A Domain Independent Approach to
2D Object Detection Based on the Neural and

Genetic Paradigms

A thesis submitted for the degree of

Doctor of Philosophy

Mengjie Zhang, B.E., M.E.
Department of Computer Science
Faculty of Applied Science
RMIT University

Melbourne, Victoria, Australia

Supervisors: Dr. Victor Ciesielski

Dr. James Thom

Augest 2000

Abstract

The development of traditional object detection systems usually involves a time consuming
investigation of good preprocessing and filtering methods and a hand-crafting of different pro-
grams for the extraction and selection of important image features in different problem domains.
To avoid these problems, this thesis describes a domain independent approach to multiple class,
translation and rotation invariant object detection problems without any preprocessing, segmen-
tation and specific feature extraction. The approach is based on learning/adaptive methods —
neural networks, genetic algorithms and genetic programming. Rather than using specific image
features, raw image pixel values or pixel statistics are used as inputs to the learning/adaptive
systems.

Six object detection methods have been developed and tested. These are (1) the basic
approach which uses multilayer feed forward networks trained by the back propagation algorithm,
(2) a centred weight initialisation method which improves the performance of the basic method,
(3) a method which uses a genetic algorithm to train neural networks, (4) a method which uses
a genetic algorithm to refine network weights obtained in the method of the genetic algorithm
for network training, (5) a method which uses a genetic algorithm to refine network weights
obtained in the basic approach and (6) a method which uses genetic programming to build the
object detector.

These methods have been tested on three databases which represent detection problems of
increasing difficulty: an easy database of circles and squares, a medium difficulty database of
coins and very difficult database of retinal pathologies.

For detecting the objects in all classes of interest in the easy and the medium difficulty
problems a 100% detection rate with no false alarms was achieved. On the retina problem the
best performance achieved was 100% detection with a 588% false alarm rate. The centred weight
initialisation algorithm improved the detection performance over the basic approach on all three

databases. Also, refinement of weights with a genetic algorithm significantly improved detection

performance on the three databases. The genetic programming based method was particularly
effective on the retina pictures. However, the method of using mutlilayer feed forward networks
trained by the genetic algorithm did not improved the detection performance on any of the three
databases obtained in the basic approach.

The goal of domain independent object recognition was achieved for the detection of rela-
tively small regular objects in larger images with relatively uncluttered backgrounds. Detection
performance on irregular objects in complex, cluttered backgrounds is comparable to traditional

computer vision methods.

ii

Preface

Preliminary work of neural networks for multiple class object detection, or the basic approach
described in chapter 4, was published in the Proceedings of the Annual RMIT Computer Science
Postgraduate Students’ Conference (CSPSC’97) in December 1997 [217]. The centred weight
initialisation method which improved the network training and object detection performance in
pixel based neural networks was published in the Proceedings of the Twenty Second Australasian
Computer Science Conference (ACSC’99) in February 1999 [220]. An extended version of the
paper was given in a technical report in May 1998 [218]. Chapter 5 gives the details of the
weight specification method. A paper of using genetic algorithms to improve the accuracy of
object detection was published in the Proceedings of the third Pacific-Asia Knowledge Discovery
and Data Mining Conference, Knowledge Discovery and Data Mining — Research and Practical
Experiences, in April 1999 [35]. A two phase approach of using back propagation algorithm and
genetic algorithms to train and refine neural networks for object detection was published in the
Proceedings of the 10th International Conference on Database and Expert Systems Applications
(DEXA’99), Lecture Notes in Computer Science, in August 1999 [223]. An extended version
of the paper was presented in the the Annual RMIT Computer Science Postgraduate Students’
Conference (CSPSC’98) in December 1998 [219]. Chapter 6 describes the details of the ap-
proach. The method of using genetic programming paradigm in multiple class object detection
problems was published in the Proceedings of the 12th Australian Joint Conference on Artificial
Intelligence (AI'99), Lecture Notes in Artificial Intelligence, in December 1999 [221]. An ex-
tended version of the paper was presented in the Annual RMIT Computer Science Postgraduate

Students’ Conference (CSPSC’99) in December 1999 [222]. Chapter 7 extends this work.

iii

The relevant information taken from some of the papers is also contained in the homepage

of

http://goanna.cs.rmit.edu.au/ "mengjie/papers.html

The work in this thesis has not been published elsewhere, except as noted above.

Mengjie Zhang
July 2000, Melbourne, Australia

iv

Declaration

I certify that

e except where due acknowledgement has been made, the work is that of the candidate alone;

e the work has not been submitted previously, in whole or in part, to qualify any other

academic award;

e the content of the thesis is the result of work which has been carried out since the official

commencement date of the approved research program.

Mengjie Zhang
July 2000, Melbourne, Australia

Acknowledgements

I would like to thank my supervisors, Dr. Victor Ciesielski and Dr. James Thom for their
invaluable guidance, support and continual encouragement. Victor led me to think how to
establish a series of research problems and how to apply learning and adaptive methods to these
problems, and provided very helpful feedback along the project. Without his supervision, this
thesis would not be possible to finish. James gave me a lot of useful information and discussions
about performance measurement and also the presentation of the results. T am also grateful
to my consultant, Zhi-Qiang Liu, for a number of discussions on image processing and image
understanding techniques.

A special thank must go to my dear wife, Xiaoying Gao, whose entire understanding and
support is absolutely important at the beginning of the project. During the course, she gave me
continuous support, particularly on domestic aspects.

I am very grateful for the financial support throughout my candidature from the Australia
government and RMIT university. The Australian government awarded me the IPRS scholarship
(formerly named OPRS), which covers the tuition fees of the course. RMIT provided the living
allowance during the project.

Thanks also go to Chris Kamusinski, who provided the retina pictures, and Alex Rosenberg,
who gave me very useful support of technical writing in English.

Many thanks must go to the departmental research committee, especially Justin Zobel, Lin
Padgham, Zahir Tari, who gave me encouragement during the annual meeting, and also Rita
Healy, who gave the full administration work during the course and led me to be familiar with
the department when I just came here.

I am thankful for the enjoyable conversions with some other postgraduate research stu-
dents over technical and non-technical matters, particularly Zhiqi Shen, Simon Ch’ng, Santha
Sumanasekara, James Brusey, Surya Nepal, Ken Gardiner, Andy Song, Tom Loveard and Saluka,

Kodituwakku.

vii

My gratitude goes to my parents and my parents in law who have always encouraged me
throughout this project.

Thanks must also go to my former supervisors Professor Pusheng Kuang and Professor Qing
Yang for their support of my studying in Australia. Many thanks must also go to my home

country, my home university, and the Chinese consulate in Melbourne.

viii

Contents

1 Introduction 1
1.1 Motivation/Introduction 1
1.2 Goals of the Thesis e 3

1.2.1 Hypotheses L e 4
1.3 Contributions of the Thesis 5
1.4 Structure of the Thesis o e 6

2 Literature Review 9

2.1 Overview of Object Detection 9
2.1.1 Object Detection e 9
2.1.2 Main Aspects of Object Detection 10
2.1.3 Performance Evaluation oL 12
2.1.4 Examples of Conventional Object Detection 18
2.1.5 A Broad View of Neural and Genetic Learning Methods for Object Detection 18

2.2 Overview of Machine Learning 19
2.2.1 Basic Concepts and Definitions oL 19
2.2.2 Training Set and Test Set oL, 21
2.2.3 Generalisation Ability o 21
2.2.4 Three Learning Strategies 22
2.2.5 Main Learning Paradigms 22

2.3 Overview of Neural Networks, 24
23.1 Terminology e 25
2.3.2 Network Training o e 26
2.3.3 Termination Strategies Lo 29
2.3.4 Performance Measuremento o oL 30

ix

CONTENTS

2.3.5 Number of Examples in Training Set 32

2.3.6 Main Parameters Lo Lo 35
2.3.7 Tackling a Problem with Neural Networks 35

2.3.8 Current Issues in Neural Networks 36

2.4 Overview of Evolutionary Computation 36
2.4.1 Overview of Genetic Algorithms 37
2.4.2 Overview of Genetic Programming 42
2.4.3 Current Issues in Evolutionary Computation 48

2.5 Neural Networks for Object Detection 49
2.5.1 Object Classification oo 50
2.5.2 Object Detection L L 57
253 Comments. oL e e e e 63

2.6 Genetic Algorithms for Object Detection, 64
2.6.1 Classification and Feature Extraction 64
2.6.2 Object Detection e 65
2.6.3 Other Vision and Image Processing Problems 66
2.6.4 Comments. o it e e e e e e e 67

2.7 Genetic Programming for Object Detection 67
2.7.1 Object Classification, 68
2.7.2 Object Detection e 69
2.7.3 Other Vision and Image Processing Problems 70
2.74 Comments. i i e e e e e e 71

2.8 Summary and Discussionl e 72
3 Image Databases 75
3.1 Easy Pictures 76
3.2 Coin Pictures oL 78
3.3 Retina Pictures L 80
4 Neural Networks for Object Detection— the Basic Approach 87
4.1 Imtroduction. o L oL e e 87
4.1.1 Terminology e 88
4.1.2 Overview of the Basic Approach 90
4.1.3 Chapter Goals 91

CONTENTS

4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

Generation of Image Data Sets o L. 92
Generation of Classification Data Set 93
4.3.1 Generation of Patterns L L o oL 93
4.3.2 Determination of the Input Field Size 94
Determination of the Neural Network Architecture 95
4.4.1 Number of Input Nodes 95
4.4.2 Number of Qutput Nodes, 96
4.4.3 Number of Hidden Nodes 97
Object Classification L L e 97
4.5.1 Neural Network Training 97
4.5.2 Network Testing and Classification Criterion 98
Object Detection e e e e e 98
4.6.1 Network Sweeping e 98
4.6.2 Finding Object Centres o 100
Evaluation o . L 101
4.7.1 Object Matching 101
4.7.2 Performance Measurement 0 oo 101
Experimental Results L L 101
4.8.1 Object Classification Results 101
4.8.2 Object Detection Results 109
Discussion L. e e e 115
4.9.1 Characteristics e e e e 115
4.9.2 Linearisation e e 116
4.93 Next Step o o o e 117
494 Summaryo e e e e 117

Centred Weight Initialisation in Neural Networks for Object Detection 119

Introduction L 119
5.1.1 Rationale of the Method 119
5.1.2 Chapter Goals 120
Centred Weight Initialisation Method 121
5.2.1 Centred Weight Initialisation Method 121
5.2.2 Centred Weight Initialisation Algorithm 122

xi

CONTENTS

5.3 Experimental Results.o L 124
5.3.1 Object Classification Results 124
5.3.2 Object Detection Results 133

54 Analysisof Weights L L 138

5.5 Summary and Discussion Lo 141
5.5.1 Next Step o o ot e e e e e 141
5.5.2 Summary e e e e e e e e e 141

6 Genetic Algorithms for Network Training and Network Refinement in Object

Detection 143

6.1 Introduction. e e 143
6.1.1 Definitions L L 145
6.1.2 Flow Diagram of the Approach 146
6.1.3 Chapter Goals 146

6.2 Genetic Algorithm for Network Training — GA-train 148
6.2.1 Gene Structureo e e 148
6.2.2 Weight Updating Mechanism 149
6.2.3 Sample Network with Chromosomes 149
6.2.4 Fitness Functiono o 151
6.2.5 Genetic Operators e 151
6.2.6 Description of the Entire GA-train Algorithm 152
6.2.7 Characteristics of GA-train o oL 152

6.3 Genetic Algorithm for Network Refinement — GA-refine 153
6.3.1 Overview of the GA-refine Algorithm 153
6.3.2 Fitness Function L 155
6.3.3 Characteristics of GA-refine L. 156

6.4 Results. e 156
6.4.1 Object Classification Results 156
6.4.2 Object Detection Results L. 163

6.5 Summary and Discussion e e 168
6.5.1 Discussion Lo e e e e e e e 168
6.5.2 Next Step e 169
6.5.3 Summary L e e e e e e 169

xii

CONTENTS

7.2
7.3
7.4
7.5

7.6

7.7

7.8

7 Genetic Programming for Multiple Class Object Detection
7.1 Introduction L L e e e
7.1.1 Overview of the Approach
7.1.2 Chapter Goals e
7.1.3 Structure of the Chapter. oo
Genetic Programming Adapted to Object Detection
The Terminal Set
The Function Set
The Fitness Function
7.5.1 Object Classification Strategy
7.5.2 Fitness Function L L Lo
Main Parameters and Termination Criterion
7.6.1 Main Parameters oL o e
7.6.2 Termination Criteria e
Results. o
7.7.1 Easy Pictures e e e e
7.7.2 CoinPictures L e
7.7.3 Retina Pictures L L
Summary and Discussiono Lo oL e
7.8.1 Analysis of Results on Retina Pictures
7.8.2 Analysis of the Evolved Programs
7.8.3 Further Experiments
7.8.4 Limitations L
7.8.5 Summary e e e e e

8 Conclusions

8.1 Summary of the Detection Results

8.2 Conclusions

8.3 Future Work

Bibliography

Index

xiii

171
171
171
172
173
173
175
177
177
178
178
179
179
181
181
182
182
183
184
184
184
189
191
191

193
193
197
201

203

225

CONTENTS

xiv

List of Figures

2.1
2.2

2.3

24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

A typical procedure for object detection: four stages.
Standard ROC curves. (a) A typical standard ROC curve; (b) The quality of
classifiers with ROC curves: ideal, good, poor and the worst cases.
Extended ROC curves. (a) A typical extended ROC curve; (b) The quality of
detectors with extended ROC curves: ideal, good, poor and very poor cases. . . .
A broad view of neural and genetic learning methods for object detection

A typical network node or neurono Lo oo
A typical three layer feed forward neural network.
A typical network training procedure with a training set and a validation set

An example of a single bit mutation.
An example of uniform crossover
A simple tree representation for a sample LISP program.
Effect of genetic operators in genetic programming. (a) Mutation in GP: Replaces

a random subtree; (b) Crossover in GP: Swaps two random subtrees.

A sample easy picture. L L
A sample coin picture. Lo L
A sample retina picture. oL Lo
Haemorrhage examples.
Micro-aneurism examples.ol o Lo e e
Vein examples. Lo e e e e e

Retina edge examples. e

Relationships between classification and detection data sets.
An overview of the basic approach.

Flow diagram of the basic approach.

XV

14

82
83
84

LIST OF FIGURES

4.4
4.5
4.6
4.7
4.8
4.9

5.1

5.2

5.3

5.4

5.5

6.1
6.2

6.3
6.4

6.5
6.6
6.7
6.8

6.9

Samples of network input patterns for the easy pictures. 93
A sample neural network architecture with (14x14 = 196) pixel input. 96
Sample object sweeping maps in object detection. 99
Centre-finding algorithm oL 100
Choice of thresholds 110

Some typical results (extended ROC curves) for object detection in the three

databases using the basic approach. 0 00000, 114

Sample initial input-hidden weights. (a) Random initial weights; (b) Centred
initial weights. L L 122
Comparison of results (in ROC curve) for object detection in the three databases
between the centred weight initialisation and the random weight initialisation.. . 137
Network architecture with four weight groups for object detection in the coin
pictures. L e e 138
Weights in a trained network for object detection in the coin pictures based on
random initial weights. L o oL L 139
Weights in a trained network for object detection in the coin pictures based on

the centred initial weights. oL oL oo o 140

An overview of the two phase approach. 144
The flow diagram of the two-phase approach associated with four methods: BP-

train, GA-train, BP-train + GA-refine and GA-train + GA-refine. 147
Weight updating mechanism in the genetic algorithm. 149

Sample genes and chromosomes associated with a network for the simple object

detection problem in the easy picture in the genetic algorithm. 150
Crossover in the GA-train algorithm. 151
Mutation in the GA-train algorithm. 152
Flow diagram of the GA-refine algorithm. 154

Comparison of the results for class head020 and class tail020 in the coin pictures
using the four detection methods. Lo Lo, 167
Comparison of the results for detecting class haem and class micro in the retina

pictures using the four detection methods. 168

xvi

LIST OF FIGURES

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

An overview of the genetic programming based approach for multiple class object
detection. L e e e e e e
Learning procedure of genetic programming adapted to multiple class object de-
tection. L L L e e e e e e e
The input field and the image regions and lines for feature selection in constructing
terminals. L e e e e e e e e e
A generated program for the coin detection problem
Mapping of program output to an object classification.
Sample generated programs for simple object detection in the easy pictures. . . .
A sample generated program for regular object detection in the coin pictures. . .
A sample generated program for very difficult detection problems in the retina
pictures e e e
The input field and the image boundaries for feature extraction in constructing

terminals. L e e e e

xvii

LIST OF FIGURES

xviii

List of Tables

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

3.2

3.3
3.4
3.5

4.1

TPF, FPF, FNF and TNF. e
Terms used in calculating detection rate and false alarm rate in a multiple class
object detection system. e
Number of training samples required by PAC learning for a network of 196-3-4. .
Main parameters applied to network training.00 L.
Main parameters applied to genetic algorithms.
Main parameters applied to genetic programming.
Object classification based on feed forward neural networks.
Object classification based on other kinds of neural networks.
Object detection based on neural networks.
Object detection related work based on genetic algorithms.

Object detection related work based on genetic programming.

Three different databases and the corresponding detection problems.
Key characteristics of the three databases and detection problems. (Note: the
definition of the terms used in this table can be found in section 4.1.1, page 88.)

Description of object classes in the easy pictures.
Description of object classes in the coin pictures.

Description of object classes in the retina pictures.

Results of network training and testing for object classification in the easy pictures
using the basic approach. (Network architecture: 196-4-4; n = 0.5; « = 0; Stop
criterion: Percent = 100%; Training set size = 60; Test set size = 180; Repetitions

= 15)

xix

15

56

76
7

LIST OF TABLES

4.2 Results of network training and testing for object classification in the easy pictures
using the basic approach. (Network architecture: 196-5-4; n = 0.5; @ = 0; Stop
criterion: Percent = 95%; Training set size = 60; Test set size = 180; Repetitions
= 15.) e e e e

4.3 Results of network training and testing for object classification in the coin pic-
tures using the basic approach. (Network architecture: 576-3-5; n = 0.5; a = 0;
Stop criterion: Percent = 100%; Training set size = 100; Test set size = 100;
Repetitions = 15.) L.

4.4 Results of network training and testing for object classification in the coin pictures
using the basic approach. (Network architecture: 576-5-5; n = 1.5; @ = 0; Stop
criterion: Percent = 95%; Training set size = 100; Test set size = 100; Repetitions
=15.)

4.5 Results of network training and testing for object classification in the retina pic-
tures using the basic approach. (Network architecture: 256-4-5; n = 1.5; a =
0; Stop criterion: Percent = 65%; Training set size = 100; Test set size = 61;
Repetitions = 10.) L e

4.6 Results of network training and testing for object classification in the retina pic-
tures using the basic approach. (Network architecture: 256-5-5; n = 0.5; a =
0; Stop criterion: percent = 75%; Training set size = 100; Test set size = 61;
Repetitions = 10.) L

4.7 Object detection results for class2 in the easy pictures under different thresholds
using one of the 15 trained networks. 0L,

4.8 Object detection results for the easy pictures using the basic approach. (Network
architecture: 196-4-4; Repetitions = 15.)

4.9 Object detection results for class?2 in the easy pictures using the basic approach.
(Network architecture: 196-4-4; Repetitions = 15.)

4.10 Object detection results for the coin pictures using the basic approach. (Network
architecture: 576-3-5; Repetitions = 15.) L. ..

4.11 Object detection results for class head020 in the coin pictures using the basic
approach. (Network architecture: 576-3-5; Repetitions = 15.)

4.12 Object detection results for class tail020 in the coin pictures using the basic

approach. (Network architecture: 576-3-5; Repetitions = 15.)

XX

LIST OF TABLES

4.13 Object detection results for class haem in the retina pictures using the basic
approach. (Network architecture: 256-4-5; Repetitions = 10.)
4.14 Object detection results for class micro in the retina pictures using the basic

approach. (Network architecture: 256-4-5; Repetitions = 10.)

5.1 Comparison of the results of network training and testing for object classification
in the easy pictures using random and centred initial weights. (Network architec-
ture: 196-4-4; n = 0.5; a = 0; Stop criterion: Percent = 100%; Training set size
= 60; Test set size = 180; Repetitions = 15.)

5.2 Comparison of the results of network training and testing for object classification
in the easy pictures using random and centred initial weights. (Network architec-
ture: 196-5-4; n = 0.5; a = 0; Stop criterion: Percent = 95%; Training set size =
60; Test set size = 180; Repetitions = 15.)

5.3 Comparison of the results of network training and testing for object classification
in the coin pictures using random and centred initial weights. (Network architec-
ture: 576-3-5; n = 0.5; a = 0; Stop criterion: Percent = 100%; Training set size
= 100; Test set size = 100; Repetitions = 15.)

5.4 Comparison of the results of network training and testing for object classification
in the coin pictures using random and centred initial weights. (Network architec-
ture: 576-5-5; n = 1.5; a = 0; Stop criteria: Percent = 95%; Training set size =
100; Test set size = 100; Repetitions = 15.)

5.5 Comparison of the results of network training and testing for object classification
in the retina pictures using random and centred initial weights. (Network archi-
tecture: 256-4-5; n = 1.5; a = 0; Stop criteria: Percent = 65%; Training set size
= 100; Test set size = 61; Repetitions = 10.)

5.6 Comparison of the results of network training and testing for object classification
in the retina pictures using random and centred initial weights. (Network archi-
tecture: 256-5-5; 7 = 0.5; a = 0; Stop criterion: Percent = 75%; Training set size
= 100; Test set size = 61; Repetitions = 10.)

5.7 Summary of the improvement in training time and test performance of the centred
weight initialisation method over the random weight initialisation.

5.8 Object detection results for class2 in the easy pictures using one of the 15 trained

centred weight networks under different thresholds.

xx1

LIST OF TABLES

5.9

5.10

5.11

5.12

5.13

5.14

6.1

6.2

6.3

6.4

6.5

6.6

Object detection results for the easy pictures using the centred initial weights.
(Network architecture: 196-4-4; Max_weight = 0.14; Repetitions = 15.)

Object detection results for class2 in the easy pictures using centred initial weights.
(Network architecture: 196-4-4; Maz_weight = 0.14; Repetitions = 15.)

Object detection results for the coin pictures using centred initial weights. (Net-
work architecture: 576-3-5; Maz_weight = 0.06; Repetitions = 15.)
Object detection results for class head020 in the coin pictures using centred initial
weights. (Network architecture: 576-3-5; maz_weight = 0.06; Repetitions = 15.)
Object detection results for class haem in the retina pictures using centred initial
weights. (Network architecture: 256-4-5; Max_weight = 0.28; Repetitions = 10.)
Object detection results for class micro in the retina pictures using centred initial

weights. (Network architecture: 256-4-5; Max_weight = 0.28; Repetitions = 10.)

Main parameter values used in the evolutionary process for object classification
in the easy pictures.
Results of network training and testing for object classification in the easy pictures
using the GA-train algorithm. (Network architecture: 196-4-4; Stop criterion:
Percent = 100%; Training set size = 60; Test set size = 180; Repetitions = 15.) .
Comparison of the results of network training and testing for object classification
in the easy pictures using the GA-train algorithm and the BP-train algorithm.
(Network architecture: 196-4-4; Stop criterion: Percent = 100%; Training set
size = 60; Test set size = 180; Repetitions = 15.)
Comparison of the results of network training and testing for object classification
in the easy pictures using the GA-train algorithm and the BP-train algorithm.
(Network architecture: 196-5-4; Stop criterion: Percent = 95%; Training set size
= 60; Test set size = 180; Repetitions = 15.)
Main parameter values used in the evolutionary process for object classification
in the coin pictures. Lo
Comparison of the results of network training and testing on object classification
in the coin pictures using the GA-train algorithm and the BP-train algorithm.
(Network Architecture: 576-3-5; Stop criterion: Percent = 100%; Training set
size = 100; Test set size = 100; Repetitions = 15.)

xxii

. 134

. 134

135

135

136

136

157

158

LIST OF TABLES

6.7 Comparison of the results of network training and testing for object classification

in the coin pictures using the GA-train algorithm and the BP-train algorithm.

(Network Architecture: 576-5-5; Stop criterion: percent = 95%; Training set size

= 100; Test set size = 100; Repetitions = 15.) 161
6.8 Main parameter values used in the evolutionary process for object classification

in the retina pictures. Lo 161
6.9 Comparison of the results of network training and testing for object classification

in the retina pictures using the GA-train algorithm and the BP-train algorithm.

(Network Architecture: 256-4-5; Stop criterion: Percent = 65%; Training set size

= 100; Test set size = 61; Repetitions = 10.) 162
6.10 Comparison of the results of network training and testing for object classification

in the retina pictures using the GA-train algorithm and the BP-train algorithm.

(Network Architecture: 256-5-5; Stop criterion: Percent = 75%; Training set size

= 100; Test set size = 61; Repetitions = 10.) 162
6.11 The main parameters for network refinement used by the GA-refine algorithm

based on the GA-train algorithm and the BP-train algorithm. 164
6.12 Comparison of object detection results for the easy pictures using the four detec-

tion methods. (Network architecture: 196-4-4; Repetitions = 15.) 165
6.13 Comparison of object detection results for the coin pictures using the four detec-

tion methods. (Network architecture: 576-3-5; Repetitions = 15.) 166
6.14 Comparison of object detection results for the retina pictures using the four detec-

tion methods. (Network architecture: 256-4-5; Repetitions = 10. DR: Detection

Rate. FAR: False Alarm Rate.) 167

7.1 Twenty domain independent, pixel level features based on image pixel intensities. 176
7.2 Parameters used for GP training for the three databases. 180
7.3 Comparison of the object detection results for the easy pictures: Genetic pro-
gramming based approach versus the basic neural network approach. (Input field
size = 14x14; Repetitions = 10.) L 182
7.4 Comparison of the object detection results for the coin pictures: Genetic pro-
gramming based approach versus the basic neural network approach. (Input field

size = 24x24; Repetitions = 10.) L 183

xx1ii

LIST OF TABLES

7.5 Comparison of the object detection results for the retina pictures: Genetic pro-
gramming based approach versus the basic neural network approach. (Input field
size = 16x16; Repetitions = 5.) 183
7.6 Frequency of terminals used in the four sample generated programs for the easy
pictures. L e e 186

7.7 Summary of the frequency of terminals used in the generated programs. 188

8.1 Comparison of the best detection results achieved using the six detection methods

for the easy pictures. 194
8.2 Comparison of the best detection results achieved using the six detection methods

for the coin pictures. L e 195
8.3 Comparison of the best object detection results achieved using the six detection

methods for the retina pictures. (DR: Detection Rate. FAR: False Alarm Rate) . 196

xxX1v

Chapter 1

Introduction

1.1 Motivation/Introduction

As more and more images are captured in electronic form the need for programs which can find
objects of interest in a database of images is increasing. For example, it may be necessary to
find all tumours in a database of x-ray images, all cyclones in a database of satellite images or a
particular face in a database of photographs. The common characteristic of such problems can
be phrased as “Given subpicture;, subpictures...subpicture, which are examples of the object
of interest, find all pictures which contain this object and the locations of all of the objects of
interest”. Examples of this kind include target detection problems [60, 202] where the task is
to find, say, all tanks, trucks or helicopters in a picture. Unlike most of the current work in the
object recognition area, where the task is to detect only one object of a single class or to find
several objects of a single class in a large picture [60, 157, 161], the goal of this thesis is to detect
multiple objects of a number of different classes in a database of large pictures.

