���� ���,���� ����� �
� ,�#
,�� �
����#���
	��� �	,�
�
����	���������
����
#$�������
�!,�!
$���
��
!,������#��
���

,'�

���� �
��!��

	� ����!��� �����!� ,
�����	�� �
��� ���
���
��
����
����
��,
�����	��!���	
	�����!��'��6
�������������
���

���
#
�!�!���	
	�����,�
	���
��������
���
������
��
�����
���

�

���� ����!��
���
�� � ��
#�� �
����	��
	�
�,��� �
� ��$�� �	�
�##������ �
��#����� ������
����
��
�� �
��� ���,�	�'� 5	� ����

�������	,�����,����
	!���
#���
	�
	�����

,���
�
��
	�����

	,
�
,��!�!���	
	��������	�����#�����-
�����������!��
���
	�
���� ����� �
��
����
	� ���� ��	���� ����� ���� �

� ��
�
#� �	,�
���#�!��
��'�����������������
!�-!��
	�
����

	��
���$����
�����
� �
��#���� 	
�� �
� �/���#�� ���� ����!��
���
	� ���� �����
�
��
��'� �7���� ���� ���� �����
� �������
��8� � ���� $��� �

	��
�����
�������
��
����
��#����
��-���,�
	���������!��
���
	�����
����� �
��
���� �	,� ���� �
��#����
�� �##������� ���	� ��� #�	�
��$�� ����
	�-!����
�
��'���
��
������� ���� �
#
�!� !���	
	��
,��
	�,�
	� ��
�� ������ ,
��'� � 9����
��
��
	!�� �� ����
#
�	��
#
	,
�

	'� � ���� ���,���� ��
� �
!!
��
	,
�
,��!� !���	
	��
#�����-
���
	�����

,���
�
��-���,�
	����
���
��#����'������
����
���	#��
�� ���
�� �������
���
�� ����!�� ,�����
	�,� -��
��
�
��	
���
��#���
	���##���#�'��������
�����
���/���!�����
���,������� �

������ ����� ������
#��
	�	�/�����

,�
��:)����
�	,����,�#
,����
�-���
	��������
����
#$'������������!
4�,�
��
#��
	�����	�/�����

,�
��:)�;�����	����������
�����
�
��'�
�	� ��
�� #����� ���� ����
���	#��
�� ��
�� ���������
	�
�
��#���
	�� �##���#��
�� !
��� ��
!��
��
�� �� �

�� ���������
-���,�
	� ���� #�
���

	�
�� ��
�
�� ����
� �	�� ��������
��
�

����'� ��
�� �
����

	� �!!
��� �
��� �

�� �
�� ��
���
�������
�����
#��,
	.���
��#������!!�����
�
	����	,����	��
��
��$��� ������
���,
��
#�!�� �
� �
�����
��� ���� ��	,���	��!�
��
#�'��������
����������
#��,�	��
#��
	������
#
�!�!���	
	��

���
���#!
�����
�������	,���	��!���
#�'���	�����
	,
�
,��!�
!���	
	��� ���,���� ��	,� �
�
������
����� ���� ���
������ ��!���

�� ���� ��
#$�
	� ��
�� �������
�� ��������
	,�#��� ���� �
�����
���	,��,� ,��
��

	�
�� ���� ��
#$� ��
#�'� � ��#
	,�� -�#�����
������
�� 	
� ��
�����
	�
����

	�
	� ���� �
#
�!� !���	
	���
���,���� ���
!�� ����� �
�
!��� �/��#���

	�� �-
��� ���� ������'�
5	#�� ��
�� �
����

	� �����	��� ���,���.� -����

�� ��	,��
�
���,� �	
�
#��

	�� -���
�� ��!!� �
������'� ��
�� ��$��� ����
�
!��
!
���
����
#$������	��
��������	������
	�����
	,
�
,��!�
!���	
	�'��9���,�
	����������������	���
��
���/��#��,������
������
#$�
��	
�����
!�����,�,�-�����	����$�������
#
��	���

	������
#
�!�!���	
	�'���	�
������
�,���������
#$�!
1�
,
���

��!
���'�����
���!�
���
,�	#�,�
	�����!
�������
�	#��
������
�
!,
	���������
����
#$'�

�

191GENETIC PROGRAMMING: POSTER PAPERS

	0207.pdf
	INTRODUCTION
	EXPERIMENT
	CONCLUSIONS
	
	References

	0218.pdf
	OVERVIEW OF THE WORK
	BOND GRAPHS AND GP
	EXAMPLE: EIGENVALUE SEARCH
	
	References