The object recognition task using traditional image processing and computer vision methods
[13, 23, 48, 214] usually involves the following subtasks: preprocessing, segmentation, feature
extraction and classification. The main goal of preprocessing is to remove noise or enhance
edges. Segmentation aims to divide an image into coherent regions. Feature extraction is
concerned with finding transformations to map patterns to lower-dimensional spaces for pattern
representation and to enhance class separability. The output of feature extraction, which often
is a vector of feature values, is then passed to the classification step. Using these vectors, the
classifier determines the distinguishing features of each object class, such that new vectors are
placed in the correct class within a predetermined error tolerance. In general, the algorithms

or methods for preprocessing and segmentation vary from one problem domain to another. To

CHAPTER 1. INTRODUCTION

obtain good performance, some “important” specific features have to be manually determined
(selected and extracted) and the classifier has to be built or selected for the specific domain.
This thesis focuses on the development of a domain independent method without preprocessing
and segmentation for multiple class object detection.

Most work which has been done for object detection and recognition problems uses multiple
independent stages[29, 155]. In the multiple stage systems, the current stage uses the results of
the previous stage as inputs, rather than the original source data (pictures). The final results rely
too much upon the results of each stage. If some objects are lost in one of the early stages, it is
very difficult or impossible to recover them in a later stage. To avoid these disadvantages and use
the potential benefits of learning-based methods (section 2.2, page 19), this thesis concentrates
on the investigation of a single stage, learning/adaptive approach.

In recent years, neural and genetic learning paradigms (neural networks, genetic algorithms
and genetic programming) have attracted attention as very promising methods of solving auto-
matic target recognition and detection problems [24, 73, 170, 172, 177, 184, 186, 198, 206]. A
wide variety of problem domains have been shown to be amenable to being treated with these
learning and adaptive techniques due to the enormous flexibility of the representation afforded.
In particular, neural and genetic systems offer potentially powerful learning and adaptive ability
and collective computational properties by mimicing human behaviour and evolutionary pro-
cesses. The automatic, multiple class object detection task is one of the most difficult problems
in computer vision and automatic target recognition [155, 161]. While there have been many
other recent developments in machine learning such as support vector machines [143, 169], en-
sembles of classifiers [85] and Gaussian processes [61], we have chosen to work with neural and
genetic learning paradigms because they have been successfully applied to automatic object
classification tasks and we want to investigate their potential ability to multiple class object
detection problems.

In terms of the input patterns of the learning paradigms for object detection and recognition,
two main approaches have been used for these kinds of problems — feature based and pixel based.
In feature based approaches, various features such as brightness, colour, size and perimeter are
extracted from the sub-images of the objects of interest and used as inputs [29, 157, 207].
These features are usually different and specific for different problem domains. In pixel based
approaches [36, 91, 172], the pixel values (or pixel level features) are used directly as inputs.
Extracting and selecting good specific features for different domains is very time consuming and

programs for feature selection and extraction often need to be hand-crafted. These features are

1.2. GOALS OF THE THESIS

not the focus in this thesis. Instead, the main focus will be on the use of pixel data and some

domain independent, pixel level image features.

1.2 Goals of the Thesis

This thesis aims to investigate a learning/adaptive, domain independent approach to multiple
class, translation invariant and limited rotation invariant object detection problems. The key

terms are defined and described as follows.

Definition 1.1 Object Detection

Object detection in this thesis refers to the detection of small objects in large pictures. It
consists of both object classification, which gives the classes of the objects of interest, and
object localisation, which gives the positions of all the objects of interest in the large pictures.

This is identical to the term target detection.

Definition 1.2 Multiple Class

In automatic object detection, in most cases, all the objects of interest are considered as one
class of interest. This is usually called the object versus non-object or target versus non-target
or object versus background detection problem. In contrast, the multiple class detection problem
refers to the case where there is more than one class of objects which must be detected. The

latter case is the focus in this thesis, which is generally more difficult than the former case.

Definition 1.3 Translation Invariance, Rotation Invariance and Size Invariance

Translation invariance means that the objects of interest can be detected no matter where they
are located. Rotation invariant detection means that the objects of interest can be detected no
matter what angles of orientation they have in the large pictures. Size invariance means that
objects can be detected no matter what size they are. The main consideration in this thesis is

translation and rotation invariance, but not size invariance.

Definition 1.4 Domain Independent
Domain independence means that the methods will work virtually unchanged on a large number

of problem types.

Definition 1.5 Learning and Adaptive

Learning and adaptive methods can automatically learn possible (candidate) solutions such as

CHAPTER 1. INTRODUCTION

rules, features, programs and networks for a specific task without using any prior knowledge
for the given domain. In other words, learning and adaptive methods have to be told precisely
how to learn, but not how to directly perform the task required in solving a specific problem.
This is quite different from the traditional object detection/recognition methods which usually
perform these tasks by extracting specific image features based on specific domain knowledge.
The learning/adaptive techniques used in this thesis are neural networks, genetic algorithms and

genetic programming.

As described above, most approaches developed for automatic object recognition or detection
normally use specific features extracted from a specific domain as inputs to the classifiers or
detectors. These extracted features vary from one problem domain to another. This usually
involves the hand-crafting of different programs for object detection in different domains. The
goal of this thesis is to avoid the problem of hand-crafting by (1) using pizel input, where
the raw image pixel data will be used as input of these methods; (2) using a set of domain
independent, pixel level features to form a general pre-existing feature library, from which the
genetic programming process is expected to automatically select just those features relevant to

a specific domain.

1.2.1 Hypotheses

To achieve the goal of domain independent object detection, the following specific hypotheses
will be explored on a sequence of detection problems of increasing difficulty to determine the

strengths and limitations of the different approaches which are introduced in this thesis.

1. Can a basic pixel based neural network approach be developed and applied to multiple
class object detection problems? The investigation of the basic approach will be described

in chapter 4.

2. Can a centred weight initialisation algorithm be developed to improve the network training
and the detection performance over the basic approach? The centred weight initialisation

of neural networks for object detection will be described in chapter 5.

3. Can a genetic algorithm, with the fitness of mean squared error, result in an improvement
of the neural network training and object detection performance over the backward error
propagation algorithm in the basic approach? The genetic algorithm for network training

and object detection will be described in chapter 6.

1.3. CONTRIBUTIONS OF THE THESIS

4. Can network refinement with a genetic algorithm, with the fitness based on the detection
rate and the false alarm rate, improve the detection performance of the neural networks?
The investigation of network refinement based on genetic algorithms will be described in

chapter 6.

5. Can the genetic programming learning paradigm be applied to multiple class object de-
tection and produce an improvement in detection performance over the basic approach on
the same detection problems? The investigation of genetic programming for multiple class

object detection will be described in chapter 7.

1.3 Contributions of the Thesis
The thesis makes the following major contributions:

1. This work has shown how to solve multiple class object detection problems by a single
learnt program. Most work in object detection only addresses two class problems, that is,
object versus non-object, or object versus background. Unlike most current research in this
area which uses different programs in multiple independent stages to solve the localisation
problem and the classification problem, this work only uses a single trained program (a
neural network or an evolved program) for both object classification and object localisation

in multiple class object detection problems.

2. This work has shown how object detection systems can be developed with image pixel
data input and how traditional specific feature extraction and selection can be avoided.
Most research in object detection using traditional image processing and computer vision
techniques contains multiple tasks such as preprocessing, segmentation, feature extraction
and object classification. The development of these detection systems usually involves a
time consuming investigation of good preprocessing and filtering methods, and especially a
hand-crafting of different programs for the extraction and selection of specific, important
image features for a particular problem domain. This work, however, directly uses the
pixel based data (raw image pixel data or domain independent, pixel statistics data) as
input to the learning systems in which the features relevant to a particular domain can
be automatically learnt through a learning or adaptive process. In this way, traditional

preprocessing, segmentation, specific feature extraction and selection are avoided.

CHAPTER 1. INTRODUCTION

3. This work has shown how to develop object detection systems based on neural networks
trained by the backward error propagation algorithm and how the detection performance
can be improved by use of the specialised initialisation of the network weights and by use

of genetic algorithms for network refinement.

4. This work has shown how to extend genetic programming to multiple class object detection.
As a relatively new learning paradigm, genetic programming has not previously been
applied to multiple class object detection problems. It is evident that genetic programming
has a great potential to be applied to difficult problems in the real world. In this thesis,
a genetic programming based approach is successfully developed for multiple class object
detection by constructing a terminal set, a function set and a fitness function. Twenty
domain independent, pixel level image features form the terminal set and the four standard
arithmetic operators construct the function set. The objects of interest are classified
according to the program classification map. The fitness function is developed based on
the detection rate and the false alarm rate of an evolved program. The approach can be
successfully applied to different object detection problems of increasing difficulty in which
genetic programming learning process can automatically select the features only relevant

to a particular problem domain.

1.4 Structure of the Thesis

The remainder of this thesis is organised as follows. After this introduction, chapter 2 presents
a detailed review of the literature. Starting from the basic concepts of object detection and
machine learning, an overview of neural networks, genetic algorithms and genetic programming
is presented. Related work on neural networks, genetic algorithms and genetic programming
relevant to object detection is then discussed. Chapter 2 also contains a brief discussion of
traditional image processing and computer vision techniques for object detection.

To test the approaches developed and described in this thesis, chapter 3 presents three image
databases. These databases are designed to be of increasing difficulty. The analysis of the these
databases is also described.

Chapter 4 presents a basic neural network approach for object detection problems. In this
approach, the raw image pixel data is used as input to the neural networks. The performance
of the basic approach will be used as the baseline for the comparisons with the other methods

described later in this thesis.

1.4. STRUCTURE OF THE THESIS

Chapter 5 describes a new approach to weight initialisation, the centred weight initialisation
algorithm, on the basis of the pixel based neural network approach. A comparison between this
new approach and the basic approach is also given.

To investigate the power of the genetic algorithm for object detection problems, chapter 6
presents a two phase approach to the use of genetic algorithms for object detection problems. In
the first phase, the network is trained on the cutouts (sample objects) by a genetic algorithm.
The fitness is based on the mean squared error of the cutouts. In the second phase, the weights of
trained networks are refined on the entire training images using a second genetic algorithm. The
fitness function in this case is based on the detection rate and false alarm rate. A comparison
of the new detection methods introduced in this chapter and the basic approach is discussed.

Chapter 7 presents a genetic programming based approach to multiple class object detection
problems. In this approach, the evolved programs use a domain independent, pixel level feature
set computed from a square input field large enough to contain each of the objects of interest.
They are applied, in a moving window fashion, over the large pictures in order to locate the
objects of interest. The fitness function is based on the detection rate and the false alarm rate.
A comparison between this approach and the basic neural network approach is also presented.

Chapter 8 concludes the main body of the thesis with a comparison of the best results
produced with the methods introduced in this thesis. The advantages and disadvantages of

these methods are presented. Suggested future work is also discussed.

CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

In this chapter, we first give a review of the problem domain, including object detection concepts,
performance evaluation and examples of object detection work based on traditional image pro-
cessing and vision techniques. Then we look at the machine learning paradigms and strategies
of neural networks, genetic algorithms and genetic programming. Finally, we present a survey

of learning and adaptive methods for object detection problems.

2.1 Overview of Object Detection

2.1.1 Object Detection

As can be seen in definition 1.1 (page 3), the term object detection used in this thesis integrates
both the object classification task and the object localisation task. The former task involves the
determination of the classes to which small objects in large pictures belong, and the latter task
involves the location of the centres of all the objects in each class of interest. This problem is
similar to the commonly used term automatic target recognition or automatic object recognition
and some tasks of image analysis. Here, we give a brief review of such relevant research.

Most research on object detection involves four stages: preprocessing, segmentation, feature
extraction and classification [26, 48, 66, 155], as shown in figure 2.1. The preprocessing stage aims
to remove noise or enhance edges. In the segmentation stage, the images are usually divided into
a number of coherent regions and “suspicious” regions which might contain objects of interest.
As a critical component, a stable, representative feature extraction system should be developed
to extract key features for a specific problem domain in the feature extraction stage. The result

of feature extraction is normally a feature vector. Finally, a classifier needs to be developed or

CHAPTER 2. LITERATURE REVIEW

selected, which will use these features to distinguish the classes of the objects of interest. The
algorithms or methods for these stages are generally domain dependent, particularly when using
traditional image processing and computer vision techniques. Learning paradigms such as neural

networks or genetic programming approaches have usually been applied to the classification

stage.
Source br . Segmentati Feature Classficat
rocessin mentation assification
Databases & 9 Extraction
() @) ©) 4

Figure 2.1: A typical procedure for object detection: four stages.

2.1.2 Main Aspects of Object Detection

We classify object detection problems according to three different criteria: the number of classes
of interest, the input of the detector/classifier and the number of independent stages used in the

detection system.

One Class versus Multiple Class

Regarding the number of object classes of interest in a single picture, there are two main types

of detection problems:

e One class object detection problem, where there are multiple objects in each picture,
however they belong to the same (single) class of interest. One special case in this category
is that there is only one object of interest in each source picture. In nature, these problems
contain a two class classification problem: object versus non-object, also called object versus
background. Examples are detecting small targets in thermal infrared images [172] and

detecting a particular face in photograph images [119].

e Multiple class object detection problem, where there are multiple object classes of
interest each of which has multiple objects in each picture. Detection of handwritten digits

in postal code images [114] is an example of this kind.

10

2.1. OVERVIEW OF OBJECT DETECTION

In general, multiple class object detection problems are more difficult than one class detection
problems. This thesis is focused on detecting multiple objects for each of the multiple classes in
a set of pictures, which is particularly difficult. Most research in object detection which has been
done so far belongs to the one class object detection problem, or even only object classification
problems (section 2.1.4 on page 18, section 2.5 on page 49, section 2.6 on page 64 and section

2.7 on page 67).

Feature Based versus Pixel Based

In terms of the input of classifiers/detectors, there are also two major approaches, as follows:

e Feature based approach, which uses specific image features as inputs to the selected or
developed detectors or classifiers. The features, which are usually highly domain depen-
dent, are extracted from the images or segmented images (object and non-object samples).
This approach generally involves time consuming hand-crafting of the appropriate feature
extraction programs. In a lentil grading and quality assessment system [207], for example,
features such as brightness, colour, size and perimeter are extracted and used as inputs to

a neural network classifier.

e Pixel based approach, where the raw pixel data of the image are directly used as inputs
to the detector or classifier. In this way, the hand-crafting of features can be removed.
Instead, this approach usually needs learning and adaptive techniques to learn features for
the detection task. Directly using raw image pixel data as input to neural networks for

detecting vehicles (tanks, trucks, cars, etc.) in infrared images [60] is such an example.

A special case here is that detectors or classifiers use a number of simple pixel based features
as inputs, which are either extracted from the images or selected from a preexisting feature
library. Such features are domain independent, for example mean and variance, and are
quite different from the specific features for a particular domain. In nature, these features
still belong to the pixel level and we call them domain independent, pizel level features.
These kinds of features are also called pizel statistics in [82]. Thus detection methods

based on such features can be still considered as pixel based approaches.

In the recent literature, most work has concentrated on the specific feature based approach,

while only a few papers used the pixel based approach (sections 2.1.4 on page 18, section 2.5

11

CHAPTER 2. LITERATURE REVIEW

on page 49, section 2.6 on page 64 and section 2.7 on page 67). To avoid the hand-crafting
problem and to investigate a domain independent approach, this thesis uses pixel based data
(raw image pixel data or pixel statistics) as inputs to neural networks, genetic algorithms and
genetic programming for multiple class object detection problems. More details of the learning
and adaptive techniques are presented in section 2.2 (page 19), section 2.3 (page 24), section

2.4.1 (page 37) and section 2.4.2 (page 42).

Multiple Stage versus Single Stage

According to the number of independent stages used in the detection procedure, we divide the

detection methods into two types:

e Multiple stage detection, which uses multiple independent stages for object detection.
Traditionally, there are four typical stages, preprocessing, segmentation, feature extraction
and object classification, as shown in figure 2.1. In general, each independent stage needs
a program to fulfill that specific task and accordingly multiple programs are needed for
object detection problems. Success at each stage is critical to achieving good final detection
performance. Detection of trucks and tanks in visible, multi-spectral infrared and synthetic
aperture radar images [202] and recognition of tanks in cluttered images [29] are two

examples.

e Single stage detection, which uses only a single stage to detect the objects of interest
in large pictures. There might be more than one phase in such a system, however these
phases are not totally independent. Typically, the goal of a latter phase is to refine or
continuously improve the program produced in a former phase. A key characteristic of
these kinds of methods is that there is only a single program produced for the whole object
detection procedure. Detecting tanks in infrared images [209] and detecting small targets

in cluttered images [172] based on a single neural network are examples of these kinds.

Most recent work on object detection problems is based on multiple stages. This thesis
focuses on using a single program (a neural network or a computer program evolved by genetic
programming) for object detection problems.

2.1.3 Performance Evaluation

This section presents an overview of the most commonly used performance measures for object

classification and detection: accuracy, true positive fraction and false positive fraction, detection

12

2.1. OVERVIEW OF OBJECT DETECTION

rate and false alarm rate, and the related ROC curves.

Accuracy

For an object detection/classification system, accuracy, also called percent correct, is defined as
the number of objects which are correctly detected/classified as a percentage of the total number

of desired objects in the database, as shown in equation 2.1.

N,
Accuracy = =2etected o 100% (2.1)

desired

Nyetecteq denotes the number of objects correctly detected or classified by the detection or clas-
sification system, and Ngegireq represents the number of desired objects in the data set.

It is clear that this measure has the fairly obvious limitation in that it does not reveal
the relative frequencies of false positive and the false negative errors [127], which usually are

important for object detection/classification problems.

TPF, FPF and Standard ROC Curves

True positive fraction (TPF) and false positive fraction (FPF) are frequently used in disease
diagnostic systems [127]. The terms true positive fraction and true negative fraction (TNF) are
synonymous with “sensitivity” (the fraction of patients actually having the disease in question
that is correctly diagnosed as “positive”) and “specificity” (the fraction of patients actually
without the disease that is correctly diagnosed as “negative”), respectively [123, 126]. In a
complementary way, false negative fraction (FNF) and false positive fraction represent the
conditional probabilities or frequencies with which actually positive (having the disease) and
actually negative (non-disease) patients are diagnosed incorrectly [123, 126]. To give a clear

view of these terms, we present them in table 2.1.

Actual Situation

Disease Non-Disease
True Positive Fraction | False Positive Fraction
Diagnosed Disease (TPF) (FPF)
Situation False Negative Fraction | True Negative Fraction
Non-Disease (FNF) (TNF)

Table 2.1: TPF, FPF, FNF and TNF.

13

CHAPTER 2. LITERATURE REVIEW

According to these definitions, FNF =1 —TPF, and FPF =1 —TNF. Because of the
interrelationships among these measures, it is necessary only to indicate a single pair, either
TPF and TNF or TPF and FPF are employed.

If one attempts to use a pair of these measures to compare the performance of two or more
diagnostic systems, an ROC curve, or Receiver Operating Characteristic curve (also known as
Relative Operating Characteristic curve), can be applied [127].

Standard ROC curves conventionally take the FPF as the x axis, and the TPF as the y axis.

A typical standard ROC curve is shown in figure 2.2 (a).

Ideal
1.0 1.0
§ " Less strict § d
‘g Confidence ‘%'é
i Thresholds s or
(5] [
= ‘\ =
R0} R0}
£ 05 A typical standard £ 05 Wofst
% ’ ROC curve %
= /. Stricter =
g Confidence g
o Thresholds o
(= [=
0 0.5 1.0 0 05 1.0
FPF (False Positive Fraction) FPF (False Positive Fraction)
(€) (b)

Figure 2.2: Standard ROC curves. (a) A typical standard ROC curve; (b) The quality of

classifiers with ROC curves: ideal, good, poor and the worst cases.

In the ROC curve, different confidence thresholds correspond different points, which represent
different pairs of TPF and FPF. A higher ROC curve (such as the “good” case in figure 2.2
(b)) would indicate greater discrimination capacity, because a larger value of TPF at each value
of FPF — or, equivalently, a smaller value of FPF at each value of TPF — can be achieved on
a higher curve if an appropriate confidence threshold is used. Similarly, a lower ROC (such as
the “poor” case in figure 2.2 (b)) would indicate less classification capacity. In addition, two
extremes of such a measure correspond to the worst case and the best (or the “ideal”) case.
The worst classification or diagnostic system, on the one hand, is usually defined as that which
has no discrimination between positives and negatives. A positive will have equal chance of
being interpreted as a positive or a negative, and vice versa. This means that true positive and
false positive fractions are equal, or TPF = FPF, which corresponds the straight line between
(0, 0) and (1.0, 1.0), that is, the diagonal in figure 2.2 (b). The ideal system, on the other
hand, represents perfect interpretation which follows a TPF = 1.0 for all values of FPF. This

14

2.1. OVERVIEW OF OBJECT DETECTION

corresponds to the top-left corner in figure 2.2 (b).

Detection Rate, False Alarm Rate and Extended ROC Curves

The standard ROC curve measure has been widely applied to classification systems [123, 127,
142]. However, it has some limitations for object detection systems: the total number of objects
of interest and non-objects must be known and relatively close. In object detection problems,
the number of non-objects is close to the total number of pixels of the background. It is very
common that there are only a few objects of interest (typically 1-20) and there are a large number
of non-objects (in a picture with 1000x 1000 pixels, the number is about 10°). In this case, the
FPF (the number of non-objects incorrectly classified as actual objects as the proportion of the
total number of non-objects) will be always very small and accordingly the results obtained by
different detection systems will always be very close to the ideal. This makes it very difficult
to compare these systems. To solve this problem, detection rate, false alarm rate and extended
ROC curves are used to evaluate the performance for object detection problems [172].
Detection Rate. The detection rate (DR) refers to the number of small objects correctly
reported by a detection system as a percentage of the total number of known (or desired, actual)
objects in the database. For multiple class object detection systems, if we have the terms in

table 2.2, then the detection rate for a single class and the overall detection rate (for all the

Terms Description
n Total number of pictures in image database
m Total number of object classes of interest
DR; Detection rate for class 4
DR Overall detection rate (for all the classes)
FAR; False alarm rate for class ¢
FAR Overall false alarm rate (for all the classes)

Ninown(%,7) | Number of the actual known objects

for the ith class in the jth picture in database

Nyeportea(t,7) | Number of the objects reported by a detection system

for class 7 in picture j

Nirue(2,5) Number of the objects correctly reported by a detection system

Table 2.2: Terms used in calculating detection rate and false alarm rate in a multiple class object

detection system.

15

CHAPTER 2. LITERATURE REVIEW

classes of interest) can be computed according to equation 2.2 and equation 2.3.

7'11_ N .’ .

DR; =
' Z?:l Nknown(zaj)

n_ n Nirue L, J
Zg_l Zz-l t ('L .7) % 100% (23)

DR =
Z?:l E:Zl Nknown(za.])

False Alarm Rate. The false alarm rate (FAR) here refers to the number of non-objects
incorrectly reported as actual objects by a detection system as a percentage of the total number
of desired known objects in the database. Similarly to the detection rate, the false alarm rate
for the ith class and the overall false alarm rate are illustrated in equation 2.4 and equation 2.5.

. Z?:l Nrepm‘ted(iaj) - E?:l Ntrue('iaj)

FAR; = — x 100% 2.4
' E?:l Nknown(za]) ’ ()

E?:l 2?;1 Nreported(iaj) - Z?:l Z;Z1 Nirue(,7)

FAR = adbisi =
ijl Zi:l Nlmown(za])

x 100% (2.5)

It is important to note that —

e The main goal of object detection is to obtain a high detection rate and low false alarm
rate. There is, however, a tradeoff between them for a detection system. Trying to improve

the detection rate often results in a increase in false alarm rate, and vice versa.

e While the definition of detection rate is similar to that of true positive fraction, the false
alarm rate is different from false positive fraction in classification or diagnostic systems.
The ranges of detection rate (or true positive fraction) and false positive fraction are both
between 0 and 1.0. The false alarm rate is also called false alarms per object or false
alarms/object [172], which may be greater than one or 100% in difficult object detection

problems.

e Detecting objects in pictures with very cluttered backgrounds is an extremely difficult
problem where false alarm rates of 200-2000% (that is the detection system suggests that

there are 20 times as many objects as there really are) are common [161, 172].

16

2.1. OVERVIEW OF OBJECT DETECTION

Extended ROC Curve. Extended ROC curves use the false alarm rate as the z axis and
the detection rate as the y axis. A sample extended ROC curve is presented in figure 2.3 (a).
Similarly to standard ROC curves, a higher extended ROC curve represents greater detection
capacity. There is also an ideal case, which refers to the situation that all the objects of interest
can be correctly detected with no false alarms at all, corresponding to the top-left corner in
figure 2.3 (b). Unlike the standard ROC curve which has the worst case corresponding to the
line between (0, 0) and (1.0, 1.0) (or the diagonal in figure 2.2 (b), page 14), a very poor extended

ROC curve can be very low (below the diagonal), even very close to the x axis.

Ideal
100 100
_ v
“ LessStrict
— Confidence —
S ’ Thresholds S or
[} (4] .
ko \ ko L
o o 0
c50 Atypical extended c 50 Y oF
S ROC curve 2
@ S s o)
D / Stricter ko]
&) , Confidence [a)
Thresholds
\ \ a \ \
0 300 600 900 0 300 600 900
False Alarm Rate (%) False Alarm Rate (%)

@ (b)

Figure 2.3: Extended ROC curves. (a) A typical extended ROC curve; (b) The quality of

detectors with extended ROC curves: ideal, good, poor and very poor cases.

Important Note

It is very important to note that most research which has been done in this area so far only
presents the results of the classification stage (only the final stage in figure 2.1, on page 10)
and assumes that all other stages have been properly done. However, the results presented in
this thesis are the performance for the whole detection problem (including the localisation and
classification). Thus, it is unfair to simply compare the results presented in this thesis with
those obtained by other systems which are developed only for the classification problem. It is
not a fair comparison either if one compares the performance presented in this thesis with that

only for one class detection problems.

17

CHAPTER 2. LITERATURE REVIEW

2.1.4 Examples of Conventional Object Detection

This subsection gives some sample work using traditional techniques for object detection.

Brunelli and Poggio [23, 24] developed and implemented two algorithms for face recognition.
The first algorithm is based on the computation of a set of geometrical features such as nose
width and length, mouth position and chin shape. The second is based on almost-grey-level
template matching. The algorithms were tested on a common database of 188 images, four for
each of 47 people (26 males and 21 females). About 90% classification accuracy was achieved
by using geometrical features and perfect recognition was obtained by using template matching.
In [23] the authors presented the details of the features and experiments.

Samaria and Harter [167] present a set of experiments of using continuous density Hidden
Markov Models for human face identification. Through these experiments, different parameter-
isations were assessed using their success rates in identifying 200 images from a database of 40
people. The results indicated that a large overlap in the sampling resulted in better recognition
performance and as the overlap becomes noticeable the effect of the window height is limited.

Yla-Jaaski and Ade [213] present a method of segmenting grey-value images into objects
and of recognising the detected objects. Starting from edge maps, the method extracted axial
descriptions of symmetrical shapes. Initially, a piecewise linear approximation of the binary edge
map was obtained. From any two of the resulting linear segments, a Linear Segment Pair (LSP)
was formed and several of its attributes were computed. These attributes were used to select or
reject the LSPs through symbolic rules and coarse numeric thresholds. Grouping the LSPs into
couples was governed by additional attributes and rules. The applications to shape recognition,
object recognition, and stereo correspondence were presented. The authors claimed that the
approach was useful for a broad range of images. It was applied to a robot vision system which
was capable of manipulating three dimensional, overlapping, real-world objects in close to real

time.

2.1.5 A Broad View of Neural and Genetic Learning Methods for Object

Detection

In this section, we present a very broad view of neural and genetic learning methods for object
detection related problems, as shown in figure 2.4. The details of object detection related work
using neural networks, genetic algorithms and genetic programming can be seen in sections 2.5

(page 49), 2.6 (page 64) and 2.7 (page 67).

18

2.2. OVERVIEW OF MACHINE LEARNING

Object Detectio%

Neural Methods Genetic Methods

Genetic Algorithms Genetic Programming

[Classification Only] Claﬁgzﬁg&‘i‘o‘:‘d Classification Only Clalsl‘s)lcf';(l:iastalgir‘l):n d

Gaussian
Feed Shared Atto- ART Probability| | Basis Neo- High Hybrid
Forward Weight IAssociative SOMs Function | | €ognition Order
Networks | | Networks | | Memory | | Networks Networks Networks | | NEWOrks | | Networks Networks
Feature Pixel
Based Based
Approach Approach

Figure 2.4: A broad view of neural and genetic learning methods for object detection

2.2 Overview of Machine Learning

The goal of this thesis is to investigate a learning/adaptive approach for object detection prob-
lems. Since machine learning is a large area, it is not necessary to review all of the aspects
of machine learning here. Instead, we only review the basic concepts, learning strategies and

learning paradigms that are directly related to the thesis.

2.2.1 Basic Concepts and Definitions

The ability to learn is a fundamental trait of intelligence. In general, the main goal of machine
learning is to learn or discover some kind of knowledge or features from a data set, and to use

them on unseen data set. But what is the definition of machine learning? A precise definition of

19

CHAPTER 2. LITERATURE REVIEW

learning is difficult to formulate. We give some commonly accepted descriptions or definitions

of machine learning as follows.

Friedberg [53, page 2] and [54, page 285] framed the central issue of machine learning as
follows:
If we are ever to make a machine that will speak, understand or trans-
late human languages, ... we must reduce these activities to a science
so exact that we can tell the machine precisely how to go about doing
them or we must develop a machine that can do things without being
told precisely how We could teach this machine to perform a task
even though we could not describe a precise method for performing it,
provided only that we understood the task well enough to be able to
ascertain whether or not it had been done successfully. ... In short,
although it might learn to perform a task without being told precisely

how to perform it, it would still have to be told precisely how to learn.

Michalski, Carbonell and Mitchell [129, pages 1, 28] described the machine learning as follows:
Learning is a many-faceted phenomenon. Learning processes include
the acquisition of new declarative knowledge, the development of motor
and cognitive skills through instruction or practice, the organisation of
new knowledge into general, effective representations, and the discovery
of new facts and theories through observation and experimentation. ...
The study and computer modelling of learning processes in their mul-
tiple manifestations constitutes the subject matter of machine learning.
... Learning denotes changes in the system that are adaptive in the sense
that they enable the system to do the same task or tasks drawn from

the same population more efficiently and more effectively the next time.

Mitchell [132, pages xv, 1] further stated that
Machine learning is the study of computer algorithms that improve au-

tomatically through experience.

Jain, Mao and Mohiuddian [90, pages 34, 35] described learning process as follows:

20

2.2. OVERVIEW OF MACHINE LEARNING

To understand or design a learning process, one must first have a model
of the environment, or determination of a learning paradigm. Second,
one must understand how the learning system works, or the definition of
the learning rules. A learning algorithm usually refers to the procedure

in which the learning rules are used for improving the learning system.

Banzhaf, Nordin, Keller and Francone [15, page 9] claimed that
Machine learning is a process that begins with the identification of learn-
ing domain and ends with testing and using the results of the learning.
The key parts of this process are the “learning domain”, the
“training set”, the “learning system”, and “testing” the results of the

learning process.

2.2.2 Training Set and Test Set

Definition 2.1 Training Set
A collection of input patterns or instances from which the rules or features are induced is usually

called a training data set, or a training set for short.

Definition 2.2 Test Set
A collection of input patterns or instances which were never used or unseen when the rules or

features were learnt is known as a test data set, or a test set for short.

In the usual case, a training set is used for finding or learning rules or features, while a test

set is for measuring the performance of these learnt rules or features.

2.2.3 Generalisation Ability

One of the major advantages of a learning system is the ability to learn/extract the useful features
from the training data set and to apply these features to the test data. The generalisation ability
depends on how well the learning system has modelled the relationships in the training set. If
the training set contains all the possible relationships between all the cases, then the learned
program, once trained, should give good performance on the test data. There are two important
issues here: owvertraining or overfitting, which will be discussed in “Early Stopping” in section

2.3.3 (page 29), and the training set size, which will be discussed in section 2.3.5 (page 32).

21

CHAPTER 2. LITERATURE REVIEW

2.2.4 Three Learning Strategies

There are three main learning strategies: supervised, unsupervised, and hybrid [90].

Supervised Learning

In supervised learning, or learning with a teacher, the learning system is provided with a correct
answer (desired output) for each input pattern. The learning process is continued until the
system produces answers as close as possible to the known desired correct answers.
Reinforcement learning is a variant of supervised learning in which the learning system is
provided with only a critique or a clue about the correct answers, rather than the desired outputs

themselves.

Unsupervised Learning

Unsupervised learning, or learning without a teacher, does not require a correct answer associ-
ated with each input pattern in the training data set. It usually explores the underlying structure
in the data, or correlations between patterns in data, and organises patterns into categories from

these correlations.

Hybrid Learning

Hybrid learning combines both supervised and unsupervised learning. Part of the solutions (net-
work weights, architecture, or computer programs) are determined through supervised learning,
while the others are obtained through unsupervised learning.

In this thesis, the focus will be on using the first strategy, that is, supervised learning.

2.2.5 Main Learning Paradigms

There is no commonly agreed taxonomy of machine learning paradigms. It is, however, possible

to summarise the major paradigms:

e The Connectionist Paradigm. Connectionist learning systems are also called artificial
neural networks (ANNs or NNs) or parallel distributed processing systems (PDPs) [166].
Neural networks are algorithms for cognitive tasks, such as learning and optimisation [134],
which are based on concepts derived from research of the human brain. A network is gen-
erally constructed from nodes, links, weights, biases, and transfer function. The network

weights are automatically updated through network training by the learning algorithm,

22

2.2

OVERVIEW OF MACHINE LEARNING

which can be selected or developed based on the architecture of the network. The main

concepts of neural network learning are described in section 2.3 (page 24).

The Genetic Paradigm. Genetic learning systems originally refer to genetic algorithms
(GAs) [64], which are search algorithms based on the mechanism of natural selection and
natural genetics. They usually use bit strings, which are generally called chromosomes,
to represent candidate solutions. During the evolutionary process, the genetic operators,
selection, crossover and mutation are applied in order to generate fitter solutions. An

overview of genetic algorithms is presented in section 2.4.1 (page 37).

Since the 1990s, genetic programming (GP) [101] has become another important genetic
learning paradigm. Unlike genetic algorithms which use the bit strings as inputs and out-
puts, genetic programming uses a terminal set and a function set as inputs and evolved
programs as outputs of the learning system. The main idea of genetic programming learn-

ing paradigm is presented in section 2.4.2 (page 42).

The Case Based Learning Paradigm. Case based learning systems, also known as
instance based learning, represent knowledge in terms of specific cases or experiences and
rely on flexible matching methods to retrieve similar cases and apply them to new situa-
tions. One of the common schemes of this paradigm is nearest neighbour learning, which
finds the stored case nearest to the current situation according to some distance measure

and then uses it for classification or prediction.

The Induction Learning Paradigm. Induction learning systems are characterised by
deriving or inducing a general rule from a set of examples [149], and usually employ decision
trees, condition-action rules, or similar knowledge structures. Nodes in a decision tree
involve testing a specific attribute, which usually compares the value of an attribute with
a constant. Some (sub) trees, however, compare two or more attributes. Leaf nodes give a
classification that applies to all examples which reach the leaf or a probability distribution
over all possible classifications. To test the learnt decision tree, unknown examples can be
applied by routing the tree according to the values of the attributes tested in successive
nodes. When a leaf is reached examples are classified according to the class assigned to

the leaf.

The Analytic Learning Paradigm. Analytic learning systems represent knowledge

as rules in logic form, but typically employ a performance system that solves multi-step

23

CHAPTER 2. LITERATURE REVIEW

problems using some search process. A common technique is to represent knowledge as
Horn clauses, then to phrase problems as theorems and to search for proofs. Learning
in this framework uses background knowledge to construct explanations (or proofs), then
compiles the explanations into more complex rules that can solve similar problems. Most
work on analytic learning has focused on improving the efficiency of search, but some has

dealt with improvement of the classification accuracy.

In this thesis, we focus on the first two paradigms, that is, neural networks, genetic algorithms

and genetic programming.

2.3 Overview of Neural Networks

Artificial neural network research has experienced three periods of extensive activity [90]. The
first peak appeared in the 1940s, when McCulloch and Pitts [125] introduced a binary threshold
unit as a computational model for an artificial neuron and described a logical calculus of neural
networks. The second occurred in the 1960s due to Rosenblatt’s perceptron convergence theorem
[158] and Minsky and Papert’s work which showed the limitations of a simple perceptron [131].
Minsky and Papert’s results greatly decreased the enthusiasm of many researchers, especially
those in the computer science community [90]. This resulted in a long “pause” in neural network
research for almost 20 years. The third period came from the early 1980s and since then neural
network research has received considerable renewed interest. The major work includes Hop-
field’s energy approach [80] in 1982 and the backward error propagation learning algorithm for
multilayer perceptrons (multilayer feed forward networks) popularised by Rumelhart et al. [166]
in 1986'. With the development of various of types and applications, artificial neural network
research has gradually become one of the two main strands (symbolism versus connectionism)
in the area of artificial intelligence.

Many different types of neural networks have been developed and applied to object detection
and vision problems (section 2.5, page 49). These include multilayer feed forward networks,
recurrent networks, Hopfield networks, ART networks and self organising maps. The various
types of networks and neurons are too numerous to describe here. The neural networks used
in this thesis are multilayer feed forward networks with the nodes having a logistic activation
function. An overview of the main terms and concepts of these kinds of neural networks is given

in the rest of this section.

'The backward error propagation algorithm was first proposed by Werbos [203] in 1974.

24

2.3. OVERVIEW OF NEURAL NETWORKS

2.3.1 Terminology

A neuron (also called a unit or node) is the basic computational cell in a neural network. A node
can have several links carrying signals into or out of it. Links are also referred to as connections.
Each link has an associated weight. The weight can be looked upon as a factor which strengthens
or weakens a signal which is fed into the link. In addition, a node usually has also an associated
bias, which can be viewed as a constant input to the node from a “virtual” unit in the network.
An artificial neural network in general is a collection of such units linked to each other in some

manner. A typical unit or node is presented in figure 2.5.

Figure 2.5: A typical network node or neuron

In figure 2.5, the links, input weights, bias and the activation function (or transfer function,

f) are presented. The input of the node i, net;, is computed according to equation 2.6.

n
net; = Z WOy + b; (2.6)
k=1

Here n is the number of the nodes connecting into node ¢, Wy is the weight on the connection

to node ¢ from node k, Oy, represents the activation (output) of node k, b; stands for the bias of
node . If node 7 is an input node, then O = 1 and b; = 0, that is, input nodes usually have zero
bias and the net input of an input node is the value of the input pattern at that node. Input
nodes have their activations set to a value determined by the input pattern. The activation at

non-input nodes is usually determined by applying an activation function? to the net input to

2The term output function can be different from the activation function. The term transfer function often
denotes the combination of activation function and output function. Here we do not distinguish these terms. In

other words, the three terms are considered as the same in this thesis.

25

CHAPTER 2. LITERATURE REVIEW

that node. The most commonly used activation function, also used in this thesis, is the logistic
or sigmoid function. According to this idea, the output of the node %, O;, is presented in equation

2.7.

1

Oi = f(net;) = 1§ et

(2.7)

where (is a constant which can be used to change the shape of the curve of function f. The
default value of 8 is 1.0, which is used in this thesis.

Neural networks also distinguish their nodes as being input nodes, hidden nodes and output
nodes. The input nodes receive signals from outside the network, for example, features or
attributes for a problem domain. The output nodes collectively hold the results of the neural
computation, for instance, the labels of the classes. The nodes between the input and output
nodes are called intermediate or hidden nodes. There is only one input layer and one output
layer in multilayer feed forward networks, however there might be more than one hidden layer
in the network architecture. If there is more than one hidden layer, the layers, from the input
layer to the output layer, are usually called the first hidden layer, the second hidden layer, etc.
In this way, each layer except the input layer has incoming connections from the previous layer,
and each layer except the output layer has the connections outgoing to the next layer. Figure
2.6 shows a typical three layer feed forward neural network.

In figure 2.6, there is only one hidden layer. The theoretical results provided by Irie and
Miyake [87] and Funahashi [59] have proved that any continuous mapping can be approximated
by a network with a single hidden layer, which means that one hidden layer is sufficient for any
practical purpose and there is no need for more than one hidden layer. This architecture is used
in this thesis. The collection of the inputs applied to the input nodes at one time constitutes
an input pattern and the corresponding outputs produced form an output pattern. In supervised
learning there is also a target pattern for each input pattern. Comparing the network actual

outputs and the target patterns can decide whether the network has learnt the tasks.

2.3.2 Network Training

In object classification, the main goal of the network training is to learn weights to distinguish
different classes of objects and the background. The main idea of the network training is as

follows.

26

2.3. OVERVIEW OF NEURAL NETWORKS

Output Pattern

Output Layer

oye
RS
SR

o Q” () Hidden Layer
X

ltfngm‘; o

Input Layer

Input Pattern

Figure 2.6: A typical three layer feed forward neural network.

Each input pattern in the training set is presented to the network which produces the actual
output. This is compared with the target output. If the actual output matches (to some desired
level of precision) the target output, the neural network is said to have been trained. Otherwise,
the internal weights and biases of the network nodes need to be adjusted in such a way as to
produce the target outputs. An epoch is a cycle in training which consists of presenting all the
input patterns in the training set, passing the signals through the network and calculating the
outputs, and adjusting the weights of the network if the actual outputs and the target outputs
do not match. Typically the network weights have to be repeatedly adjusted over a number of
epochs until a certain criterion is reached. This is called a termination strategy. Termination

strategies are discussed in section 2.3.3 (page 29).

The Backward Error Propagation Algorithm

There are several algorithms for training multilayer feed forward neural networks, such as the
backward error propagation algorithm, the back percolation algorithm, and the quickprop algo-
rithm [216]. Among these, the backward error propagation (BP) is the most commonly used one.
It is well known that BP networks can perform well for general, relatively simple classification

problems. In this thesis, we will investigate whether these kinds of networks can do a good

27

CHAPTER 2. LITERATURE REVIEW

job for a variety of object classification and detection problems. The details of the training
algorithm are described by Rumelhart et al. [76, 165]. Only a brief overview is presented here.
Training a feed forward neural network with the BP algorithm consists of the following

procedure:

e Forward propagation phase: An input pattern is presented to the network. The input is

then propagated forward into the network until activation reaches the output layer.

e Backward propagation phase: The output is then compared with the target output. The
error, i.e. the difference (delta) §; between the output o; and the desired output ¢; of
a target output node j is then used together with the output o; of the source node ¢ to
compute the necessary changes of the weight w;;, or Aw;;. To compute the deltas of the
weights into the hidden nodes, for which no teaching inputs are available, the deltas of
the following layer, which have already been obtained, are used. In this way the errors

(deltas) are propagated backward.

The weight changes in the BP algorithm are computed according to equation 2.8 and equa-

tion 2.9 [165, 216]:

Awij = 775j0i (2'8)

5 = 0j(1 — 05)(t; — o) if node j is an output node
0j(1 = 05) >k Okwj if node j is a hidden node
where:
i: index of a predecessor to the current node j with link w;; from ¢ to j;
j: index of current node;
k: index of a successor to the current node j with link wj; from j to k.
7: learning rate;
d;: error of node j;
t;: teaching input (or the target output, or the desired output) of node j;

0;: output of the preceding node 1.

Variations of the BP Algorithm

Momentum: The BP algorithm is basically a gradient descent scheme. In practice, several

28

2.3. OVERVIEW OF NEURAL NETWORKS

variations can be made to its actual implementation. A common one is the so-called Backprop-
Momentum [165, 216] in which the momentum component is introduced and calculated from the

delta values for the previous epoch, as shown in equation 2.10.

Awij (t + 1) = 7751'01' + ozAwij (t) (2.10)

Here:
Aw;;(t 4 1): weight change in the epoch;
Aw;j(t): weight change in the previous epoch;

«: a constant specifying the momentum.

However, the use of momentum is somewhat controversial [189]. In this thesis, momentum
is not used.

Online learning: At what stage are the network weights updated when training patterns are
presented? There are, in general, two possibilities [42, 114]. One is online learning (sometimes
called the stochastic gradient procedure), where the weight changes are applied to the network
after each training pattern. The second is off-line learning (sometimes called the true gradient
procedure) in which the weight changes are accumulated for all training patterns and the sum of
all changes is applied after one full epoch. Online learning was found to converge much faster
than the off-line learning on image data [42, 114] and is used in this thesis.

Fan-in: Another variation of network training is weight initialisation and weight changes
modified by the fan-in factor [42, 116, 164]. The fan-in is the number of elements that either
excite or inhibit a given node of the network. The weights are divided by the number of inputs
of the node to which the connection belongs before network training and the size of the weight
change of a node is updated in a similar way during network training. In this thesis, the weight

change of a node is divided by the fan-in.
2.3.3 Termination Strategies
There are a number of different ways of determining when to stop training. The main ones are:

1. The epoch/cycle control strategy, where the training will keep going until the training

epochs/cycles reach a user defined number.

2. The error control strategy, which uses the mean squared error (MSE) as termination

29

CHAPTER 2. LITERATURE REVIEW

criterion. When the MSE of the training set is smaller than a user defined value, training
will be stopped. Sometimes, the total sum squared error (TSS) is also used for this purpose.

The definitions of the TSS and the MSE are presented in section 2.3.4 (page 30).

3. The proportion control strategy. When the proportion of the number of patterns correctly
classified among the number of total training set reaches a pre-defined percentage, the
training will be terminated. A classification is regarded as correct if the output node with
the largest activation value (actual output activation value) among all the output nodes
is identical to that whose target output value is 1.0 (or 0.9). Otherwise, this pattern is

incorrectly classified.

4. The early stopping strategy. This strategy is used to avoid overfitting. Owerfitting, also
called overtraining, means the trained network can achieve high accuracy on the training
set but produces low accuracy or a high error rate on the test set. This is mainly due either
to too many epochs performed in network training or too many hidden nodes used in the
network architecture. To obtain good generalisation, a third data set, the wvalidation set,
can be introduced [216] and the number of hidden nodes (and/or hidden layers) should be
carefully determined. The determination of the number of hidden nodes will be described
in section 4.4.3 (page 97). The validation set is separated from the training set, but it is
used for network training. A typical sample of network training with a training set and a

validation set is presented in figure 2.7.

In this figure, the lower curve and the upper curve show the network learning on the
training set and the validation set respectively. The training should be stopped at the
minimum of the validation set error, that is, when the mean squared error (MSE) reaches
0.13 at about 250 epochs. At this point the network generalises best and overtraining can

be avoided.
5. The user control strategy, where the user/network trainer forces the training to stop in
case he/she thinks there is no need to continue the training.
2.3.4 Performance Measurement

The main goal of network training is to optimise the generalisation of the network by min-
imising the network error. The error measured during network training or testing can be the

total sum squared error (TSS), the mean squared error (MSE) or the root mean squared error

30

2.3. OVERVIEW OF NEURAL NETWORKS

120 —

105 |

0.90 —

075 —

0.60 —

045 |

030 —

015 —

0 100 200 300 400 500 X (Epochs)

Figure 2.7: A typical network training procedure with a training set and a validation set

(RMSE). These errors are computed according to equation 2.11, equation 2.12 and equation

2.13 respectively [94, 93, 166].

n m

1
TSS =3 SO (tpi — 0pi)? (2.11)
p=1:=1
TSS 1 & &
MSE =—"== 3" (tp — op)° (2.12)
n 2n — 4

p=11=1
RMSE — |55 (2.13)

n-m

where:

p: the index of the patterns in the data set (training set or test set);
n: the total number of the patterns;

1: the index of the output nodes of the network;

m: the total number of the output nodes;

31

CHAPTER 2. LITERATURE REVIEW

tpi: the target output for the sth output node for the pth pattern;
op;: the actual output of the ith output node for the pth pattern.

2.3.5 Number of Examples in Training Set

As mentioned earlier, one important issue for generalisation of a learning system is the number
of examples in the training set. In this subsection, we briefly discuss PAC results, heuristic
guidelines and a number of successful neural systems that use small training sets to train large

networks.

PAC Learning

Probably Approzimately Correct (PAC) Learning [9, 78, 95] addresses the relationship between
the number of training examples and the accuracy with which a classifier can be learnt.

A classifier (h) can be considered “good” if it has an error rate smaller than some small
number e. It is bad if the error rate is greater than e.

A learning algorithm can be considered “good” if it has a low probability (less than §) of

producing a bad classifier (equation 2.14).

Plerror(h) > €] <4 (2.14)

According to equation 2.14, different degrees of “goodness” will correspond to different values
of € and 4. The smaller ¢ and §, the better the learnt concept will be.
PAC theory seeks to establish a relationship between m, the number of examples and € and
0. Given that we want to achieve some level of accuracy in a learnt neural network, the PAC
learning model gives the number of examples needed in the training set as
l—e. 1 V.Cdim—1

m > max]| . lng, 39

] (2.15)

where m denotes the number of examples in the training set and V.C.dim is the VC dimension
of the network. The Vapnik-Chervonenkis (VC) dimension is a measure of the learning capacity
of a learning system as determined by its complexity [9, 201].

The VC dimension of a single-layer (of weights) feed forward neural network is simply the
number of its weights. For a multilayer feed forward network, the lower bound is the number of

weights in the network [9, 18, 201].

32

2.3. OVERVIEW OF NEURAL NETWORKS

According to equation 2.15, for some given €, § and the network architecture, the number of
training examples for a network can be obtained. Table 2.3 shows some examples of a 196-3-4
network with different € and ¢. In this table, W is the number of weights and N is the number

of nodes in the network.

€ 0.05 0.05 0.05 0.01 0.01 0.01
) 0.1 0.01 0.001 0.1 0.01 0.001
|14 600 600 600 600 600 600
N 203 203 203 203 203 203
V.C.dim | 600 600 600 600 600 600
m 9.6x10% | 9.6x10% | 9.6x10° | 5.4x107 | 5.4x107 | 5.4x107

Table 2.3: Number of training samples required by PAC learning for a network of 196-3-4.

As can be seen from table 2.3, training a 196-3-4 network requires millions of examples

according to the PAC learning theory, many more than are generally available in practice.

Heuristic Guidelines

A number of heuristic guidelines for determining the size of the training set have been proposed
for a given size of the network.

Baum and Haussler [18, page 153] stated that: The number of training examples for a
network is approximately the number of weights in the network times the inverse of the accuracy
parameter, €. If one wants to achieve an accuracy level of 90%, according to this heuristic
guideline, about 10 times as many training examples as the weights in the network would be
required. For a feed forward network of 196-3-4, 6000 (= 600 x 10) would be needed for training
the network.

Bartlett [17, page 3] claimed that “for pattern classification applications, the VC-bounds
seem loose; neural networks often perform successfully with training sets that are considerably
smaller than the number of network parameters.” In other words, the number of training
examples required for network learning can be smaller than the number of weights in the network.

Lawrence et al. [111, page 2] suggested that the optimal number of weights in a network
can be much larger than the number of training examples for image recognition such as face

recognition problems.

33

CHAPTER 2. LITERATURE REVIEW

Wasserman [201, page 224] thinks that learning theory is far from complete and that neural
network engineers must rely on experience, common sense and creativity to decide the size of

the training set according to the problem domain.

Large Networks with Small Training Set

As discussed earlier, for a learning system to obtain good generalisation performance, a large
number of training examples are required according to the learning theory. However, many
practical neural network researchers have rejected these results on the basis of experience and
many networks have been successfully trained with far fewer training examples [115, 201]. In
particular, Anthony [9] claimed that smaller training set than predicted by PAC learning should
suffice. The main reason is that the original assumptions in PAC leaning and VC dimension are
not in general accurate in practice [77, 78]. A number of practical applications have proven this
point.

Dunston et al. [47] present a neural network model for an automated control application.
In this approach, the architecture of the network used is 20-7-6-1, a multilayer feed forward
network, which has 188 weights. The network was successfully trained with 96 examples in the
training set.

Ciesielski and Zhu [36] describe a neural network system for bacterial growth detection. One
of the networks used here was a three layer feed forward network with the architecture of 400-
10-1. In this network, the number of weights was 4010. The network was successfully trained on
263 training examples by the backward propagation algorithm and the trained network resulted
in very good results (99.32% correct classification).

Shirvaikar and Trivedi [172] use neural networks to detect small targets in high clutter
backgrounds. The network with the architecture of 91-2-2-1 has 188 weights. Two groups of
training set were used to trained the network by the backward propagation algorithm with a
piecewise linear transfer function. The first training set consisted of 14 examples (7 targets and
7 background examples) and the second had 13 examples (1 target and 12 backgrounds).

LeCun et al. [43, 114, 116] describe a variation of multilayer feed forward network — a shared
weight neural network architecture for handwritten digit recognition. The network has one input
layer, three hidden layers and one output layer. The number of nodes in these layers from input
to output direction is 256, 768, 192, 30 and 10 respectively. In this network, there were in
total 1256 nodes, 64660 links/weights. Considering the weight sharing feature, the number of

independent parameters was 9760. This network was successfully trained on 7291 examples by

34

2.3. OVERVIEW OF NEURAL NETWORKS

the backward propagation algorithm.

2.3.6 Main Parameters

Table 2.4 gives a brief description of the main parameters used for network training.

Parameter Name Description
Random range(r) | The random range ([-r, r]) of the initial weights.
Learning rate(n) The constant in true gradient descent.

The bigger the learning rate, the larger the changes in the weights.

Momentum(«) A constant which determines the effect of past weight changes

on the current direction of movement in weight space.

Critical error (ce) | The desired error (TSS, MSE or RMSE) for stopping network
training. If the actual error is equal to or less than this error,

the training will be terminated.

Correct_Percentage | The desired percentage of patterns correctly classified/learnt in
(Percent) the training set. If the actual correct percentage of the
training patterns is equal to or greater than this pre-defined

value, the training stops.

Table 2.4: Main parameters applied to network training.

2.3.7 Tackling a Problem with Neural Networks

Assuming that a generalised tool based on the backward error propagation algorithm for training
multilayer feed forward networks is available, the task of using these kinds of neural networks
for any given problem becomes one of determining a suitable network architecture and a set of
suitable parameters. More specifically, the following questions need to be considered before the

experiments can be performed:
e How to properly arrange the data for network training and for measuring the results?
e What is the number of output nodes?

¢ How many input nodes are needed?

35

CHAPTER 2. LITERATURE REVIEW

e How many hidden layers are needed and how many nodes in each hidden layer?

e What values can be given for the parameters and variables for controlling the training
process, for example, learning rate, range of initial weights, momentum and number of

epochs?

e What termination strategies need to be applied during network training and how many

runs do we perform for the problem?

e At what stage are the network weights updated when training patterns are presented?

2.3.8 Current Issues in Neural Networks

The major research issues in neural networks include [46, 224]: development of new suitable
network architectures for real world problems [31, 38, 65, 92, 144, 152, 224], development of more
efficient learning algorithms [224], integration of statistical models, symbolic representation and
symbolic reasoning into connectionist systems [62, 74, 75, 178, 179], extraction of symbolic rules
from trained networks [7, 185, 191, 192], and learning theory in neural networks such as PAC

leaning and bounds on the number of training examples [9, 32, 95, 118].

2.4 Overview of Evolutionary Computation

Evolution is the primary unifying principle of modern biological thought. Since the late 1980s
evolutionary computation has received significant attention, although the origins can be tracted
back to 1950s [10]. Evolutionary computation thought has extended beyond the study of human
life: evolution has become an optimization process that can be simulated or learned using a
computer and put to good engineering purpose [50].

Evolutionary computation has been generally grouped into three broad avenues: genetic
algorithms (with links to genetic programming and classifier systems), evolutionary strategies,
and evolutionary programming [10, 50]. In this thesis, we only use genetic algorithms and
genetic programming. In the remainder of this section, we mainly review genetic algorithms
and genetic programming, and only give a brief overview of current state-of-the-art issues in the

whole evolutionary computation area.

36

2.4. OVERVIEW OF EVOLUTIONARY COMPUTATION

2.4.1 Overview of Genetic Algorithms

The first genetic algorithm was developed by Holland at the University of Michigan beginning
in the early 1960s. In the early 1970s, Holland formulated the “Schema Theorem”. This in turn
formed the basis of his landmark book Adaptation in Natural and Artificial Systems [79]. Since
then, the genetic algorithm has gradually become one of the main learning paradigms.

In this subsection, we only review the main idea and genetic operators. The details of genetic

algorithms can be found in Goldberg[64] and Holland [79].

The Main Idea

A genetic algorithm is a kind of search and learning method based on Darwinian natural selection
theory. The technique involves generating a random initial population with a given number of
individuals, each of which represents a potential solution to a given problem. Potential solutions
are encoded into chromosomes, usually bit strings of some arbitrary length. Each individual’s
fitness as a solution to the problem is computed and evaluated against some designated criteria.
Members of the population are then selected for reproduction based on their fitness and a new
generation of potential solutions is generated from the offspring of the most fit individuals. The
process of evaluation, selection, recombination is iterated until a certain criterion is reached.

The individuals in a population are evaluated by a fitness function. The fitness function
should be able to assess the performance of an individual with reference to the problem for which
it is a potential solution. The fitness function plays a very important role in the evolutionary
process. If the fitness function is not properly set, the evolutionary learning would most likely
fail. The fitness function in general varies with problem domains, since different problems have
different goals.

The main goal of selection is to have some part of the individuals’ genetic material propagated
through to the next generation of potential solutions. A number of selection methods have been
developed. Among them the biased roulette wheel mechanism [64] is the most commonly used
one. In this method each individual in the current population has a slot on a roulette wheel
proportional in size to that individual’s fitness. The roulette wheel is spun once for each parent
required. The winning individuals are paired for reproduction and recombination.

Recombination is achieved by one of the combination operators. There are two main genetic
operators: mutation and crossover, which are used to produce the new offspring. The concepts

of mutation and crossover are presented in section 2.4.1 (page 38).

37

CHAPTER 2. LITERATURE REVIEW

The Operators

Mutation is the random modification of the selected individuals. The main goal of mutation
is to maintain the diversity in the population. An example of a single bit mutation is shown in

figure 2.8.

Original Chromosome Chromosome after

Figure 2.8: An example of a single bit mutation.

Crossover operators approximate sexual reproduction in biology and are the combination
of the genetic material from two selected individuals to produce offspring. Examples of crossover
operators are: single point, two point, and uniform crossover. Single point crossover is achieved
by randomly choosing a single point at which to separate, swap, and rejoin the bit strings. In
two point crossover, two points are chosen at random and the segments of the bit string between
the two points are exchanged and form the two new children. These two methods can suffer
from the problems of destroying good schemata or incompletely combining the schemata.

Uniform crossover [44] is implemented by generating a bit mask equal in length to the chro-
mosomes being manipulated, with the value of each bit being determined with some arbitrary
probability. For each bit of the mask which has “1”, the corresponding bit of the parent chromo-
somes is swapped before propagation to the offspring; and for each mask bit which has “0”, the
corresponding parent bits are propagated to the offspring unchanged. An example of uniform
crossover is presented in figure 2.9. Uniform crossover can combine all possible schemata, even

if it might be quite disruptive of schemata of any length.

Parents Offspring

Figure 2.9: An example of uniform crossover

38

2.4. OVERVIEW OF EVOLUTIONARY COMPUTATION

It is noted that there are also other types of crossover, such as shuffle crossover and segmented

crossover, which are not described here since they are not used in this thesis.

Main Parameters

The main parameters that are associated with using genetic algorithms are described in table 2.5.

Parameter Name Description

POPULATION_SIZE The number of chromosomes in the population

CROSSOVER_RATE The number of chromosomes used for crossover as a percentage

of the total number of chromosomes in the population

MUTATION_RATE The percentage of chromosomes in the population applied to

the mutation operator

NUM_GENERATIONS | The maximum number of generations the genetic algorithm

evolutionary process will run

Table 2.5: Main parameters applied to genetic algorithms.

Tackling a Problem with Genetic Algorithms

Assuming that a generalised genetic algorithm “engine” (including the representation of the
solutions) to perform the evolutionary processes is available, the task of using genetic algorithms
for any given problem becomes one of determining a suitable chromosome encoding, a fitness
function and a set of suitable parameters. More specifically, the following questions need to be

considered before the experiments can be performed:

e How to properly arrange the data for evolutionary learning and for the measurement of

results?

e How to represent the problem to match the internal representation of the genetic algorithm

engine?
e What is the fitness function?

e What values can be given for the parameters and variables for controlling the evolutionary

process, for example, population size and number of generations?

39

CHAPTER 2. LITERATURE REVIEW

e When to terminate a run and how many runs do we perform for the problem?

e What genetic operators, at what frequencies, are going to be applied?

Genetic Algorithms for Evolving Neural Networks

In this thesis genetic algorithms are used to train and refine neural networks (chapter 6). This
subsection briefly reviews related work in this area and describes some results achieved by
different training algorithms.

Related work in this area can be grouped into three approaches:

1. Evolving weights in fixed networks. In this approach, the neural network architecture
and learning parameters are pre-defined. The genetic algorithm is used to train the given
network by evolving the weights and biases. In the genetic algorithm, the network weights
and biases are encoded into a chromosome. Each chromosome is an individual member
of a population and a population often has several hundred chromosomes. During the
evolutionary process, the genetic operators of selection, crossover and mutation are applied
to these individuals. After each generation of the process the chromosomes are applied to
the network, that is, the weights and biases are set from the values which the chromosomes
represent. The error rate on the training patterns is then computed and used as the fitness

function for the genetic algorithm.

There have been a large number of papers published on this approach. For example, Whit-
ley and Hanson [204] used genetic algorithms to find appropriate weights and biases for
a network for the minimal adder problem described in Rumelhart [166]. Montana and
Davis [133] used a genetic algorithm with floating point chromosomes to evolve network
weights for their sonar signal data and produced results competitive with the back prop-
agation algorithm. Korning [100] presents a way of using genetic algorithms to efficiently
train a multilayer feed forward network (with an architecture of 6-15-1) for his two class

(“wanted” vs “unwanted”) classification problem.

The major advantage of this approach is that the “local minima” problem in which gradient
descent algorithms often result can be avoided. However, if the network is very large, the
chromosomes which encode the weights and biases will be very long and the computational

cost will be very high.

2. Evolving network architectures. In this approach, genetic algorithms are used to evolve not

only the network weights and biases, but also the network architecture or topology as well.

40

2.4. OVERVIEW OF EVOLUTIONARY COMPUTATION

Potter [148] describes a method which applies a genetic algorithm to the evolution of a
cascade-correlation architecture and produces results comparable with the standard quick-
prop learning method. Syed [182] investigates modifying genetic algorithm parameters to
evolve both network weights and the network architecture for recurrent neural networks
to solve the XOR problem. Balakrishnan and Honavar [12] present a nice overview and
classification of the research in the area of evolutionary design of neural network architec-

tures.

3. Evolving other factors in neural networks. This includes evolving learning parameters [19],

learning rules [52], delta values [34, 108] and input features [22].

Alander [5] gives an indexed bibliography of genetic algorithms and neural networks. A good
survey for evolving neural networks with evolutionary algorithms can be found in [212].

Krishnan, Riley and Ciesielski [34, 108] developed the 2DELTA-GANN algorithm for training
feed forward and recurrent networks. In this algorithm, instead of having the genetic algorithm
evolve all weights and biases of a network, only the changes of the weights and biases (deltas)
are evolved. In [34], they compare the results for training networks using different algorithms.
The feed forward networks include the standard XOR network, the 4-2-4 encoder network and a
digital to analogue converter network. The network training algorithms compared are the back
propagation algorithm, Whitley’s GA-NN algorithm [204] and their own new 2DELTA-GANN
method. The recurrent networks tested include a SINE network and a network for the sunspot
data. They are trained by the new 2DELTA-GANN method and the recurrent back propagation
algorithm. In terms of network accuracy, for feed forward networks tested, the new 2DELTA-
GANN method out-performed the Whitley’s GA-NN method for all but the XOR network and
compared very well with back propagation. In terms of training time, the new 2DELTA-GANN
method out-performed the Whitley GA-NN for the 4-2-4 encoder network but was much slower
than the back propagation algorithm for the digital to analogue converter network. For training
the SINE simple recurrent network, the new 2DELTA-GANN method out-performed recurrent
back propagation in terms of both network accuracy and training time. For the sunspot network,
however, recurrent back propagation out-performed the 2DELTA-GANN method in terms of
training time, but the new method compared quite favourably in terms of network accuracy.

As can be seen from the literature, the networks evolved by genetic algorithms are relatively
small and the process runs quite well. For the object detection problems investigated in this

thesis, however, the networks are very large. For example, in a feed forward network with

41

CHAPTER 2. LITERATURE REVIEW

an architecture of 484-5-5, there will be 494 nodes and 2455 weights/biases. This thesis will
investigate whether genetic algorithms can be used to train and refine such large networks in

chapter 6.

2.4.2 Overview of Genetic Programming

Genetic programming is a relatively recent technology based on the use of Darwinian evolution in
the generation of computer programs. The process starts with a randomly generated population
of programs. Each program is executed and its degree of success in achieving its task is measured
and assigned as its fitness. Programs with good fitness are then selected for mating. In the
mating process two parents are chosen and randomly selected sub-trees are swapped giving two
children of a new population. In general, individuals in the new generation will be fitter than
those in the current generation. The process terminates when a solution is found or the best

individual does not improve over the course of a few generations.

Main Characteristics

There are a number of differences between the standard GA and GP [15, 69, 184].

1. While the standard genetic algorithms use strings to represent solutions, the forms evolved
by genetic programming are trees or tree-like structures. The standard GA bit strings use
a fixed length representation while the GP trees can vary in length. While the GAs use a
binary alphabet to form the bit strings, the GP uses alphabets of various sizes and content
depending on the problem domain. These trees are made up of internal nodes and leaf
nodes, which have been drawn from a set of primitive elements that are specific to the

problem domain.

2. The term genetic programming comes from the notion that computer programs can be
represented by a tree-structured genome. Computer programming languages, such as
Lisp, can be represented by formal grammars which are tree based, thus it is actually
relatively straight forward to represent program code directly as trees. These trees are
randomly constructed from a set of primitive functions and terminals (section 2.4.2 on

page 43).

3. With the change of the representation from GA to GP comes a change in the dynamics of

the evolutionary search process. The search process is governed by the interaction of the

42

2.4. OVERVIEW OF EVOLUTIONARY COMPUTATION

selection methods, genetic operators, the fitness function and the primitive functions and
terminals. In general, the selection methods used in GP can be the same as those in GAs,
but the genetic operators and the fitness function are usually different. These issues will

be described in more detail in the remainder of this section.

Programs

We first describe the representation of the evolved programs and then present the ways of
program generation.

Program Representation. Much of the GP work was done using LISP or LISP-like
representations of the programs. A sample computer program for the algebraic equation (z —
1) — 22 can be represented in LISP as the S-expression (- (- x 1) (* x (* x x))). The tree

representation is shown in figure 2.10.

Figure 2.10: A simple tree representation for a sample LISP program.

The programs are constructed from a terminal set and a function set which vary according
to the problem domain. Terminals and functions are also called primitives, and the terminal set
and the function set are combined to form a primitive set [69].

Functions. Functions form the root and the internal nodes of the tree representation of
a program. In general, there are two kinds of functions used in genetic programming. The
first class refers to general functions, such as the four arithmetic operations and other standard

functions like trigonometric functions, as shown in equation 2.16.

F = {+, —, %, %, sin, cos, exp, rlog} (2.16)

43

CHAPTER 2. LITERATURE REVIEW

The function % is protected division such that dividing by 0 returns 0. The second class
comprises specific functions which vary with the problem domain.

Terminals. Terminals have no arguments and form the leaves of the parse tree. Typically,
terminals represent the inputs to the GP program, the constants supplied to the GP program,
or the zero-argument functions with side-effects executed by the GP program [15]. In any case,
a terminal returns an actual numeric value without having to take an input.

It is important to note that the selection of the functions and terminals is critical to success.
The terminal set and the function set should be selected so as to satisfy the requirements of
closure and sufficiency [15, 101]. In other words, each function in the function set should be able
to handle gracefully all values it might receive as input (closure), and the functions and terminals
should be powerful enough to be able to represent a solution to the problem (sufficiency). A
bad selection could result in very slow convergence or even not being able to find a solution at
all.

Program Generation. There are several ways of generating programs to appear in the
initial population and after mutation, including full, grow and ramped half-and-half [101]. In
the full method, functions are selected as the nodes of the program until a given depth of the
program tree is reached. Then terminals are selected to form the leaf nodes. This ensures that
full, entirely balanced trees are constructed. When the grow method is used, nodes are selected
from either functions or terminals. If a terminal is selected, the branch with this terminal is
terminated and the generation process moves on to the next non-terminal branch in the tree.
In the ramped half-and-half method, both the full and grow methods are combined. Half of the
programs generated for each depth value are created by using the grow method and the other

half using the full method.

Fitness Cases

The patterns or examples in other learning paradigms such as neural networks are called fitness
cases in genetic programming [15, 101]. Accordingly, there are also two different sets of fitness

cases: training cases for learning and test cases for performance evaluation.

Fitness and Selection

Fitness Function. Fitness is the measure of how well a program has learnt to predict the
output from the input during simulated evolution. The fitness of a program generated by the

evolutionary process is computed according to the fitness function. The fitness function should

44

2.4. OVERVIEW OF EVOLUTIONARY COMPUTATION

be designed to give graded and continuous feedback about how well a program in a population
performs on the training set. Like the primitives, the fitness function plays a very important
role in the evolutionary process and varies with the problem domains.

There are several types of fitness functions: continuous fitness, standardised fitness and

normalised fitness [15].

o A continuous fitness function is a manner of calculating fitness in which small improve-
ments in how well a program has learned the problem domain are related to small im-
provements in the measured fitness of the program and larger improvements in how well
a program has learned the problem domain are related to larger improvements in its mea-
sured fitness. Such continuity is an important property of a fitness function since it allows

the evolutionary process to improve programs iteratively.

o Standardised fitness is a transformed fitness function in which the fitness of the best indi-
vidual is assigned a value of zero. For a particular problem, if a lower value of continuous
(raw) fitness is better, standardised fitness equals the continuous fitness for that problem;
if a greater value of continuous fitness is better, standardised fitness equals the maximum
possible value of the raw fitness minus the observed raw fitness. Thus, standard fitness has
the administrative feature that the best fitness is always the same value of zero, regardless

of what problem one is working on.

o Normalised fitness is a transformed fitness function where the fitness is computed from
the standard fitness (or adjusted fitness [101]). The normalised fitness has three desirable
characteristics: the range of the fitness is between zero and one; better individuals in the

population have larger fitness value; and the sum of the normalised fitness values is one.

Selection. Fitness selection determines which evolved program will be used for the genetic
operators to produce new individuals for the next generation during the evolutionary process.
Two of the most commonly used selection methods are proportional selection and tournament
selection.

In the proportional selection method [101] an individual in a population will be selected
according to the proportion of its own fitness to the total sum of the fitness of all the individuals
in the population. Programs with low fitness scores would have a low probability of having any
genetic operators applied to them and so would most likely be removed from the population.
Programs which perform particularly well in an environment will have a very high probability

of being selected.

45

CHAPTER 2. LITERATURE REVIEW

The tournament selection method [15, 101] is based on competition within only a subset of
the population against each other, rather than the whole population. A number of programs
is selected randomly according to the tournament size and a selective competition takes place.
The better individuals in the tournament are allowed to replace the worse individuals. In the
smallest possible tournament, two individuals can compete. The winner is allowed to reproduce

with mutation and the result is returned to the population, replacing the loser of the tournament.

Genetic Operators

There are three fundamental genetic operators in genetic programming, known as reproduction,
crossover and mutation. In general, a percentage of individuals in a population will have one or
more genetic operators applied to them.

Reproduction is the basic engine of Darwinian theory [101], and is the simplest among these
operators. It involves just simply copying the selected program from the current generation to
the new generation. In general, reproduction allows good programs to survive into the next
generation of the population.

Mutation operates only on a single selected program and introduces new genetic code into
a population in the new generation. The most common form of mutation removes a random
subtree of a selected program, then puts a new subtree in the same place. This can be done by
the grow method, the full method or the ramped half-and-half method (page 44). Figure 2.11
(a) shows an example of mutation for a selected program.

Crossover takes advantage of different selected programs within a population, attempting to
integrate the useful attributes from them. The crossover operator combines the genetic material
of the two selected parents by swapping a subtree of one parent with a subtree of the other, and
introducing two newly formed programs into the population in the next generation. An example
of crossover for two selected programs is presented in figure 2.11 (b).

It is noted that some researchers argue that mutation is useless while some others insist that
a high mutation rate would help the GP process converge [55, 68, 101]. This is most likely to
be domain dependent and one can make a decision according to the problem domain and the

environment.

Main Parameters

The main parameters applied to genetic programming are described in table 2.6.

46

2.4. OVERVIEW OF EVOLUTIONARY COMPUTATION

: 7
IPASEZA' D g VANVAS

(b)

Figure 2.11: Effect of genetic operators in genetic programming. (a) Mutation in GP: Replaces

a random subtree; (b) Crossover in GP: Swaps two random subtrees.

Tackling a Problem with Genetic Programming

Assuming that a generalised genetic programming “engine” to perform the evolutionary pro-
cesses is available, the task of using genetic programming for any given problem becomes one of
determining the appropriate set of functions and terminals, a suitable fitness function, and a set
of suitable parameters. More specifically, the following questions need to be considered before

the experiments can be performed:

e What is the set of terminals used in the program trees?

e What kind of functions can be used to form the function set to represent the program

tree?
e What is the fitness measure?

e What values can be given for the parameters and variables for controlling the evolutionary

process, for example, population size and number of generations?
e When to terminate a run?
e How do we know the result is good enough?
e What genetic operators, at what frequencies, are going to be applied?

47

CHAPTER 2. LITERATURE REVIEW

Parameters Description

POPULATION SIZE The number of programs in the population

ELITISM_PCNT The percentage of each generation created by reproduction
CROSS_RATE The percentage of each generation created by crossover
MUTATION_RATE The percentage of each generation created by mutation

INITTAL_.MAX_DEPTH | The maximum depth programs can be in the initial population

MAX_DEPTH The maximum depth programs can be during the evolutionary
process

MAX_GENERATIONS | The maximum number of generations the GP evolutionary

process will run

Table 2.6: Main parameters applied to genetic programming.

Each of these factors can affect the evolutionary process, and consequently the changes of
finding (learning) a successful solution. The interaction of genomic representation and the fitness
function define the nature of the search space. Such interactions are usually extremely complex,
and the space is extremely high-dimensional. The selection methods and genetic operators
together define the balance between ezploration and ezploitation [69], that is, they determine
how much effort is devoted to exploring parts of the space that show promise and how much
effort goes into looking for new parts of the space that may ultimately be more rewarding.

Also some other practical issues also need to be considered, such as run-time and memory
overheads. In such cases, some degree of parallelism in execution might be beneficial, such as
some powerful parallel hardware. Within the limitation of the conditions, some controls might
have to be taken to limit the maximum size of a program tree, even some control parameters.

More details of the relevant issues can be found in [15, 101, 103].

2.4.3 Current Issues in Evolutionary Computation

Since early 1990s, evolutionary computation algorithms including genetic algorithms, genetic
programming, classifier systems, evolutionary programming and evolutionary strategies have

been successfully applied to the following areas: biocomputing [101, 141], cellular program-

48

2.5. NEURAL NETWORKS FOR OBJECT DETECTION

ming [173], game playing [30], job-shop scheduling [110], non-linear filtering [45] and time-
tabling [40]. In this subsection, we briefly review the major research issues in genetic algorithms,
genetic programming, as well as other areas of evolutionary computation.

The major research issues in genetic algorithms include theoretical foundations [10, 50, 147],
interactions between representations [10, 50, 51], selection mechanisms and genetic operators
[10, 51, 147], and complex adaptive systems to solve difficult problems in the real world [10, 50,
51, 147, 174].

The following topics constitute major issues in genetic programming: investigation of general
rules for determination of crossover versus mutation rates for different problems [15, 104, 106];
evolution of programs with iteration rather than tree structures only [15, 104]; definition of
meaningful fitness functions for very complex, dynamic problems [15, 104]; dealing with intron
removal in the evolved programs [104, 105]; automatically defined function/subroutine finding
[15, 104]; combinations of genetic programming with neural networks [105]; combinations of
genetic programming with symbolic rules [104, 105]; and self-adaptation of parameters [104, 106].

The following topics constitute major current issues in other evolutionary algorithms: the-
oretical foundations [10]; biological modelling [147, 174]; combinations of evolutionary compu-
tation and computational intelligence such as neural and fuzzy systems [10, 147]; evolutionary
robotics and evolvable hardware [174]; and formal characterisation of the application domain

and limits of evolutionary computation [10, 147].

2.5 Neural Networks for Object Detection

Since the late 1980s, the use of neural networks in a number of computer vision areas including
object classification and detection has been investigated in a variety of application domains.
These domains include military applications (detection or classification of tanks, planes and
trucks), human face recognition, agricultural product classification, handwritten character recog-
nition and medical image analysis. The types of the neural networks used include multilayer
feed forward networks [165], self organising maps [99], higher order networks [63, 146] and ARTs
[27, 28]. In this section, we review this work in the categories of object classification and object

detection.

49

CHAPTER 2. LITERATURE REVIEW

2.5.1 Object Classification

There have been many reports of using neural networks for object classification. A review of
this work is presented in this section, according to the types of networks. It is important to note
that no identification or localisation of objects is done in the systems presented in this section.

The classifier works on pictures that have been segmented by another process or by hand.

Feed Forward Networks with Preprocessing and/or Feature Extraction

In the previous work presented here, the networks are feed forward neural networks (or multi-
layer perceptrons, multilayer neural networks and backward propagation networks) and specific
image features are extracted through preprocessing and/or feature extraction as input to these
networks. Note that some approaches with hybrid techniques are also included in this section if
there is one or more feed forward networks in these systems.

Classification of Mammograms: Verma [200] proposes a neural network based technique
that extracts suspicious areas containing microcalcifications in digital mammograms and classi-
fies them into two classes depending on whether they contain benign or malignant clusters. The
centroids and radii of suspicious areas are provided by an expert radiologist. A feed forward
network with a single hidden layer is used to classify these areas. The network is trained by
the backward error propagation algorithm with momentum and a direct solution method based
algorithm. There are 105 extracted areas containing 76 malignant and 29 benign microcalcifica-
tions and 90 are used for training and 15 for testing. Both training algorithms result in a best
classification rate of 86.6%, however, training based on the direct solution method is much faster
than backward error propagation. The networks use 1257 features as inputs, but the author does
not mention exactly what they are.

Sonar Target Recognition: Roitblat et al. [157] use two backward propagation neural net-
works, a probabilistic neural network and an expert system for the sonar recognition of targets
embedded in sediment. Three experiments are presented in which the system is used to dis-
criminate between small stainless-steel cylinders and cylinders of the same size made of hollow
aluminium, foam-filled aluminium, and coral rock embedded in resin. Each of the targets is
buried in mud at a depth of several centimetres. The system was highly effective at recognising
these objects. In this system a high level of preprocessing including the Fast Fourier Transform

[39] was used to prepare data prior to classification.

50

2.5. NEURAL NETWORKS FOR OBJECT DETECTION

Classification of Missiles, Planes and Helicopters: Howard, Padgett and Liebe [81] introduce
a multi-stage neural network for object classification. The multi-stage neural network contains
two neural networks which are trained in a serial fashion. Both networks process 45 input nodes
(image features), one hidden layer with 30 nodes, and one output node. The first network is
initially trained on a pattern set created from projecting a set of prototype images onto the
eigenvector set [89]. The input images consist of a combination of regions of interest containing
targets against background, targets without background and background without targets. The
network output values used are —1.0 for non-targets and 1.0 for targets. A high threshold is
used for the classification to ensure a low false alarm rate. Once the first network is trained, the
objects which were incorrectly classified are assembled into another training set. The second
network is trained with the set of misclassified targets and the set of background images. The
standard backward error propagation algorithm is used to train the two networks. The method
is tested on the images obtained by using scale target models of objects of missiles, planes and
helicopters against different backgrounds and settings of luminance, translation, scale, azimuth
and elevation. The approach resulted in a 95% detection rate with no false alarm rate.

Maneuver Target Recognition: Wong and Sundareshan [210] apply a neural network based
approach with the integration of a multi-layered neural network and a Kalman filter to the data
fusion and tracking of complex target maneuvers. The types of maneuvers include longitudinal
accelerations, coordinated turns and non-coordinated turns, which need to be classified by neural
networks. The network is trained and optimised by the simplex algorithm, which the authors
claim can guarantee a globally optimal solution. This algorithm employs concepts from simplex
optimisation and is implemented by splitting the 3-layer neural network into two portions — a
linear portion and nonlinear portion. The connections between the input layer and the hidden
layer form the nonlinear portion, while those between the hidden layer and the output layer
constitute the linear portion. The simplex optimisation method is used to find the optimal
weights in the nonlinear portion, while a linear least squares minimisation is used to determine
the optimal weights in the linear portion of the network. The approach is tested on a combination
of maneuvers by the target in quick succession and a sharp 360 degree turn maneuver. The results
show a superior performance of this approach to the interacting multiple model algorithm [16].
In this approach preprocessing is applied and features are extracted as input to the networks
for classification.

Classification of Tanks and Trucks on Laser Radar Images: Troxel, Rogers and Kabrisky

[193] present an approach to the use of multi-layer perceptron neural networks in classifying

o1

CHAPTER 2. LITERATURE REVIEW

segmented objects invariant to position, rotation and scale. Objects to be classified are multi-
function laser radar data of tanks and trucks at various aspect angles. In this approach, candidate
targets are first segmented through preprocessing (by using a doppler segmenter [163] and a range
segmenter [190]). Each segmented target is then compared with stored templates representing
the different classes. The template and the image are transformed into the magnitude of the
Fourier transform with log radial and angle axis to form the feature space. These features are
used as input to networks for classification. The network is trained by a back propagation
algorithm. This approach achieves a promising performance with an accuracy of near 100% on
this laser radar database.

Underwater Target classification: Huang et al. [84] use neural networks to classify underwater
mines and mine-like targets from the acoustic backscattered signals. The system consists of three
stages: a feature extractor using wavelet packets, a feature selection scheme and a backward
propagation neural network classifier. The backward propagation neural network is used to
perform the discrimination between targets and non-targets based on a reduced set of features.
The data set consists of the backscattered signals for seven frequency bands and six different
objects: 2 mine-like targets and 4 non-targets. The targets are organised at 72 aspect angles from
0-355 degrees with 5 degree increments. This network (9-8-2) achieved 85% correct classification
accuracy on 2160 samples (720 targets and 1440 non-targets) at a 10% false alarm rate. This was
better than an alternative method based on a combination of a matched filter and spectrogram
correlation and transformation [25] which achieved 75% correct classification at the same false
alarm rate.

Mine and Mine-like Target Detection: Miao et al. [128] introduce an approach to the recog-
nition of arbitrarily scattered surface-laid mines and mine-like targets from multi-spectral im-
agery data of a minefield. The system consists of six channels which use different neural network
architectures for feature extraction and classification of targets in six different optical bands.
Auto-associative networks [14, 72] are used for feature extraction and the multilayer feed forward
networks for object classification. The images are obtained from a multi-spectral video camera
with the range from near UV (400nm) to near IR (900nm). The training data set is chosen
primarily from the sub-images contained in selected target blocks. The three layer backward
propagation neural network achieves better performance than the standard maximum likelihood
classification scheme [66, 89] and the overall system produces some promising results for the clas-
sification of mines and mine-like targets. Note that high level preprocessing including contrast

mapping schemes [89] was applied prior to feature extraction.

52

2.5. NEURAL NETWORKS FOR OBJECT DETECTION

Handwritten Character Recognition: Verma [199] proposes a feature extraction technique
in conjunction with neural networks to classify cursive segmented handwritten characters. A
heuristic and neural network based algorithm is used to segment the characters. The proposed
technique extracts global features from the segmented characters and passes them into the
neural networks for classification. The neural networks can still recognise characters even if
these characters are rotated 90 degrees and a little distorted. The handwritten character data
was obtained by using a HP flat bed scanner and then converted into monochrome bitmap
(binary) form. The segmented character size is 30 x 30 pixels. The neural networks using the
architecture of 156-16-26, 156-25-26 and 156-30-26 are trained by a modified backward error
propagation algorithm. The best performance obtained by the method is 100% recognition rate
on the training set and 65% on the test set. The author claims that this is better than other
approaches on similar handwriting recognition problems even if the data used are different.

Agricultural Product Recognition: Winter et al. [207, 208] use feed forward backward prop-
agation neural networks for agricultural product recognition and vision problems. The neural
network based method is used to discriminate popcorn kernels which can be popped from those
that can not [208]. The results show that the system using simple gray-scale colour and morpho-
logical features can separate the poppable and the hard-to-pop popcorn kernels in a commercial
sample set with a 75% accuracy. They also apply neural networks to the classification of com-
mercial samples of lentils into three classes: “good”, “discoloured” and “broken and peeled”
[207]. Twenty one features, that is, eight morphological and thirteen colour features of a sam-
ple are extracted, and then used as input to the neural networks. The method results in 94%
accuracy in classification of “good”, 97% for “discoloured” and 95% for “broken and peeled”.

Multispectral Remote Sensing Data Classification: Lee and Landgrebe [117] apply a decision
boundary feature extraction algorithm to feed forward neural networks. The authors first define
the decision boundary in the networks, then propose a procedure for extracting all the necessary
features for classification from the decision boundary. The data used here includes remotely
sensed data, multi-source data and simulated data specially designed to test the robustness
of the algorithm. For the multispectral remote sensing data from a helicopter-mounted field
spectrometer, there are three different classes, which consist of 1209, 1146 and 1103 object
samples respectively. Five hundred randomly selected samples are used as training set and the
rest are used for test. Seventeen features are selected from sixty by the proposed algorithm. The
networks are trained using different architectures based on the number of input nodes varying

from 2 to 17 features. The results show that if more than 2 features are used, the neural networks

53

CHAPTER 2. LITERATURE REVIEW

based on the boundary feature extraction algorithm always produce better performance than
those with principal component analysis and discriminant analysis [56]. The neural network

approach is also superior to the k& nearest neighbourhood classifier [56] on the same data.

Feed Forward Networks with Pixel Based Input

This section presents previous work of object classification based on feed forward networks with
inputs of pixel based data, including raw pixel data and pixel statistics (pixel level, domain
independent features).

Bacterial Growth Detection: Ciesielski and Zhu [36] describe a neural network based system
for detecting bacterial growths on microbiology plates. Experiments are performed with three
layer (only one hidden layer) feed forward neural networks of different architectures trained
by the backward error propagation algorithm. The network with architecture 400-10-1 gave
the best performance of 99.32% correct classification. The inputs are the intensity values of the
pixels in a 20 x 20 square around a growth position. This pixel based neural network approach is
compared with a number of image processing and computer vision methods such as thresholding,
1d entropy, 2d entropy, region growing and template matching for the same classification problem
[37]. The results show that neural networks using raw pixel data are superior with respect to
classification accuracy, execution time and development time.

Tank and Helicopter Classification: Ranganath, Kerstetter and Sims [151] introduce a self
partitioning neural network (SPNN) approach for object classification. The SPNN can partition
the target vectors into an appropriate number of groups and train one subnetwork to recognise
the targets in each group. A fusion network combines the outputs of the subnetworks to produce
the final response. This approach can automatically determine the number of subnetworks
needed without excessive computation. The subnetworks are three layer feed forward networks
with only one hidden layer and one node in the output layer. They are topologically identical.
The authors claim that the method is robust and capable of self organisation to overcome
the ill effects of non-cooperating targets in the training set. The SPNN approach improved
the classification accuracy and reduced the training time of the backward propagation neural
networks significantly. The trained self partitioning network is also capable of incremently
learning new training vectors. Note that 40 domain independent, pixel level features, such as
the average grey level of each line and each row of the object, are used as input to the neural
networks, rather than specific features for this problem domain.

To give a clearer view, we summarise the work of object classification using feed forward

54

2.5. NEURAL NETWORKS FOR OBJECT DETECTION

neural networks in table 2.7.

Classification

Network Input | Applications/Problems Authors Year | Source

Classification of Mammograms Verma 1998 | [200]
Sonar Target Recognition Roitblat et al. 1995 | [157]
Classification of Missiles, Howard et al. 1998 | [81]
Planes and Helicopters

Specific Maneuver Target Recognition Wong et al. 1998 | [210]
Classification of Tanks and Troxel et al. 1988 | [193]

Features Trucks on Laser Radar Images
Underwater Target classification | Huang et al. 1998 | [84]
Mine and Mine-like Miao et al. 1998 | [128]
Target Detection
Handwritten Character Verma 1998 | [199]
Recognition
Agricultural Product Recognition | Winter et al. 1996 | [207, 208]
Multispectral Remote Sensing Lee et al. 1997 | [117]
Data Classification
Bacterial Growth Detection Ciesielski et al. 1992 | [36]

Pixel Based | (Classification)

Tank and Helicopter Ranganath et al. | 1995 | [151]

Table 2.7: Object classification based on feed forward neural networks.

Other Networks

Besides feed forward neural networks, other types of networks have also been applied to object
classification. These networks include shared weight neural networks [114, 116, 165], auto-
associative memory networks [1, 98, 99, 196], ART networks [27, 28], probability networks [188]
(or probabilistic neural networks [176]), Gaussian basis function networks [140], neocognitron
networks [57, 58], higher order networks [63, 73, 146], and hybrid/multiple neural networks [29].
Since they are not used in this thesis, we only summarise the related work of these networks

according to the kinds of networks, the applications or problems, the first authors, published

year and the source of these approaches, as shown in table 2.8.

95

CHAPTER 2. LITERATURE REVIEW

Kind of Network | Applications/Problems Authors Year | Source
Handwritten optical Soulie et al. 1993 | [175]
character recognition

Shared Weight Zip code recognition LeCun et al. 1989 | [114, 116]

Neural Networks | Digit recognition de Redder et al. | 1996 | [42, 43]
Lung nodule detection
Microcalcification classification Lo et al. 1995 | [121]
Face Abdi 1988 | [1]

Auto-associative | categorisation, Valentin et al. 1994 | [196]

Memory Networks | recognition, Valentin et al. 1994 | [198]
identification, Valentin et al. 1996 | [195]
classification Valentin et al. 1996 | [197]
ART Networks Vehicle recognition Bernardon et al. | 1995 | [20]
Tank recognition Fogler et al. 1992 | [156]
Serf-Organising | Handwritten alphabet and Chigawa et al. 1991 | [33]
Maps digit character recognition Nakayama et al. | 1992 | [136]
Probability Cloud classification Tian et al. 1998 | [188]
Neural Networks | Radar target *detection’ Kim et al. 1992 | [96, 97]
Gaussian Basis 3D hand gesture Ahmad et al. 1993 | [3]
Function Networks | recognition
Neocognitron Bend point and Fukushima et al. | 1998 | [58]
Networks end point recognition
2D and 3D helicopter Spirkovska et al. | 1994 | [177]
High Order (F18) recognition

Neural Networks | Apple sorting (classification) Hecht-Nielsen 1992 | [73]
Recognition of bars, triangles Cross et al. 1995 | [41]
and squares
River identification(classification) | Liu et al. 1998 | [120]

Hybrid/Multiple | Classification of “hot” and Casasent et al. 1995 | [29]
“cold” objects

Neural Networks | Face recognition Lawrence et al. 1997 | [112, 113]

Table 2.8: Object classification based on other kinds of neural networks.

56

2.5. NEURAL NETWORKS FOR OBJECT DETECTION

2.5.2 Object Detection

As defined on page 3, object detection includes both classification and localisation. There have
been a number of reports on the use of neural networks in object detection problems. Typically,
they belong to the one-class object detection problems (section 2.1.2, page 10), where the objects
in a single class in large pictures need to be detected. Work in multiple class object detection
based on a single network or in one stage has not been reported so far. The network types
for one class object detection problems include multilayer feed forward networks, shared weight
neural networks, probabilitistic decision-based neural networks and hybrid (or multiple) neural

systems.

Feed Forward Networks

Shirvaikar and Trivedi [172] use a feed forward neural network as a filter to detect small targets
in cluttered backgrounds in thermal infrared images. In this approach, feature extraction is
eliminated and raw grey levels are utilised as input to the network. Two different methods
are applied to the design of the two training data sets: a direct use of actual image data with
seven object and seven background samples and a model-based method with one object and
12 background samples. The size of the small targets detected here is 9x 9 pixels. The neuron
transfer function is also modified from the sigmoid function to a piecewise linear function and
the network is trained on these cutouts (either object or background) by the backward error
propagation algorithm. The trained network is used as a filter like a moving window to locate
the targets of interest. The network is convolved with the full input image to produce output
at each pixel and the process produces a grey level filtered image, where the filter response is
supposed to be high for target pixels and low for the background pixels. The locations of the
detected targets can be obtained by applying a threshold on the filtered image. The results
show that the overall performance of the neural network filter is much better than that obtained
by the size-matched contrast-box filter [171], even if some false alarm rates are still quite high.
For three test images presented here, this approach achieves the best false alarm rates of 418%,
1256%, 843% for the actual image data method and 659%, 619%, 243% for the model-based
training method, at a detection rate of 100%. There is only one target class of interest in these

images.

o7

CHAPTER 2. LITERATURE REVIEW

Shared Weight Neural Networks

Shared weight neural networks are feed forward networks in which the weights in the first sets
of layers are applied as linear correlational filters and in the last sets of layers in the ordinary
fully connected feed forward fashion [60]. In other words, the network consists of two parts: a
feature extraction network followed by a classification network. The feature extraction network
can consist of one or more layers, and each layer can have one or more feature maps. Each
layer performs feature extraction by template operations over input to that layer. The size(s) of
the feature maps are determined by the undersampling rate for the convolution over their input
and usually are domain dependent. The feed forward network performs the classification task
based on the outputs from the feature extraction network. More details of shared weight neural
networks can be found in Rumelhart et al. [165] and LeCun et al. [114, 116].

Gader et al. [60] describe a segmentation free shared weight neural network approach for
automatic vehicle detection. A shared weight network in scanning mode used here is an image-
to-image transformation. An input scene image is used as input and the target output confidence
is used to form the output image, which can be regarded as a correlation plane. The convolution
of the input scene image (with masks defined by user) are used to create feature maps. The
feature maps are scanned with a moving window large enough to contain the largest target
expected. These windows are sub-images that can input to the classification network, which can
determine whether a sub-image at a pixel with the window size is a target or background. Two
sets of images are considered in this paper. The first set consists of forward looking infrared
images of tanks and the second consists of images of cars in a parking lot. There are 35 256 256
input scene images each of which contain only one tank in the first set, 17 are used for training
and 18 for testing. The second set consists of 88 512x 512 images with 36 of them for training
and 52 for testing. The first set of images are directly used for network training and testing,
while some preprocessing and postprocessing are applied before and after network training. On
the first set, this approach achieves 100% accuracy in both the training set and the test set.
Detection on the second data set is difficult, where only 66.67% (10 out of 15) accuracy on the
training set and 60% (12 out of 20) for the test set are obtained. Note that not all the images
in the test set are used. However, this is much better than that obtained by a minimum average
correlation energy matched filter method [124], that is, 30% accuracy (6 out of 20) on the test
set. In this approach, image pixels are used as inputs to the neural networks, rather than image

specific features. They present a variation of the approach, or a morphological shared weight

58

2.5. NEURAL NETWORKS FOR OBJECT DETECTION

neural network approach, for the automatic target recognition problems on the same data [209].

Probabilitistic Decision-Based Networks

A probabilitistic decision-based neural network (PDBNN) is a probabilitistic variant of the
decision-based network (DBNN) [109]. Compared with multilayer feed forward networks, DBNNs
have a different architecture and learning rules. In a DBNN, one subnet is designated to repre-
sent one object class, which is usually called “one-class-one-network” property. This is different
from the “all-class-in-one-network” property of the feed forward networks. Unlike the feed for-
ward networks which usually use exact target values (such as 1.0 or 0.9 for the expected classes
and 0.0 or 0.1 for other classes), DBNNs use decision based learning rules where the teacher only
tells the correctness of the classification for each training pattern. Based on the teacher’s infor-
mation, the DBNN uses a distributed and localised weight updating rule. In addition, DBNNs
use “hybrid locally unsupervised and globally supervised learning”. In other words, there are
two phases in the learning scheme: during the locally unsupervised learning phase, each subnet
is trained individually and no mutual information across the classes may be utilised. In the glob-
ally supervised learning phase, teacher information is introduced to reinforce or anti-reinforce
the decision boundaries obtained in the locally unsupervised learning phase.

Probabilitistic decision-based networks follow the original ideas of DBNNs, but have some

“non-face” class (back-

additional characteristics. First, for face detection problems where the
ground) can be considered as the complement of face class, the PDBNN detector uses only one,
instead of using two, subnets in the architecture. This subnet represent the face class. Second,
a PDBNN uses the positive training patterns (a positive pattern is defined as a virtual pattern
which is only slightly perturbed from the original exemplary pattern and if the perturbation ex-
ceeds certain threshold this pattern will be considered as a negative pattern) to adjust the subnet
parameters by unsupervised learning, and in the globally supervised learning phase it only uses
the misclassified patterns for reinforced and anti-reinforced learning. The negative patterns are
only used for anti-reinforced learning of the subnet. The decision boundaries are determined by
a threshold. Finally, PDBNNSs follow probabilitistic constraints, that is, the subnet discriminant
functions of a PDBNN are designed to model the log-likelihood functions. Details of DBNNs
and PDBNNs can be found in [109, 119].

Lin et al. [119] present an automatic face recognition system which performs human face
detection (face vs non-face), eye localisation and face recognition. The probabilitistic decision-

based neural network is applied to implement all the modules of the system. The goal of the

99

CHAPTER 2. LITERATURE REVIEW

detection system is to find the location of all faces and segment the face regions. During the
detection, a confidence score is produced by the network, indicating the system’s confidence on
this detection result. If the score is below a certain threshold, then no object (face) is detected.
Based on these regions, the eye localisation network will find where the eyes of the faces are
and extract some useful features including width of head, distance between eyes, top of head to
eyes, and between eye and nose. The face detection and eye localisation actually belong to the
one class object detection problems in which there is only one class of interest in the detected
pictures. These features will form the input of the face recognition network for classification. The
system is tested on two public (FERET and ORL) databases and an in-house (SCR) database.
In the face detection experiment, 92 annotated images are used for training and 473 images for
testing. Before the detectors are applied to the input images, some preprocessing methods are
applied, including the scaling of the images to a size of 320x 240 pixels. The face size is defined
as 140x 100 pixels. To reduce the searching time, the images are further normally down-sized
by a factor of 7. In this way, search range approximately becomes 46x 35 pixels and block
size is 12x 12, which is equivalent to the size of facial feature vector. Applying the network
(with block input) as a template to sweep the scaled images with search step of one pixel, the
face regions can be detected. Among all the 473 test faces, 98.5% of the errors are within five
pixels and 100% are within 10 pixels in the original high-resolution image. The authors also
claimed that working with the low resolution images, the detection system only used 200 ms
to detect one face on a SUN Sparc 10 machine. However, the network detection system cannot
detect “artificial faces” such as faces on poker cards and hand-drawn faces. The final recognition
results on another database (FERET) show that the PDBNN network approach results in better
recognition accuracy (99%) and faster processing speed than the traditional decision based neural
network (DBNN, 96% accuracy) as well as the multilayer perceptron network (with an accuracy
of 87.5%) approaches. It is noted that the final classification was based on the excellent face
detection and eye localisation, that is, only 200 persons that were correctly detected among the
304 faces were used for the final classification and the above performance obtained was based

on only these 200 faces rather than 304 faces.

Other/Hybrid /Multiple Networks

Waxman et al. [202] describe a computational neural system for target enhancement, detec-
tion/segmentation, learning and recognition/classification in visible, multispectral infrared (IR),

and synthetic aperture radar (SAR) imagery. Multiple networks are used in this multiple stage

60

2.5. NEURAL NETWORKS FOR OBJECT DETECTION

approach, including segmentation networks (for object segmentation), centre-surround networks
(for object edge enhancement), diffuse-enhance networks (for feature extraction), ART networks
(for view or orientation learning and recognition) and aspect networks (for object recognition
and evidence accumulation). The visible images tested here are model aircraft (F16, F18, HK-1)
pictures captured using a conventional CCD camera. These targets are detected and segmented
from the background using a combination of motion and contrast information. The approach
achieved 71.1%, 77.1% and 83.9% accuracy of final recognition for F16, F18 and HK-1 objects.
The authors also claimed that for all cases in target enhancement, detection/segmentation,
learning and recognition, valuable insights can be derived from biological vision systems and
translated into neural system architectures and computational networks.

Bosch et al. [21] propose a network based on spiking neurons performing visual object
detection/segmentation. The network architecture consists of a feature map, a saliency map, a
location map and an attention map. The feature map encodes the grey level input image provided
as an external constant input. Weak illuminance results in a low firing frequency whereas a
strong illuminance results in a high frequency. The saliency map extracts regions which differ
from the background, through a centre/surround receptive field (filter) [130]. Since the contrast
level may vary significantly within an object, local excitation in the saliency map accelerates the
detection of the whole region. The location map computes the positions of these regions in the
image and produces information encoding the priority of each position/location. The attention
map generates an attention feedback to all salient regions in a sequential manner and selects the
most active salient location by a winner-take-all mechanism [138]. The approach is tested on
two input images. The first image contains three (“rock” or “stone”) objects against a relatively
uniform background. The second contains four vehicles against a non-uniform background (but
not cluttered). These objects can be successfully detected by the approach. It is noted that this
is a single class detection problem. The authors claim that this model is capable of processing
real images, and can be adapted to a varying number of objects and non-constant backgrounds.

Ahmad and Omohundro [2] describe a network for extracting the locations of point clusters
using selective attention. This work concentrates on the task of learning whether three clumps of
points in a 256 256 image form an equilateral triangle or not. This system consists of an efficient
focus of attention mechanism and a cluster detection scheme. The focus of attention mechanism
allows the system to select any circular portion of the image in constant time. This is done by
using locally tuned receptive fields (in which linear threshold units can give a localised response

in a feature space), dynamic receptive fields (where the location and size of the receptive field

61

CHAPTER 2. LITERATURE REVIEW

can be quickly shifted in response to changing demands), and a focus of attention. To select
the interesting locations, the focus of attention is decided by the coordinates of the locations.
This is independent of any particular criterion (e.g. bottom-up which chooses the brightest
image point, or top-down which represents the result of prior expectation). The cluster detector
directs the focus of attention to clusters in the image. Once attention has been directed to
that location, it is fine tuned to settle exactly on the centre of mass of the cluster. These two
mechanisms are used to sequentially extract the relevant coordinates. The distances between the
locations are computed to form a set of distance units. A standard feed forward network with
a single hidden layer and a single output node produces the final decision/classification, that is,
whether three points can form an equilateral triangle or not. In the experiment, a training set
consisting of random triangles (approximately 50% of which are equilateral) with Gaussian noise
added around each vertex is generated. For each triangle the focus of attention is initialised to
cover the entire image plane. With a training set of only 100 triangles the network (output)
score is consistently greater than 0.9 for equilateral triangles on an independent test set. The
authors neither gave the number of triangles in the test set, nor the network output scores for
non-equilateral triangles.

Rogers et al. [155] review the use of neural networks associated with the processing of
military data to find and recognise targets. They divide automatic object recognition systems
into four stages: selection of the sensors to produce the target measurements; preprocessing of the
data and locating of the regions of interest within the data (segmentation); feature extraction
and selection from the interesting and segmented regions; and processing of the features for
decision making (classification). They also mention that the area of classification is where
most automatic object recognition related neural network research has been carried out. They
conclude as well that “artificial neural networks have been proven to be an interesting and
useful alternate processing strategy, however, are not magical solutions with mystical abilities
that work without good engineering” [155, page 1153].

Roth presents a survey of neural network technology for automatic target recognition [161].
He reviews automatic target recognition systems and gives some of highlights of neural network
techniques that have the potential for making a significant impact on these systems. His focus is
on the neural network technology development in the areas of collective computation, learning
algorithms, expert systems and neurocomputer hardware. He concludes that “ultimately, neural
network learning could be used for addressing the automatic object recognition needs for an

adaptation to target and environment changes, a selection of good target features, and an

62

2.5. NEURAL NETWORKS FOR OBJECT DETECTION

integration of a priori knowledge about the target signatures and backgrounds [with network
architectures]” [161, page 40].

A summary of the related work to object detection using neural networks is shown in table 2.9.

Kind of Network Applications/Problems Authors Year | Source
Feed Forward Target detection in Shirvaikar and | 1995 | [172]
Neural Networks thermal infrared images Trivedi
Shared Weight Vehicle detection Gader et al. 1995 | [60]
Neural Networks Won et al. 1997 | [209]
Probabilitistic Decision-Based | Face detection Lin et al. 1997 | [119]
Neural Networks and recognition
Aircraft detection Waxman et al. | 1995 | [202]

and recognition

Other/Hybrid/Multiple Vehicle detection Bosch et al. 1998 | [21]
Neural Networks Face detection Rowley et al. 1998 | [162]
Triangle detection Ahmad et al. 1990 | [2]
Detection/extraction of Roth 1989 | [160]

weak targets for Radars

Review of target detection Rogers et al. 1995 | [155]

Review of target recognition | Roth 1990 | [161]

Table 2.9: Object detection based on neural networks.

2.5.3 Comments

This section summarises object classification and detection related work based on neural net-
works, including feature based and pixel based approaches. In the feature based approach
specific features are manually selected and extracted then used as inputs to neural networks.
The main advantage of this approach is that the network architectures are relatively small and
network training generally takes relatively short time and low computational cost. The main
disadvantages include a time consuming investigation of important features and a hand-crafting
of feature extraction programs resulting in highly domain specific systems. The pixel based
approach, on the other hand, avoids the above disadvantages by directly using image pixels as
inputs. The main potential problem of this approach is that the network size is generally quite

big, which might lead to relatively long training times. However, this can be ameliorated by

63

CHAPTER 2. LITERATURE REVIEW

the increasingly powerful computer hardware used today. Since this thesis aims to develop a

domain independent approach, the pixel based approach is adopted.

2.6 Genetic Algorithms for Object Detection

This section presents a review of using genetic algorithms for object detection and related vision

problems.

2.6.1 Classification and Feature Extraction

Bala et al. [11] present a hybrid methodology that integrates genetic algorithms and decision
tree learning to evolve useful subsets of discriminatory features for recognising complex visual
concepts. A genetic algorithm is used to search the space of all the possible subsets of a large set
of candidate discrimination features. Candidate feature subsets are evaluated by using a decision
tree learning algorithm (C4.5) to produce a tree, based on the given features using a limited
amount of training data. The approach is tested on two different image databases, one involving
satellite images (LANDSAT) and the other involving facial images (FERET). The results show
that a genetic wrapper with C4.5 resulted in a significant decrease in both classification error
and in cost as measured by the number of features used compared with C4.5 on full feature set.

Yang and Honavar [211] present an approach to the multi-criteria optimisation problem of
feature subset selection using a genetic algorithm. They compare the classification performance
of using neural networks with a subset features selected by the genetic algorithm against a neural
network using the full set of features. The real world datasets obtained from the machine learning
data repository at the University of California at Irvine [135] were used for the experiment. For
the image segmentation experiment 210 patterns were used as the training set and 2100 for the
test set. The network with the full feature set achieved 90.5% accuracy while the network with
the subset of features selected by the genetic algorithm obtained 91.4% accuracy on the test
set. Results on other other pattern recognition data samples gave a similar trend, that is, the
performance with the subset of features selected by the genetic algorithm was slightly superior
to that with all the attribute features. This indicated that genetic algorithms could offer an
approach to solving the feature subset selection problem in inductive learning of neural network
pattern classifiers. The details of images were not given in this paper.

Huang and Liu [83] propose a hybrid system based on a genetic algorithm with a Hop-

field neural network. The system can recognise patterns formed by the transformation caused

64

2.6. GENETIC ALGORITHMS FOR OBJECT DETECTION

by rotation, scaling, or translation, singly or in combination. The method rests on a polygo-
nal approximation technique which extracts appropriate feature vectors of specified dimensions
characterising a given shape. These features are used as input to a network classifier for shape
recognition. Object recognition is formulated as matching a global model graph with an input
scene graph representing either a single object or several overlapping objects. A matrix needs to
be defined for combining the state of each neuron in the 2D Hopfield neural model. The matrix
is considered as genes of the genetic algorithm. The neural nodes represent the possible matches
between the global and scene graphs and the linkages between the neural nodes comprise the
constraints. Experiments on recognising hammers, wrenches and several other tools as the two
class problems show that this hybrid method is better than the Hopfield approach only [8, 137].
The authors also claim that since genetic algorithms employ the probabilistic transition rule
rather than the deterministic descent rule, they can avoid a local minimum, and are superior to

a number of traditional optimisation techniques.

2.6.2 Object Detection

There is only a small number of reports of using genetic algorithms for the whole object detection
problem (classification and localisation). These are presented in this subsection.

Swets, Punch and Weng[181] describe a technique of using genetic algorithms for object
localisation in a complex scene. The training set consists of a labelled set of images which has
been previously segmented such that only a single object of interest is contained in each of the
images. Furthermore, the object in the image has a standard size, position and orientation; the
image dimensions for all the images are identical in the training phase. In this phase, a simple
“object mean” image is generated, where each pixel represents the average pixel value of all the
training images for that object at that pixel position. In the test phase, no constraints on the
input images are made; instead, a sub-image is extracted from the test image and projected
to the image dimensions used for each object of interest during the training phase. An image
distance is computed between the normalised sub-image extracted from the test image and the
learned object mean image. The sub-image with the smallest distance from a particular object
mean is taken to be the best sub-image for classification. In this approach, the coordinates of
upper left and lower right corners of possible object positions are encoded into the chromosomes
(strings) of the genetic algorithm and the distance measure is used as the fitness function. The
approach is tested on a crowd image and the object, a specific face, was correctly detected by

the genetic algorithm. They presented the details of this work in [180].

65

CHAPTER 2. LITERATURE REVIEW

Goulermas and Liatsis [67] present a method of using genetic algorithms for fine-tuning the
feature space for a Hough transform [86]. A hybrid system is configured, by embedding the
Hough transform module into the genetic algorithm, which simultaneously performs feature
space fine-tuning and circular shape detection. In this approach, the images are preprocessed
before they are applied to the hybrid system and features are extracted for the representation in
the chromosomes. Each gene corresponds to a unique feature point and chromosomes are rep-
resented as bit strings. The evaluation of a chromosome (fitness function) is based on a circular
Hough transform variation [215]. The system was tested with synthetic (an artificially drawn
image containing four small and two big overlapped circular disks) and real-world (underwater
bubble-image with a high degree of noise) imagery. The hybrid genetic algorithm/Hough trans-
form method produced very accurate detection results while the conventional Hough transform

method [86] failed. However, the genetic algorithm system was very slow.

2.6.3 Other Vision and Image Processing Problems

Harvey and Marshall [70] present a method of designing morphological filters for specific tasks
using genetic algorithms. The method was tested on noise-reduction problems with a set of
training images for which the optimum filter was known. The results applying the genetic
algorithm for morphological filter optimisation were quite impressive and the genetic algorithm
seemed to have no problem in finding the global optimum sequence and the structuring element.

Tsang [194] presents the development of a genetic algorithm for aligning contours of near
planar object shapes. This method was tested on examples of spanner, paper clip, scissor and
hammer images and achieved better performance than other object alignment techniques such
as dominant point simulated annealing. However, the genetic algorithm method required more
computation.

Schaffer, Whitely and Eshelman [168] present a survey of the combination of genetic algo-
rithms and neural networks. The methods were classified as supportive or collaborative by the
authors. Supportive methods involve cases where genetic algorithms are used to help neural
networks in their search and the neural network components are not determined by the genetic
algorithms. Collaborative approaches, on the other hand, involve the evolutionary process being
used to manipulate the neural network components and define the network topology.

The previous work related to object detection and vision problems using genetic algorithms

is summarised in table 2.10.

66

2.7. GENETIC PROGRAMMING FOR OBJECT DETECTION

Problems Applications Authors Year | Source
Satellite and facial image | Bala et al. 1997 | [11]
Object classification | Feature subset selection | Yang and Honavar 1997 | [211]
and feature selection | Shape recognition Huang and Liu 1997 | [83]
Face detection Swets, Punch and Weng 1995 | [181]
Object Detection Swets and Punch 1995 | [180]
Circular shape detection | Goulermas and Liatsis 1995 | [67]
Morphological filter Harvey and Marshall 1996 | [70]
optimisation
Other Problems Object alignment Tsang 1997 | [194]
Survey Schaffer, Whitely and Eshelman | 1992 | [168]

Table 2.10: Object detection related work based on genetic algorithms.

2.6.4 Comments

Compared with neural networks there are only a small number of reports of genetic algorithms for
object detection. Reports on the use of genetic algorithms to evolve neural networks for multiple
class object detection is even fewer and the sizes of the neural networks evolved by genetic
algorithms are generally quite small. However, for the object detection problems investigated
here, the network architectures are very large. It is still unclear whether genetic algorithms
can be used to evolve large networks for multiple object detection problems. This thesis will

investigate this issue (chapter 6).

2.7 Genetic Programming for Object Detection

Since the early 1990s, there has been only a small amount of work on applying genetic program-
ming techniques to object classification, object detection, image processing, signal analysis and
vision problems. This in part reflects the fact that genetic programming is a relatively young

discipline compared with, say, neural networks.

67

CHAPTER 2. LITERATURE REVIEW

2.7.1 Object Classification

Tackett [183, 184] uses genetic programming to assign detected image features to a target or
non-target category. Seven primitive image features (mean and standard deviation of three
windows/sub-images and the blob contrast of the object) and twenty statistical features (moment
and intensity based) are extracted and used as the terminal set. The four standard arithmetic
operators and a logic function are used as the function set. The fitness function is based on
the classification result. The approach is tested on US Army NVEOD Terrain Board imagery,
where vehicles such as tanks need to be detected/classified. When classifying feature vectors,
the genetic programming method is found to outperform both a neural network classifier and
a binary tree classifier on the same data, producing lower rates of false positives for the same
detection rates. The best generated program is also found to require less computation at run-
time than a neural network, and achieves better performance.

Andre [6] uses genetic programming to evolve functions that would traverse an image, calling
upon co-evolved detectors in the form of hit-miss matrices to guide the search. These hit-miss
matrices are evolved with a two dimensional genetic algorithm. These evolved functions can be
used to discriminate between 2 letters or to recognise single digits.

Koza [103] (in chapter 15) uses a “turtle” to walk over a bitmap landscape. This bitmap is to
be classified either as a letter “L”, a letter “I”, or neither of them. The turtle has access to the
values of the pixels in the bitmap by moving over them and calling a detector primitive. The tur-
tle uses a decision tree process, in conjunction with negative primitives, to walk over the bitmap
and decide which category a particular landscape falls into. Limitations on resources prevented
the discovery of a solution without using ADFs (automatically defined functions), although it is
thought that a solution is possible. Using ADFs as local detectors and a constrained syntactic
structure, some perfect scoring classification programs were found. Further experiments showed
that detectors can be made for different sizes and positions of letters, although each detector
has to be specialised to a given combination of these factors.

Teller and Veloso [186] use a genetic programming method based on the PADO language to
perform face recognition tasks on a database of face images in which the evolved programs have a
local indexed memory. PADO is a special language especially invented for genetic programming
which uses iteration as well as functions. Although some encouraging results are obtained, they
stress that the face database used, like many others in face recognition tasks, is insufficiently

general to be of practical use. They use their genetic programming approach based on the

68

2.7. GENETIC PROGRAMMING FOR OBJECT DETECTION

PADO language to perform a discrimination task between 5 classes of images [187]. The classes
of images, consisting of different kinds of shapes placed at various sizes and positions on black
backgrounds, are chosen to prove the classification ability of the PADO language such that the
distinctions between these classes are conjunctions of abstract features. In addition, the discrim-
ination can be performed on these images with some noise and obstructions added. Without
noise, this approach achieves respectable performance of up to 60% correct classification.
Robinson and Mcllroy [154] apply genetic programming techniques to the problem of eye
location in grey-level face images. The input data from the images is restricted to a 3000 pixel
block around the location of the eyes in the face image. This approach produced promising
results over a very small training set, up to 100% true positive detection with no false positives,
on a three image training set. Over larger sets the genetic programming approach performed
less well however, and could not match the performance of neural network techniques.
Winkeler and Manjunath [206] produce genetic programs to locate faces in images. Face
samples are cut out and scaled, then pre-processed for feature extraction. The statistics gleaned
from these segments are used as terminals in genetic programming which evolves an expression
returning how likely a pixel is to be part of a face image. Separate experiments process the grey

scale image directly, using low level image processing primitives and scale-space filters.

2.7.2 Object Detection

All the genetic programming based object detection approaches which have been reported so
far belong to the one class object detection category (section 2.1.2, page 10). In these detection
problems, there is only one object class of interest which needs to be detected in the large
pictures. Such examples are presented in this subsection.

Howard, Roberts and Brankin [82] present a genetic programming approach to automatic
detection of ships in low-resolution synthetic aperture radar imagery. The detector design goals
are to maximise detection accuracy across images, to minimise the computational effort during
image processing, and to minimise the effort during the design stage. A number of random integer
and real constants and pixel statistics, that is, domain independent, pixel level features are used
as terminals. The four arithmetic operators and min and max operators constitute the function
set. The fitness is based on the number of the true positives and false positive objects detected
by the evolved program. This is actually a one class object detection problem, where only ships
need to be detected in the large pictures. A two stage evolution strategy that comprises three

distinct steps was applied in this approach. In the first stage genetic programming evolved a

69

CHAPTER 2. LITERATURE REVIEW

detector (it is a classifier in nature) that could correctly classify the chosen target (ship) pixels
from the chosen non-target (ocean) pixels. The best generated detector was then applied to the
entire image and produced a number of false alarms. In the second stage, a brand new run of
genetic programming was tasked to discriminate between the clear targets and the false alarms as
identified in the first stage and another detector was generated. This two stage process resulted
in two detectors that were then fused using the min function. These two detectors return a real
number, which if greater than zero denotes a ship pixel, and if zero or less denotes an ocean
pixel. The approach was tested on images chosen from commercial SAR imagery, that is, a set of
50m and 100m resolution images of the English Channel taken by the European Remote Sensing
satellite. One of the 100m resolution images was used for training, two for validation and two
for testing. The training was quite successful with no false alarms, while there was only one false
positive in each of the two test images and the two validation images which contained 22, 22,
48 and 41 true objects. The authors concluded that at least as far as accuracy was concerned
the results compare very favourably with those on the same problem by other techniques such
as Kohonen neural networks.

Isaka [88] uses genetic programming to locate mouth corners in small (50x 40) images taken
from pictures of faces. Processing each pixel independently using an approach based on relative
intensities of surrounding pixels, the genetic programming approach was shown to perform

comparably to a template matching approach on the same data.

2.7.3 Other Vision and Image Processing Problems

Lucier, Mamillapalli and Palsberg [122] use four program optimisation methods (boundary
checks, variable bindings, fixnum arithmetic, and flattening and/or) in a genetic programming
approach for edge detection problems. The approach was tested on three images: a bank image,
the Lenna (a woman’s face) image, and an F16 helicopter image. The image size was 512x 512
pixels. The results showed that the use of fixnum arithmetic was the most effective optimisa-
tion, while flattening and/or optimisation was the least effective. These optimisations sped up
the evolutionary process by a factor of 17 for the bank and Lenna images and 22 for the F16
images. The times for the evolutionary process to find a good solution with and without these
optimisations for the Lenna image were 583 and 35.2 hours respectively.

Koza [101, 102] uses automatically defined functions to show how hierarchically structured
solutions can be applied to the San Mateo trail problem. This problem involves programming

an artificial ant to follow a trail of food on a grid world. The trail may have gaps of one or

70

2.7. GENETIC PROGRAMMING FOR OBJECT DETECTION

two squares where no food is present. The ant is allowed to use basic local sensor information,
and can either more forward or turn 90° in response to some condition. Automatically defined
functions used in this context are interpreted by Koza as detectors for certain configurations of
terrain, returning positive values if the terrain matches some configuration represented by that
automatically defined function. Koza shows that using automatically defined functions reduces
the average structural complexity of a solution and the number of individuals that have to be
processed by the search before a solution is found.

Nordin and Banzhaf [139] apply a linear structured form of genetic programming, based
on primitive sets consisting of machine-code instructions, to the programmatic compression of
digital signals, both sampled sound signals and 2-D raster images. The genetic programming
approach is a simple application of symbolic regression to the input signal, using a squared
distance error function to drive the evolutionary process. In the experiment of image compres-
sion, pictures consisting of 256x 256 pixels which were divided into squares of either 16x 16 or
8% 8 pixel blocks were used. This size corresponded to the size used by several other image
compression techniques such as JPEG [145]. The CPU times for compressing a picture in the
experiments on a SUN20 were in the range of 30 minutes to 10 days depending on the requested
quality and compression ratio.

A summary of object detection related work based on genetic programming is shown in

table 2.11.

2.7.4 Comments

As a relatively young learning/adaptive technique, genetic programming has been only applied
to object classification and detection problems in very recent years. The main advantage is that
the genetic programming evolutionary process can automatically evolve computer programs for a
particular problem and achieve quite reasonable results. However, most work has focused on two
class object classification or one class object detection problems. Due to the high computational
cost, the technique has previously only been used for relatively easy problems and no work on
genetic programming for multiple class object detection problems has been reported. This thesis
will focus on the investigation of the use of genetic programming for multiple object detection

problems of increasing difficulty, including very difficult problems (chpater 7).

71

CHAPTER 2. LITERATURE REVIEW

Problems Applications Authors Year | Source
Tank detection Tackett 1993 | [183]
(classification) Tackett 1994 | [184]
Letter recognition | Andre 1994 | [6]
Object Classification Koza 1994 | [103]
Face recognition Teller et al. 1995 | [186]
Winkeler et al. | 1997 | [206]
Shape recognition | Teller et al. 1995 | [187]
Eye recognition Robinson et al. | 1995 | [154]
Object Detection Ship detection Howard et al. 1999 | [82]
Mouth detection Isaka 1997 | [88]
Edge detection Lucier et al. 1998 | [122]
Other Vision San Mateo trail Koza 1992 | [101]
Problems problem Koza 1993 | [102]
Image compression | Nordin et al. 1996 | [139]

Table 2.11: Object detection related work based on genetic programming.

2.8 Summary and Discussion

This chapter reviews object detection problems, machine learning paradigms and the basic idea
and components of the three learning/adaptive techniques used in this thesis, that is, neural
networks, genetic algorithms, genetic programming. An overview of previous work related to
object detection and other vision problems using these three learning techniques is also presented.

As presented before, most object detection related work based on neural networks, genetic

algorithms and genetic programming which has been reported was focused on one or more of

the following issues:

e Pure object classification problems in which no object localisation is done, or one class
object detection problems where only one object or multiple objects in a single class of
interest need to be detected. It is important to note that detecting multiple class objects of
interest in large pictures using a single computer program either learnt by neural systems

or evolved by a genetic learning process has not been reported so far.

e Feature based approaches where domain dependent, specific features are previously ex-

tracted and used as inputs. This usually involves a time consuming investigation of good

72

2.8. SUMMARY AND DISCUSSION

image features for a specific domain and hand-crafting of programs for feature extraction

and selection.

e Using multiple independent stages which produce multiple programs to find the classes
and locations of the objects of interest in large pictures. The current stage usually uses
the results of the previous stage as input, rather than the original source data. The final

results rely too much on the results of each stage.

To address the current gap in this area, this thesis focuses on the investigation of a learn-
ing/adaptive, domain independent approach to multiple class object detection problems. Rather
than using traditional image processing and vision methods, we apply neural networks, genetic
algorithms and genetic programming techniques. Rather than using specific features for a given
database in a particular domain, pixel based data, that is, either raw pixels or domain indepen-
dent, pixel level statistics are used. Rather than using multiple independent stages, this thesis

uses a single learnt program for multiple class object detection problems.

73

CHAPTER 2. LITERATURE REVIEW

74

Chapter 3

Image Databases

To investigate the strengths and limitations of the learning/adaptive approaches described in
this thesis, three different grey scale databases were used in the experiments. The pictures were
selected to provide detection problems of increasing difficulty. The three different detection
problems are presented in table 3.1. Example pictures are given in figure 3.1 (page 77), figure
3.2 (page 79) and figure 3.3 (page 82). The key characteristics of these databases and the

detection problems are summarised in table 3.2.

Difficulty of object | Database Name | Detection Problems

detection task

Easy pictures | Detection of filled circles and
Easy (Synthetic) squares against a uniform

background

Coin pictures | Detection of different sides of
Medium Difficulty (real world) different coins against a

relatively uniform background

Retina pictures | Detection of haemorrhages and

Very difficult (real world, micro-aneurisms against a

for medical use) | highly cluttered background

Table 3.1: Three different databases and the corresponding detection problems.

75

CHAPTER 3. IMAGE DATABASES

Easy Pictures | Coin Pictures | Retina Pictures

Total number of images 10 20 20

in database

Entire images Number of images 4 10 12

in detection training set

(for object detection) | Number of images 6 10 8

in detection test set

Size of images (pixels) 700x700 640%480 1024x1024
Total number of objects 240 200 164
Object examples Number of objects in 60 100 100
(cutouts, for classification training set
classification only) Number of objects in 180 100 64

classification test set
Max size of objects 14x14 24x24 16x16
(Size of input field)

Number of total classes 4 5 5

Object Classes Number of classes 3 4 2

of interest

Table 3.2: Key characteristics of the three databases and detection problems. (Note: the defi-

nition of the terms used in this table can be found in section 4.1.1, page 88.)

3.1 Easy Pictures

The first database consists of several synthetic pictures, the easy pictures, 700x 700 pixels, which
were generated to give well defined objects against a uniform background. A sample easy picture
is presented in figure 3.1. The pixels of the objects were generated by using a Gaussian generator
based on the normal distribution [4] with different means and variances for different classes. All
the objects in each class have the same size, but are located at different positions.

There are three classes of small objects of interest in this database: black circles (classl),
grey squares (class2) and white circles (class3) against a uniform grey background (class other).
The three kinds of objects were generated with different intensities. Ten and 5, 180 and 25, 230
and 20, and 140 and 0 were taken as the mean and standard deviation for class1, class2, class3

and other, respectively, as shown in table 3.3.

76

3.1. EASY PICTURES

Figure 3.1: A sample easy picture.

Class names | Description | Mean | Standard Deviation
classl Black circles 10 5
class2 Grey squares | 180 25
class3 White circles | 230 20
other Background 140 0

Table 3.3: Description of object classes in the easy pictures.

For neural network related approaches, 240 object examples, also called cutouts, were cut out

from the four entire images in the detection training set, 60 for each of the four classes. Of these,

7

CHAPTER 3. IMAGE DATABASES

60 were randomly selected for network training and other 180 were used for network testing.
Network training and testing is an object classification problem where no object localisation
procedure is carried out. After network training and testing, the six entire images in the detection
test set were used for object detection where both classification and localisation were carried
out. For the genetic programming based approach, the entire pictures in the detection training
set were directly used for training and the entire pictures in the detection test set were used to

measure the object detection performance.

3.2 Coin Pictures

The second database contains 20 coin pictures (640x480 pixels) which were intended to be
somewhat harder than the easy pictures and were taken with a CCD camera over a number
of days with relatively similar illumination. In these pictures the background varies slightly in
different areas of the image and between the images. The brightness of objects also varies in a
similar way. The objects to be detected are more complex than those in the easy pictures, but
still regular. A typical sample coin picture is shown in figure 3.2. All the objects in each class
have a similar size. They are located at arbitrary positions and with rotational invariance in
two dimensions.

Each of the pictures contains four object classes of interest, which are the head side of 5 cent
coins (class head005), the head side of 20 cent coins (class head020), the tail side of 5 cent coins
(class tail005) and the tail side of 20 cent coins (class tail020). The background (class other) is
relatively uniform — not totally uniform because of the different lighting conditions and camera

positions. A summary of the object classes is described in table 3.4.

Class names | Description

head005 Head side of 5 cent coins

tail005 Tail side of 5 cent coins

head020 Head side of 20 cent coins

taz1020 Tail side of 20 cent coins

other Background

Table 3.4: Description of object classes in the coin pictures.

78

3.3. RETINA PICTURES

Figure 3.2: A sample coin picture.

We split the 20 coin pictures in the database into two separate data sets: a detection training
set which contains 10 entire pictures and a detection test set which contains the other 10 entire
images. For neural network related approaches, 200 object examples were cut out from the
detection training image set, 40 for each of the five classes. Of these, 100 were randomly
selected for network training and the other 100 for network testing, which only involves object
classification. Then the trained network was applied to the entire images in the detection test set
to measure object detection performance, including both object classification and localisation.
For the genetic programming based approach the entire images in the detection training set were
directly used by the evolutionary process to generate the learnt computer programs, which were

then used to detect the objects of interest in the entire pictures in the detection test set.

79

CHAPTER 3. IMAGE DATABASES

3.3 Retina Pictures

The third database consists of 20 large retina pictures (1024x 1024 pixels), which were taken by
a professional photographer with special apparatus at a clinic. Figure 3.3 (page 82) shows an
example of the retina pictures. Compared with the previous two databases and other databases
used in automatic target recognition or detection problems such as the recognition of regular,
man-made small objects, the detection problems in this database are more difficult. They contain
very irregular and complex objects in several classes against a highly cluttered background.

There are two object classes of interest: haemorrhages (class haem) and micro-aneurisms
(class micro). Figure 3.4 (page 83) shows examples of haemorrhages and figure 3.5 (page 84)
gives examples of micro-aneurisms. In these two figures, haemorrhage and micro-aneurism ex-
amples are labelled using white surrounding squares.

These objects are not only located in different places, but the sizes of the objects in each
class are different as well, particularly for the haemorrhages. In addition, there are also other
objects of different classes, such as veins (class vein, figure 3.6, page 85) with different shapes,
and retina “edges” (class edge, figure 3.7, page 86). The backgrounds (class other) are varied,
some parts are quite black, some parts are very bright, and some parts are highly cluttered.

These object classes are summarised in table 3.5.

Class names | Description Number of object samples
for network training
haem haemorrhages 31
MiCTo micro-aneurisms 33
vein veins, including large, medium and thin veins 33
edge retina edges 33
other highly cluttered background 33

Table 3.5: Description of object classes in the retina pictures.

Twenty retina pictures in the database were split into two image sets: a detection training
set which contains 12 pictures and a detection test set which consists of the other 8 pictures.

For training the neural networks, 161 object examples of the five classes were cut out from the

80

3.3. RETINA PICTURES

detection training image set. The numbers of the object examples in the five classes are given
in table 3.5. Of these, 100 were used for network training and 61 were used for network testing,
which only involves object classification. The learnt program, that is, a trained network was then
applied to the detection test set for object detection which involves both object classification
and localisation. Similarly to the two previous databases, the entire images in the detection
training set were directly used for the training procedure of genetic programming and the entire

images in the detection test set were used for the measure of the detection performance.

81

CHAPTER 3. IMAGE DATABASES

Figure 3.3: A sample retina picture.

82

3.3. RETINA PICTURES

Figure 3.4: Haemorrhage examples.

83

CHAPTER 3. IMAGE DATABASES

Figure 3.5: Micro-aneurism examples.

84

3.3. RETINA PICTURES

Figure 3.6: Vein examples.

85

CHAPTER 3. IMAGE DATABASES

Figure 3.7: Retina edge examples.

86

Chapter 4

Neural Networks for Object

Detection— the Basic Approach

In this chapter, we first give a general overview of our basic approach to the use of multilayer
feed forward neural networks for detecting small objects in large pictures. We then present the
key ideas and algorithms for this approach, including the generation of different data sets, the
determination of the network architecture, network training and testing, finding the centres of
the objects and object matching. After presenting the experimental results for network training
and testing in object classification and the results for object detection, we summarise the basic

approach at the end of this chapter.

4.1 Introduction

Since our goal is domain independent object detection, we use raw pixel data as inputs and avoid
the feature extraction and selection which tend to make vision systems domain specific. In this
chapter, we describe the development of a pixel based neural network approach to multiple class
object detection problems in which the locations of multiple objects in each class of interest
must be found.

For presentation convenience, we call the approach described in this chapter the basic ap-
proach. Its performance will be used as the baseline for the purpose of comparisons with the

variations and extensions described in chapters 5, 6 and 7.

87

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

4.1.1 Terminology

To avoid confusion, we define the following terms related to the image data sets used in this

thesis:

Definition 4.1 Image Data Set
An image data set refers to a set of entire images in a database. In this thesis, there are three
image data sets used for the experiments, that is, the easy pictures, the coin pictures and the

retina pictures, as described in chapter 3.

Definition 4.2 Detection Training Set

A detection training set refers to a set of entire images randomly split from the image data set
and used to learn a detector, that is, either a neural network or a computer program, for object
detection. In this thesis, the detection training set is used to generate a classification data set
(see below definition 4.5) for network training and testing, and is also used directly by a genetic
algorithm for network refinement (chapter 6) and a genetic programming evolutionary process

to generate a computer program (chapter 7).

Definition 4.3 Detection Test Set

Similarly to a detection training set, a detection test set also refers to a set of entire images
randomly split from the image data set. However, the detection test set is used for measuring
object detection performance. The images in this set are unseen to the training process and are

used to investigate the generalisation ability of the learning methods.

Definition 4.4 Cutouts
Cutouts refer to the object examples which are cut out from the detection training set. The
cutouts are used to form classification data sets. Sample cutouts from the easy database are

shown in figure 4.4 (page 93).

Definition 4.5 Classification Data Set
A classification data set refers to a set of cutouts. In this thesis, the classification data sets are
used only for object classification, including network training and testing. These data are not

used for measuring object detection performance.

88

4.1. INTRODUCTION

Definition 4.6 Classification Training Set

A classification training set, also called classification training data, refers to a set of cutouts

randomly split from the classification data set. This data set is used for network training in

object classification.

Definition 4.7 Classification Test Set

A classification test set, also called classification test data, is similar to the classification training

set except that it is used for measuring object classification performance by applying the trained

network during network testing.

The relationships between the various data sets are shown in figure 4.1.

patterns, input patterns and output pattern in this figure will be described in section 4.3.1 (page

93).

Image Data Set
(Entire images)

Random split

Detection Training Set
(Entire images)

Detection Test Set
(Entire images)

Classification Data Set
(Cutouts)

Random Split

Classification Training Set
(Cutouts)

Full Patterns

N

Input Patterns

Output Patterns

Classification Test Set

(Cutouts)

Figure 4.1: Relationships between classification and detection data sets.

89

The terms full

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

4.1.2 Overview of the Basic Approach

Cutouts

(Classification Training Set)

Network Training

Entire Images
(Detection Test Set)

Trained Network

Object Detection

Detection Results

Figure 4.2: An overview of the basic approach.

An overview of the basic approach is presented in figure 4.2. It consists of six main steps,

which are briefly described as follows:

1. Assemble a database of pictures in which the locations and classes of all the objects of
interest are manually determined. Divide these full images into two sets: a detection

training set and a detection test set. See section 4.2 on page 92 for details.

2. Determine an appropriate size (n) of a square which will cover all objects of interest and
form the input field of the networks. Generate a classification data set by cutting out
squares of size nxn from the detection training set. Each of the squares, called cutouts
or sub-images, only contains a single object and/or a part of the background. Randomly
split these cutouts into a classification training set and a classification test set. These

classification data sets are used for object classification, which involves network training

90

4.1. INTRODUCTION

and network testing. Note that all of the backgrounds are also considered as one class,

but not a class of interest. See section 4.3 on page 93 for details.

3. Determine the network architecture. A three layer feed forward neural network is used in
this approach. The n x n pixel values form the inputs of a training pattern (definition 4.8
on page 94) and the classification is the output. The number of hidden nodes is empirically

determined. See section 4.4 on page 95 for details.

4. Train the network by the backward error propagation algorithm on the classification train-
ing data. The network training process will be stopped according to the termination strat-
egy. The trained network is then tested on the classification test set to measure the object
classification performance. The classification test data is also used to avoid overtraining

the network. See section 4.5 on page 97 for details.

5. Use the trained network as a moving window template [13] to detect the objects of interest
in the detection test set. If the output of the network for a class exceeds a given threshold
then report an object of that type at the current location. It is important to note that the
thresholds for different classes are different. This is done by a network sweeping procedure

and an object centre finding algorithm. See section 4.6 on page 98 for details.

6. Evaluate the object detection performance of the network by comparing the classes and
locations generated by the network sweeping procedure with the known true classes and
locations and calculating the detection rate and the false alarm rate. See section 4.7 on

page 101 for details.

A flow diagram for the basic approach is shown in figure 4.3.

4.1.3 Chapter Goals
In this chapter, the following specific research questions will be investigated:

e Will the basic approach work for detecting simple objects in large pictures with a uniform

background — the easy pictures?

e Can it be used for regular object detection in large pictures with a relatively uniform

background — the coin pictures?

e Is it possible to detect complex objects in large pictures with a highly cluttered background

using this approach — the retina pictures?

91

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC

APPROACH

Object Classes and
Locations

Detection Test Set

Image Data Set

Randomly Split

Determine Size

Detection Training Set

M anual Process

Ob] ect Classes
Locatl ons

of theInput Field

Pattern Generation

Determination of
Network Architecture

Classification
Training Set

Classification Data Set

Randomly split

Classification
Test set

Network Training

Network Testing

Trained Network

Performance Evaluation

Detection Results
(Detection Rate and
False Alarm Rate)

——(Object Centers and Classes

Finding Centers of Objects

|

i l

Network Sweeping

Object Sweeping Map

Figure 4.3: Flow diagram of the basic approach.

4.2

In the first step of the approach, the entire pictures in the assembled image database are ran-
domly split into a detection training set and a detection test set. The detection training set is
used for the development of a neural classifier and the detection test set is used for the mea-
surement of the object detection performance of the classifier. In these data sets, the classes
and locations of the objects of interest are manually determined. The classes and locations in
the detection training set are used for the generation of a classification data set consisting of a

set labelled nxn cutouts. These form the training patterns and test patterns (definition 4.10 on

92

Generation of Image Data Sets

|

Classification
Results

4.3. GENERATION OF CLASSIFICATION DATA SET

page 94). The classes and locations in the detection test set will be used for the comparison with
the classes and locations (centres) of the objects reported by the detection procedure (section
4.6 on page 98).

The details of the detection training sets, detection test set and sample images for the three

databases used in this thesis can be found in chapter 3.

4.3 (Generation of Classification Data Set

4.3.1 Generation of Patterns

Before the network is trained, the input patterns need to be generated. This is done by cutting
out a number of sub-images with a square size of nxn (the input field size) from the detection
training image set according to the object locations and classes which have already been deter-
mined in step one. Some examples of the cutouts for the detection problem in the easy picture

database are presented in figure 4.4.

¥ & & & & @
B B B B B B
E O 080 O 0O 08
H B B B B B

L4 & =

Figure 4.4: Samples of network input patterns for the easy pictures.

To avoid confusion, we give the following definitions:

93

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

Definition 4.8 Input Pattern.

The set of activations of all input nodes in the network is called an input pattern. As can be
seen from figure 4.4, input patterns here refer to a number of cutouts, that is, small object
examples plus background, of each class which have been cut out from the detection training
set. In the basic approach the pixel values are used directly as inputs to neural networks and
the pixel values of such a cutout form an input pattern of the network. In other words, a cutout
corresponds to an input pattern. The number of pixels is decided by the size of the cutouts,

which have the same size as the input field. Pixel values are scaled from [0, 255] to [0, 1.0].

Definition 4.9 Output Pattern

The set of activations of all output nodes in the network is called an output pattern. We use 1.0
to represent the activation of the desired class and 0.0 to represent the activation of non-desired
classes. For instance, if there are four output nodes in the neural network which correspond to
four object classes in a problem domain, then (1.0, 0.0, 0.0, 0.0), (0.0, 1.0, 0.0, 0.0), (0.0, 0.0,
1.0, 0.0) and (0.0, 0.0, 0.0, 1.0) are the four output patterns for classl, class2, class3 and class4

respectively.

Definition 4.10 Pattern, Training Pattern and Test Pattern
The input pattern and its corresponding output pattern constitutes a full pattern, or simply a
pattern.

In the classification data set there are a number of patterns which will be used for network
training and testing. As discussed in section 4.1.1 (page 88), the patterns are randomly split
into a classification training set and a classification test set. The patterns in the classification
training set are called training patterns, and the patterns in the classification test set are test

patterns.

Definition 4.11 Input Field
The input field here refers to a square in the large images. This is used as a moving window for
the network sweeping process (see page 98). The size of the input field is the same as that of

the cutouts which form the input patterns.

4.3.2 Determination of the Input Field Size

In this approach, the size of the input field is determined according to the following heuristic

rule:

94

4.4. DETERMINATION OF THE NEURAL NETWORK ARCHITECTURE

The input field should be sufficiently large to characterise

the background but should be small enough to contain only

a single object of interest.

According to the heuristic rule, the size of the input field can be calculated by equation 4.1.

n = size_of_object + b (4.1)

where size_of object refers to the size of the biggest object which needs to be detected and b
stands for a chosen size of the background to surround the object. After preliminary trials of a
range of sizes, we set b as 2-/ pixels. In the easy pictures used in the thesis, the largest object
size is 12x 12, and the input field size for the detection problem in this database is defined as
14x 14. Similarly, typical input field sizes used for the coin pictures and the retina pictures are

24x 24 and 16x 16 respectively.

4.4 Determination of the Neural Network Architecture

We use three layer feed forward neural networks where there is one input layer, one output layer
and one hidden layer. Thus, the design of the network architecture becomes the determination
of the number of input nodes, the number of output nodes and the number of hidden nodes. One

example of this kind of neural network with its associated input pattern is shown in figure 4.5.

4.4.1 Number of Input Nodes

This approach directly uses the raw pixel data as inputs in order to avoid the hand-crafting of
specific features for each domain. As shown in figure 4.5, the values of all the pixels in an input
pattern are fed into the network. The number of input nodes should be equal to the number
of the pixels in the input pattern. This is in turn decided by the size of the square input field.

Thus, the number of input nodes can be calculated by equation 4.2:

no_of_input_nodes = n’ (4.2)

where no_of input_nodes denotes the number of input nodes and n is the input field size. Typical
numbers of input nodes for the easy, the coin and the retina pictures are 196 (= 142), 576 (=

242) and 256 (= 162) respectively.

95

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

Classl Class2 Other Output Pattern

Output Layer

Hidden Layer

Input Layer

ixelM

Input Pattern

Figure 4.5: A sample neural network architecture with (74x14 = 196) pixel input.

4.4.2 Number of Output Nodes

We define the number of output nodes (no_of output_nodes) in the network as the number of

object classes contained in the large pictures plus one background class called other, as shown

in equation 4.3.

no_of-output_nodes = number of classes+ 1 (4.3)

In other words, the background is considered as one independent class here.

96

4.5. OBJECT CLASSIFICATION

4.4.3 Number of Hidden Nodes

A number of methods have been used for determining the number of hidden nodes in feed forward
networks, for example, trial-and-error, evolutionary algorithms and simulated annealing. Since
the main focus here is on investigating the strengths and limitations of the basic approach with
the back propagation algorithm rather than testing a constructive or stochastic search algorithm,
we use the trial-and-error method for determining the number of hidden nodes.

In this method, the number of hidden nodes needs to be empirically determined during
network training and testing. It is difficult to give a formula to determine the number of the

hidden nodes, however we used the following guideline:

Use as few as possible

There are two main reasons for this. One concerns computation time. The more hidden
nodes in the network, the longer the time taken in network training and object detection. The
other concerns the possibility of overfitting (section 2.3.3, page 29), that is, using too many
hidden nodes results in high accuracy on the training set but a high error rate on the test set.

Through empirical experiment under this guideline, we have found that 3-10 hidden nodes
are suitable for most domains and that the process is relatively robust with respect to the number
of hidden nodes. The details for different detection problems can be seen in section 4.8.1 (page

101).

4.5 Object Classification

4.5.1 Neural Network Training

The main ideas of network training were presented in section 2.3.2 (page 26). As indicated in
that section a number of decisions need to be made when training neural networks: selection or
development of the training algorithm, selection of the termination criterion for network training
and the selection or determination of the relevant parameters. This section describes the first

two and the last one will be presented in section 4.8.1 (page 101).

Selection of Training Algorithm

In this approach, we use the modified backward error propagation algorithm with online learning

and fan-in, but with no momentum, to train the networks. The details of backward error

97

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

propagation algorithm and its variations can be seen in section 2.3.2 (pages 27-28).

Selection of Termination Criteria

In this approach, we mainly used the proportion control strategy to terminate the network
training process. The user control strategy was also used in case the trainer thinks there is no
need to continue, however, it is used only for the determination of the network architecture and
the parameters. The details of the termination strategies for network training can be seen in
section 2.3.3 (page 29).

When the training is terminated, the learned network weights and biases are saved for the

use in network testing or subsequent resumption of training.

4.5.2 Network Testing and Classification Criterion

The trained network is then applied to the classification test set. If the test performance is
reasonable, then the trained network is ready to be used for object detection. Otherwise, the
network architecture and/or the learning parameters need to be changed and the network re-
trained, either from the beginning or from a previously saved, partially trained network.

The network classification is considered correct if the largest activation value produced by the
feed forward procedure is for the output node which corresponds to the desired class. Otherwise,
the classification is incorrect. For example, if the actual activation vector of an input pattern is
(0.32, 0.84, 0.45, 0.17) for a four class detection problem and the target output vector is (0.0,

1.0, 0.0, 0.0), then this input pattern is correctly classified by the network.

4.6 Object Detection

In this stage, the trained network is used to detect the classes and locations of the objects of
interest in large pictures. Classification and localisation are performed by the procedures —
network sweeping and finding object centres. It is important to mention that the large pictures
used here are those in the detection test set, which were not used in any form for network

training.

4.6.1 Network Sweeping

After network training is successfully done, the trained neural network is used as a template

matcher, and is applied, in a moving window fashion, over the large pictures to detect the objects

98

4.6. OBJECT DETECTION

of interest. The template is swept across and down these large pictures, pixel by pixel in every
possible location. We call this procedure network sweeping.

After the sweeping is finished, an object sweeping map for each object class of interest detected
will be produced. An object sweeping map corresponds to a PGM image. Sample object
sweeping maps for class class1, class class2 and class class3 together with the original picture
for the easy detection problems are shown in figure 4.6. During the sweeping process, if there
is no match between a square in a detecting picture (an original picture in the detection test
set) and the template, then the neural network output is 0, which corresponds to black in the
sweeping maps; partial match corresponds to grey on the centre of the object, and best match

is close to white in the sweeping maps.

L e e e

= 40 e el s
- p = - @
o - 1
L

i & 4 b @
.-'\.I ::-1- .:l:"-'- ..-. "—'-"\.I L
L0 L § -:-I.' [T,

Original picture Classl-sweeping-map

Class2-sweeping-map Class3-sweeping-map

Figure 4.6: Sample object sweeping maps in object detection.

99

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

Under this design, each of the object sweeping maps is smaller than the original picture. The
width and length of an object sweeping maps are equal to the width and length of the original
picture minus the size of the input field. For example, if the original picture size is 700x 700
and the input field size is 14x 14 then the size of a object sweeping map is (700-14)x (700-14) or
686x 686. Accordingly, it is possible for this method to detect the objects located in the square
with the upper-left corner (7, 7) and the lower-right corner (693, 693), but not possible to
detect object located outside this square, that is, the edges of the original pictures. The possible
positions here refer to the pixel positions within this square. For presentation convenience, we
add some black edge pixels to make the object sweeping maps have the same size as the original

picture, as shown in figure 4.6.

4.6.2 Finding Object Centres

In this thesis, the centres of the objects are used to represent the objects themselves. We
develop a centre-finding algorithm in order to find the centres of all objects detected by the
trained network during network sweeping. For each object class of interest in each picture in
the detection test set, this algorithm is used to find the centres of the objects in the class based

on the corresponding object sweeping map. The centre-finding algorithm is shown in figure 4.7.

For each object sweeping map:

Step 1 Set a threshold for the class (figure 4.8 on page 110).

Step 2 Set all of the values in the sweeping map to zero, if they are

less than the threshold.

Step 3 Search for the largest value, save the corresponding position

(z,y), and label this position as an object centre.

Step 4 Set all values in the square input field of the labelled centre

(z,y) to zero.

Step 5 Repeat step 3 and step 4 until all values in the object sweeping

map are zero.

Figure 4.7: Centre-finding algorithm

100

4.7. EVALUATION

If two or more “object centres” for different classes at the same position are found, the
decision will be made according to the network activations at this position. For example, if the
centre-finding algorithm finds one object centre for class2 and one for class3 at position (260,
340) for the easy detection problem and the activations for the three classes of interest and
the background at this position are (0.27, 0.57, 0.93, 0.23), then the object for class3 will be
considered as the detected object at this position since the activation for this class is the biggest

one (0.93).

4.7 Evaluation

In this approach, we design the two tasks involved in measuring the detection performance.

They are object matching and performance measurement.

4.7.1 Object Matching

The main purpose of object matching here is to find the number of objects correctly reported by
the detection system for each object class of interest. This is done by comparing all the object
centres reported by the centre-finding algorithm with all the known true object centres in the
detection test set. Here, we allow a tolerance of 4 pixels in the x and y directions. For example,
if the coordinates of a known true object are (21, 19) and the coordinates of a detected object
are (22, 21), we still consider them as the same object. In this case the matching is successful,

even though there is a gap of one and two pixels in the z and y directions respectively.

4.7.2 Performance Measurement

In this thesis, we use the detection rate and false alarm rate to measure the object detection
performance. The details of the detection rate and false alarm rate can be found in section 2.1.3
(page 15). It is important to note that the detection performance here refers to the performance

achieved by a trained network on the detection test set.

4.8 Experimental Results

4.8.1 Object Classification Results

This section presents a number of object classification results on the cutouts of the three detection

problems, including network training and testing. Network training and test performance on the

101

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

cutouts is measured by mean squared error (MSE) and the number of epochs used for network
training. To give a clear view, the classification accuracy for network training and testing is also
presented.

It is important to note that the results for object classification are not the the final detection

results. There are two main reasons that we present these results here:

1. To establish that the classification networks can be successfully trained with some sets of

parameters.

2. To determine what is the best classification on cutouts to use as a reference point for object

detection.

In other words, these results are used for the selection of good trained networks and a
corresponding set of parameters for object detection. For the easy and the coin pictures, 15
experiments are performed. For the retina pictures, 10 experiments are performed. For all

cases, the mean (u) and the corresponding standard deviation (o) are presented.

Easy Pictures

In the easy pictures, the biggest object size is 12x 12 pixels. The size of the input field was
defined as 14x 1/, which is the largest object size plus 2 pixels of background. Accordingly, the
number of input nodes is 196 (14x14). There are three classes of interest in the easy picture
database and thus the number of output nodes in the network is 4. A series of numbers of hidden
nodes were tested here: 1, 2, 3, 4, 5, 6,7, 8,9, 10, 15, 20, 30, 50, 100. The experiment indicated
that 3-10 hidden nodes gave similar results and the performance was best for 4 or 5 hidden
nodes. Thus we used the network architectures 196-4-4 and 196-5-4 for further experiments.
The network training and testing results with the two networks are presented in table 4.1 and
table 4.2. The second column “initial weight format” is given in these tables to keep consistency
with results in later chapters.

As can be seen from table 4.1, the first group of the experiments was carried out with a
network architecture of 196-4-4. The learning rate (1) used here was 0.5, the momentum («)
was zero (without momentum). The training was terminated when all the training patterns in
the classification training set were correctly classified (percent = 100%). The trained network
was then applied to the classification test set. After 15 runs of the experiments, the average
number of epochs used for network training was 199.40 with a standard deviation of 18.09

(199.404+18.09). The mean squared error on the classification training set was (5.09+0.30)x 102

102

4.8. EXPERIMENTAL RESULTS

Expt. | Initial Epochs Training | Training Test Test
No. Weight MSE Accuracy MSE Accuracy

Format (x1072) (%) (x1072) (%)

1 random 175 5.2 100 5.2 100

2 random 182 5.1 100 5.1 100

3 random 196 5.0 100 5.1 100

4 random 171 6.1 100 6.1 100

5 random 197 5.0 100 5.1 100

6 random 210 5.0 100 5.1 100

7 random 203 5.0 100 5.1 100

8 random 214 4.9 100 5.0 100

9 random 212 5.0 100 5.1 100

10 random 210 5.0 100 5.1 100

11 random 234 4.8 100 4.9 100

12 random 184 5.1 100 5.2 100

13 random 222 4.9 100 5.0 100

14 random 199 5.1 100 5.2 100

15 random 182 5.1 100 5.2 100
pto 199.40+£18.09 | 5.09+0.30 10040 5.17+0.27 10040

Table 4.1: Results of network training and testing for object classification in the easy pictures
using the basic approach. (Network architecture: 196-4-4; n = 0.5; o = 0; Stop criterion: Percent
= 100%; Training set size = 60; Test set size = 180; Repetitions = 15.)

and the mean squared error on the classification test set was (5.1740.27)x1072. The trained
network classified all the patterns in the classification test set into the correct desired classes,
that is, test classification accuracy is 100%.

Table 4.2 shows the experimental results with the network architecture 196-5-4. In these
experiments, training was terminated when 95% of the training patterns were correctly clas-
sified by the network. In this case, the number of epochs required for network training was
177.20+8.68, the mean squared error on the training set was (5.7340.10)x 102 and the mean
squared error on the test set was (5.7540.10)x1072. The classification rate for the cutouts in

the classification test set is 93.58% on average.

103

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

Expt. | Initial Epochs Training | Training Test Test
No. | Weight MSE Accuracy MSE Accuracy

Format (x10-2) (%) (x1072) (%)

1 random 169 5.6 95.0 5.7 91.7

2 random 178 5.8 95.0 5.8 92.2

3 random 187 5.7 95.0 5.7 92.8

4 random 183 5.7 95.0 5.7 93.3

5 random 182 5.8 95.0 5.8 93.3

6 random 179 5.8 95.0 5.8 94.4

7 random 174 5.6 95.0 5.7 92.8

8 random 164 6.0 95.0 6.0 93.3

9 random 172 5.7 95.0 5.7 94.4

10 random 179 5.7 95.0 5.7 95.0

11 random 182 5.9 95.0 5.9 95.0

12 random 171 5.7 95.0 5.7 93.3

13 random 173 5.7 95.0 5.7 95.0

14 random 167 5.7 95.0 5.7 94.4

15 random 198 5.6 95.0 5.6 92.8
pto 177.20+ 8.68 | 5.73+0.10 | 95.0£0 | 5.75+0.10 | 93.58+1.06

Table 4.2: Results of network training and testing for object classification in the easy pictures
using the basic approach. (Network architecture: 196-5-4; n = 0.5; a = 0; Stop criterion:
Percent = 95%; Training set size = 60; Test set size = 180; Repetitions = 15.)

Coin Pictures

As described in chapter 3, there are four classes of interest in the coin picture database. The
number of output nodes was accordingly defined as 5. The largest size of these objects is
around 20x 20, thus we used 576 — an input field of 24x 24, as the number of input nodes. We
empirically determined the number of hidden nodes as 3 and 5. Networks were trained based
on these two architectures.

The results with a network architecture of 576-3-5 are shown in table 4.3. The network was
trained with a learning rate of 0.5 without momentum. The training process was terminated
when all the patterns in the classification training set were correctly classified.

As can be seen from table 4.3, training the network (576-3-5) required 234.6+65.94 epochs;

104

4.8. EXPERIMENTAL RESULTS

Expt. | Initial Epochs Training | Training Test Test
No. | Weight MSE Accuracy MSE Accuracy

Format (x1072) (%) (x1072) (%)

1 random 197 3.1 100 3.1 100

2 random 214 2.3 100 2.3 100

3 random 175 2.9 100 2.9 100

4 random 258 2.5 100 2.5 100

5 random 190 2.5 100 2.5 100

6 random 238 2.5 100 2.5 100

7 random 197 2.3 100 2.3 100

8 random 242 1.9 100 1.9 100

9 random 259 2.2 100 2.2 100

10 random 219 3.5 100 3.5 100

11 random 343 1.9 100 1.9 100

12 random 231 2.2 100 2.2 100

13 random 175 3.1 100 3.1 100

14 random 175 2.7 100 2.7 100

15 random 208 3.0 100 2.9 100

pto 234.6+£65.94 | 2.60+0.47 100+0 | 2.60+0.46 100+0

Table 4.3: Results of network training and testing for object classification in the coin pictures
using the basic approach. (Network architecture: 576-3-5; n = 0.5; o = 0; Stop criterion:
Percent = 100%; Training set size = 100; Test set size = 100; Repetitions = 15.)

the mean squared error performance on the classification training set was (2.604-0.47)x10 2, and
was (2.60£0.46)x1072 on the classification test set. The classification rate on the classification
test set was also 100%.

As in the easy pictures, we performed another group of experiments on the coin pictures using
a network of 576-5-5. To test the role that the learning parameters play during network training,
we set the learning rate as 1.5 without momentum. The training process was terminated at the
point when 95% of the training patterns were correctly classified. Under this condition, training
took 87.13+5.08 epochs; the mean squared error on the classification training and test sets were

(3.3340.39) x10~2 and (3.1740.36) x10~2 respectively. The details of the network training and

105

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

Expt. | Initial Epochs Training | Training Test, Test
No. Weight MSE Accuracy MSE Accuracy

Format (x1072) (%) (x1072) (%)

1 random 90 4.1 95 3.8 94.0

2 random 81 3.1 95 3.0 95.0

3 random 80 3.3 95 3.1 97.0

4 random 89 3.4 95 3.2 93.0

5 random 98 2.9 95 2.8 95.0

6 random 83 2.6 95 2.5 94.0

7 random 94 2.8 95 2.7 95.0

8 random 89 3.6 95 3.6 96.0

9 random 81 3.5 95 3.2 93.0

10 random 88 3.5 95 3.3 96.0

11 random 83 3.6 95 3.4 94.0

12 random 89 3.1 95 2.8 93.0

13 random 89 3.8 95 3.6 95.0

14 random 84 34 95 3.2 93.0

15 random 89 3.3 95 3.3 95.0
pto 87.13+5.08 | 3.33£0.39 | 95.0+0 | 3.17+0.36 | 94.53+1.25

Table 4.4: Results of network training and testing for object classification in the coin pictures
using the basic approach. (Network architecture: 576-5-5; n = 1.5; a = 0; Stop criterion:
Percent = 95%; Training set size = 100; Test set size = 100; Repetitions = 15.)

testing are presented in table 4.4. The classification accuracy on the classification test set was

94.53% on average.

Retina Pictures

In the retina database, there are two classes of interest (class haem and class micro) and two
additional classes (vein and edge). The number of output nodes was defined as 5. We used
16x 16 as the input field size, which corresponded to 256 input nodes in the network. In the
experiments, we used 4 and 5 as the number of hidden nodes. Note that 10 runs of experiments
on the two networks were performed in the retina picture database due to long computation

times.

106

4.8. EXPERIMENTAL RESULTS

Expt. | Initial Epochs Training | Training Test Test
No. | Weight MSE Accuracy MSE Accuracy

Format (x1072) (%) (x1072) (%)

1 random 191 9.5 65.0 9.1 67.2

2 random 186 9.6 65.0 9.2 65.5

3 random 196 9.7 65.0 8.7 68.9

4 random 179 9.6 65.0 9.2 65.5

5 random 213 9.1 65.0 9.2 60.7

6 random 195 9.7 65.0 9.3 62.2

7 random 172 9.7 65.0 9.0 68.9

8 random 193 94 65.0 9.3 63.9

9 random 219 9.1 65.0 9.1 62.2

10 random 264 9.3 65.0 9.1 65.5
pto 200.8+£26.67 | 9.44+0.22 | 65.0+£0 | 9.12+0.18 | 65.05+2.82

Table 4.5: Results of network training and testing for object classification in the retina pictures
using the basic approach. (Network architecture: 256-4-5; n = 1.5; a = 0; Stop criterion:
Percent = 65%; Training set size = 100; Test set size = 61; Repetitions = 10.)

Unlike the easy and the coin picture databases, it was much more difficult to train the
networks for the retina picture data. A network could not be trained to correctly classify all the
training patterns of the cutouts for a wide range of parameter values.

The first experiment was done with a 256-4-5 network. A learning rate of 1.5 was used with
no momentum; the training process was terminated when 65% of all patterns in the classification
training set were correctly classified by the network. The results are presented in table 4.5.

The second experiment is presented in table 4.6. In this case, a 256-5-5 network was used,
the learning rate was 0.5 and network training was continued until 75% of the training patterns
were correctly classified by the network. Note that the test mean square error was larger than
the training square error, which indicated that overtraining occurred. This was confirmed by
the classification rate on the classification test set, 71.83% on average, which is less than that
on the training cutouts (75.4%).

In this section, a series of network training and testing results for object classification were

presented. These results show that:

107

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

Expt. | Initial Epochs Training | Training Test, Test
No. | Weight MSE Accuracy MSE Accuracy

Format (x1072) (%) (x1072) (%)

1 random 431 6.9 75.4 7.7 72.1

2 random 345 7.2 75.4 9.7 68.9

3 random 645 6.0 75.4 7.7 73.8

4 random 412 6.5 75.4 8.0 68.9

5 random 408 7.3 75.4 9.3 73.8

6 random 373 7.1 75.4 9.3 68.9

7 random 516 5.9 75.4 7.6 73.8

8 random 415 7.2 75.4 8.1 75.4

9 random 445 6.7 75.4 7.7 73.8

10 random 768 6.2 75.4 8.3 68.9
pto 475.8+132.76 | 6.70+0.52 | 75.4+0 | 8.34+£0.79 | 71.83+2.63

Table 4.6: Results of network training and testing for object classification in the retina pictures
using the basic approach. (Network architecture: 256-5-5; n = 0.5; a = 0; Stop criterion: percent
= 75%; Training set size = 100; Test set size = 61; Repetitions = 10.)

e The degree of difficulty for network training varies with the three detection problems.
For the easy and coin pictures, the training patterns were all correctly classified (100%
classification accuracy) by the network. For the retina pictures, however, it was not possible

to reach such a point.

e Robust: Networks are trained successfully with a wide range of hidden nodes and learning

parameters.

e Different starting points such as the random initial weights also produce different results
for the same network architecture with the same training patterns using the same learning

parameters.

It is important to note that network training and testing is only an intermediate step. The
trained networks will be then used as templates to detect the objects of interest in the entire

images in the detection test set. The detection results are presented in the next section.

108

4.8. EXPERIMENTAL RESULTS

4.8.2 Object Detection Results

This section describes the detection performance of the basic method on the three detection
problems using the sweeping method described in section 4.6 (page 98). Each of the 15 trained
networks shown in table 4.1 was applied to the detection test set of the easy pictures. Each of
the 15 trained networks shown in table 4.3 was applied to the entire images in the detection test
set of the coin pictures. Each of the 10 trained networks shown in table 4.5 was applied to the

detection test set of the retina pictures. The averages are presented here.

Easy Pictures

As mentioned in the centre-finding algorithm (page 100), various thresholds result in different
objects detected, and accordingly different object detection results. The higher the threshold, the
fewer the objects that can be detected by the trained network, which results in a lower detection
rate but also a lower false alarm rate. Similarly, the lower the threshold is selected, the higher
the detection rate and the higher the false alarm rate which are produced. As mentioned on
page 16, there is a trade-off between the detection rate and the corresponding false alarm rate.

During the object detection process, thresholds were selected as shown in figure 4.8.

To show the relationship between the detection rate/false alarm rate and the threshold
selection, the detection results of one trained network for class2 in the easy pictures are presented

in table 4.7.

Easy Pictures Object Classes
(Basic Method) Class2
Threshold 0.54 | 0.56 | 0.57 | 0.595 | 0.625 | 0.650 | 0.673 | 0.700

Detection Rate(%) 100 | 96.67 | 93.33 | 90.00 | 86.67 | 83.33 | 80.00 | 76.67
False Alarm Rate (%) | 90.5 35.1 13.8 11.9 11.2 8.1 5.6 3.7

Threshold 0.725 | 0.747 | 0.755 | 0.800 | 0.835 | 0.865 0.940
Detection Rate(%) 73.33 | 70.00 | 66.67 | 63.33 | 60.00 | 56.67 0
False Alarm Rate (%) | 3.1 2.5 2.3 1.0 0.25 0 0 0

Table 4.7: Object detection results for class?2 in the easy pictures under different thresholds

using one of the 15 trained networks.

109

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

For a given object sweeping map for an object class of interest:
1. Initialise a threshold to 0.7.

2. Apply the centre-finding algorithm and object matching process and calculate

the detection rate and the corresponding false alarm rate.

3. If the detection rate is less than 100%, decrease the threshold to a new value
and repeat step 2 and obtain a new detection rate and a false alarm rate.
Repeat this procedure and obtain all the possible detection rates and the
best corresponding false alarm rate until the detection rate reaches 100% or

the new threshold is less than or equal to 0.20.

4. From the detection point obtained at the threshold of 0.7, if the false alarm
rate is greater than zero, increase the threshold and repeat step 2 in order to
obtain a new point (a detection rate with its corresponding false alarm rate).
Repeat this procedure until either the false alarm rate is zero, or detection

rate is zero, or the threshold is greater than or equal to 0.999.

5. To obtain all possible detection rates and their corresponding false alarm
rate, the thresholds applied in step 3 and 4 may need to be adjusted. In step
3, the current threshold should be increased if a possible point (detection
rate) is lost between the detection rate under the current threshold and that

with the previous threshold. The current threshold should be decreased in

step 4 if a similar situation happens.

Figure 4.8: Choice of thresholds

110

4.8. EXPERIMENTAL RESULTS

Easy Pictures Object Classes
(Basic Method) | Classl | Class2 | Class3
Detection Rate(%) | 100 100 100

False Alarm

Rate (%) 0 91.2 0

Table 4.8: Object detection results for the easy pictures using the basic approach. (Network
architecture: 196-4-4; Repetitions = 15.)

The overall results for the three classes in the easy pictures are presented in table 4.8.
As can be seen from this table, this approach always achieved a 100% detection rate and a
corresponding zero false alarm rate for class! (black circles) and class3 (white circles). All of
the objects of interest in these two classes were correctly detected without producing any false
alarms. However, this is not the case for class2 (grey squares). Even if a neural network achieved
a 100% detection rate under a certain threshold, 91.2% false alarm rate was also produced. The

detection results for class2 are given in table 4.9.

Easy Pictures Object Classes
(Basic Method) Class2
Detection Rate(%) 100 | 96.67 | 93.33 | 90.00 | 86.67 | 83.33 | 80.00 | 76.67
False Alarm Rate (%) | 91.2 32.3 14.3 11.7 10.5 7.4 5.90 3.10

Detection Rate(%) | 73.33 | 70.00 | 66.67 | 63.33 | 60.00 | 56.67 | .. 0
False Alarm Rate (%) | 2.80 | 2.60 | 220 | 1.20 | 030 | © 0 0

Table 4.9: Object detection results for class2 in the easy pictures using the basic approach.

(Network architecture: 196-4-4; Repetitions = 15.)

Coin Pictures

The detection results for the coin pictures are described in table 4.10. In each run, it was always
possible to find a threshold for the network output for class head005 and tail005 which resulted
in detecting all of the objects of these classes with no false alarms. However, detecting class
head020 and tail020 was a relatively difficult problem with this method. Although all the objects

in these two classes were correctly detected (100% detection rate), the neural networks produced

111

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

Coin Pictures Object Classes

head005 | tail005 | head020 | tail020

Detection Rate (%) 100 100 100 100
False Alarm Rate (%) 0 0 182 37.5

Table 4.10: Object detection results for the coin pictures using the basic approach. (Network
architecture: 576-3-5; Repetitions = 15.)

some false alarms. The average false alarm rates for the two classes at a 100% detection rate
were 182% and 37.5% respectively.
Tables 4.11 and 4.12 show the details of the average detection performance for class head020

and tail020 in the coin pictures.

Coin Pictures Object Classes
(Basic Method) head020
Detection Rate(%) 100 93.75 | 87.50 | 81.25 75.0 68.75 | 62.5 | 56.25 | 50.0

False Alarm Rate(%) 182 159 140 114 92.7 67.5 | 514 | 353 | 214

Detection Rate(%) 43.75 | 37.5 | 31.25 | 25.0 | 1875 | 12.5 | 6.25 0

False Alarm Rate (%) | 10.3 8.50 7.40 6.40 1.0 0.4 0 0

Table 4.11: Object detection results for class head020 in the coin pictures using the basic ap-
proach. (Network architecture: 576-3-5; Repetitions = 15.)

Coin Pictures Object Classes

(Basic Method) tail020

Detection Rate(%) 100 | 93.75 | 87.50 | 81.25 | 75.0 | 68.75 | 62.5 | 56.25 | 50.0
False Alarm Rate (%) | 37.5 25.0 18.8 12.5 0 0 0 0 0

Detection Rate(%) 43.75 | 37.5 | 31.25 | 25.0 | 1875 | 12,5 | 6.25 0
False Alarm Rate(%) 0 0 0 0 0 0 0 0

Table 4.12: Object detection results for class tail020 in the coin pictures using the basic approach.
(Network architecture: 576-3-5; Repetitions = 15.)

112

4.8. EXPERIMENTAL RESULTS

Retina Pictures

Tables 4.13 and 4.14 describe the average detection performance of the two classes haem and
micro in the very difficult retina pictures. Compared with the performance of the easy and coin
pictures, these results are disappointing. The best detection rate for class haem was 73.91%
with a corresponding false alarm rate of 2859%. Even at a detection rate of 50%, the false alarm
rate was still quite high (about 1800%). All the objects of class micro were correctly detected
(detection rate could reach 100%) with a false alarm rate of 10104%.

Retina Pictures Object Classes

(Basic Method) haem
Detection Rate(%) 73.91 | 69.57 | 65.22 | 60.87 | 56.52 | 52.17 | 47.83 | 43.48 | 39.13
False Alarm Rate(%) | 2859 | 2758 2698 | 2529 1984 1872 1568 1151 1095

Detection Rate(%) 34.78 | 30.43 | 26.09 | 21.74 | 17.39 | 13.04 | 8.70 4.35 0
False Alarm Rate(%) | 956.1 | 873.0 | 682.6 | 534.8 | 426.1 | 373.9 | 187.0 | 65.2 0

Table 4.13: Object detection results for class haem in the retina pictures using the basic ap-

proach. (Network architecture: 256-4-5; Repetitions = 10.)

Retina Pictures Object Classes

(Basic Method) micro
Detection Rate(%) 100 90.00 | 80.00 | 70.00 | 60.00 | 50.00 | 40.00 | 30.00 | 20.00 | 10.00 | O
False Alarm Rate(%) | 10104 | 9800 | 9332 | 8680 | 7440 | 7196 | 6309 | 5327 | 4980 | 3694 | 0

Table 4.14: Object detection results for class micro in the retina pictures using the basic ap-

proach. (Network architecture: 256-4-5; Repetitions = 10.)

To give an intuitive view, the extended ROC curves (section 2.1.3 on page 13) for class class2
in the easy pictures, class head020 in the coin pictures and classes haem and micro in the retina

pictures are presented in figure 4.9 (a), (b), (c) and (d) respectively.

113

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC

oo .
S 100
Y -
] B
»‘ ’ . ’
s A i

! 80 e

: L -A

‘ .
-) .
g U _)
o 604 g }
: 3 w
E i
8 0 e |,
© ; ‘
a : A'

i
] 20 +*
A
0 T T T T T . ; o | | |
0 20 40 60 80 100 B A - -)

Falsealarm rate (%)
ROC curvefor "class2" in the easy pictures

(a)

100

Falsealarmrate (%)
ROC curve for "head020" in the coin pictures

(b)

100 n
A
80 80 i
r‘ '«(
— & A
& A g -
2 60 . A S 60 IS
= 'y B
S A 5 A
g 4 5 :
g 40 - A g 40| A
o A fa) .
A .
A
20 A,‘ 20 A
A .
r'y - K
%
0 T T 04— T T T T T
0 1000 2000 3000 0 2000 4000 6000 8000 10000

Falsealarm rate (%)
ROC curvefor "haem" in the retina pictures

()

Falsealarm rate (%)
ROC curve for "micra" in the retina pictures

(d)

Figure 4.9: Some typical results (extended ROC curves) for object detection in the three

databases using the basic approach.

114

4.9. DISCUSSION

Analysis of Results

As can be seen from the detection results obtained here, it was always possible to detect all
objects of interest in the easy and the coin pictures. This reflects the fact that the objects in the
two databases are simple or regular and the background is uniform or relatively uniform. While
detecting the easy pictures only resulted in a few false alarms, detecting objects in the coin
pictures resulted in a relatively higher false alarm rate. This is mainly because the detection
problems in the coin pictures are more difficult than in the easy pictures.

Due to the difficulty of the detection problems, the results for the retina pictures are not
good. For class micro, while all objects were correctly detected, a very high number of false
alarms were produced. This is mainly because these objects are irregular and complex and
the background is highly cluttered. For class haem, it was not possible to detect all objects of
interest (the best detection rate was 73.91%). This is mainly due to the size variance of these

objects (from 7x7 to 1/x 14 pixels).

4.9 Discussion

4.9.1 Characteristics

This approach has the following characteristics:

e The raw image pixel data are used as inputs to neural networks, and accordingly it is a

domain independent approach.

e Network training uses the backward error propagation algorithm on the cutouts of the

objects rather than the entire images.

e The network weights are initialised to small random values at the beginning of the network

training.

e The trained networks are applied as a template, in a moving window fashion, over the large

pictures in the detection test set to detect (locate and classify) the objects of interest.

e There are multiple object classes of interest in the large pictures rather than an object

versus non-object detection problem.

e Traditional specific feature extraction is avoided.

115

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

4.9.2 Linearisation

In the basic approach, we used a three layer feed forward neural network trained by the backward
error propagation algorithm. The image pixel values are directly used as inputs to the neural
network. However, images have spatial structures and linearising an nxn image pixels into a
vector of inputs might destroy important information in the image.

There have been a number of discussions on this issue in the literature. Some researchers
argue that for general object/target recognition problems, input linearisation is not a big problem
and a fully connected network can still learn object parts (image local features) by the backward
error propagation learning algorithm using a non-linear transfer function (like a non-linear filter)
[29, 159].1 Rogers [155] states that a weighted linear combination of inputs can be passed through
a non-linearity to model actions and these kinds of networks can be used for finding regions of
interest, extracting features, selecting features, and object classification (page 1153). However,
this might not be the best technique for a given difficult problem.

Two general approaches have been reported for further improvement of the linearisation.
The first is to constrain the network training algorithm to reflect the image spatial correlation.
An example is the weight smoothing method [91], where a smoothing operation is added to
the delta updating rule in the back error propagation algorithm to adapt to the image spatial
structure. The second is to constrain the network input and the internal architecture to address
the linearisation issue. Shared weight neural networks [115, 42] and artificial convolution neural
networks [121] are examples of this kind. Both approaches involve constraining weights, either
smoothing weights to reflect the adjacent pixel correlations or sharing the same weight from a
squared receptive field (an nxn subimage) for the same feature.

To address this linearisation issue, we first used the backward error propagation algorithm
with the non-linear sigmoid transfer function and found that the basic approach performed
well for the relatively easy detection problems. We will investigate a new weight constraint
method to reflect the spatial correlations among neighbouring image pixels (chapter 5) and a
non-linear genetic training algorithm for network refinement (chapter 6) for the multiple class

object detection problems.

'Our results on weight analysis for the basic approach (see figure 5.4 on page 139) also support this idea.

116

4.9. DISCUSSION

4.9.3 Next Step

It can be seen from the experiments that for detecting grey squares (class) in easy pictures and
detecting objects in class head020 and tail020 in coin pictures the results are not ideal. The
performance in detecting class micro and class haem is very poor. The remainder of the thesis

examines ways of improving detection performance. Three lines of investigation are pursued:

1. The results have shown that the detection performance is related to the network training
starting point (initial weights). Is there any way to initialise the weights that can give

better performance? A centred weight initialisation method is presented in chapter 5.

2. In this approach, the network is trained by the backward error propagation algorithm. Can
improved detection performance be obtained if a genetic algorithm replaces the backward

error propagation algorithm for network training? This is investigated in chapter 6.

3. In this approach, the network was trained based on the cutouts of the objects of interest
and the trained network was directly applied to the entire images in the detection test
set. Is there any way to refine the trained network based on the entire images? A two
phase approach which uses a genetic algorithm to refine the trained networks is discussed

in chapter 6.

4.9.4 Summary

This chapter presented a pixel based approach for detecting multiple class objects in large pic-
tures using multilayer feed forward neural networks. The backward error propagation algorithm
was used for the network training on the sub-images which had been cut out from the large pic-
tures in the detection training set. The trained network was then applied, in a moving window
fashion, over the entire images in the detection test set to detect the objects of interest. The
objects were represented by the coordinates of their centres. A centre-finding algorithm was
developed for object detection after the network sweeping. The detection rate and false alarm
rate were used as the evaluation criteria. Object detection performance was measured on the

large pictures in the detection test set. The experimental results showed that:

e This approach performed very well for detecting a number of simple and regular objects
against a relatively uniform background, such as detecting black circles and white circles

in the easy pictures.

117

CHAPTER 4. NEURAL NETWORKS FOR OBJECT DETECTION- THE BASIC
APPROACH

e [t performed poorly on the detection of class haem and class micro objects in the retina
pictures, which suggests that it may not be well suited to detecting complex and irregular

objects against a highly cluttered background.

e Asexpected, the performance degrades when the approach is applied to detection problems

of increasing difficulty.

118

Chapter 5

Centred Weight Initialisation in
Neural Networks for Object

Detection

On the basis of the basic approach discussed in chapter 4, this chapter introduces a new method
of initialising the weights, centred weight initialisation, before network training. After describing
the details of the method and implementation algorithm, we present a series of results on the
three detection problems of increasing difficulty and compare them with those achieved by the
basic approach with random initial weights. We then interpret the results through the analysis
of the weights in the trained networks. Finally, we summarise the strengths and limitations of

the method.

5.1 Introduction

This section first gives the rationale for the centred weight initialisation method, presents the

terminology related to the method, and then describes the goals of this chapter.

5.1.1 Rationale of the Method

In the basic approach, the network weights are initialised to small random floating values for
network training. As can be seen from chapter 4, based on the basic approach, the results for
detecting black and white circles in the easy pictures, and detecting heads and tails of 5 cent

coins in the coin pictures are quite good, but the results for detecting other objects are not good

119

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

at all. For detecting objects in classes haem and micro in the retina pictures, for example, a
high false alarm rate is produced. In this chapter, we introduce a centred weight initialisation
method, which is expected to be able to improve both network training accuracy and training

time for object classification and object detection. The main considerations are:

e Image data has its own characteristics. In general approaches to pattern classification
with neural networks, the inputs of the networks are usually independent. Accordingly, the
weights are initialised randomly by the standard random weight initialisation method and
training usually results in reasonable training speed and reasonable accuracy. However,
in image data, adjacent pixels are clearly not independent. Pixels that are adjacent in
an object are very likely to have similar intensities or colours. Therefore, in the pixel
based neural approach for object detection problems, this fact should be considered, and
accordingly the corresponding weights to these pixels which are used as inputs to neural

networks could be initialised in a different way for network training.

e In the basic approach, the centres of the small objects are used to represent the locations
of the objects. Thus the weights corresponding to the central pixels of the small objects
should perhaps be considered more important than those corresponding to the pixels far

from the centres of the objects.
For presentation convenience, we define the following terminology:

Definition 5.1 Random Weight Initialisation and Random Initial Weights
Random weight initialisation, or the random weight initialisation method, refers to the way of
randomly initialising network weights for network training. The weights initialised using this

method are called random initial weights.

Definition 5.2 Centred Weight Initialisation and Centred Initial Weights

Centred weight initialisation, or the centred weight initialisation method, refers to a specialised
way of initialising network weights in which the central pixels in a square are expected to be
more important than those on the perimeter and the network weights are initialised accordingly.
The details of this method can be found in section 5.2. The weights initialised using this method

are called centred initial weights.

5.1.2 Chapter Goals

In this chapter we investigate whether the centred initial weights:

120

5.2. CENTRED WEIGHT INITIALISATION METHOD

e will decrease the number of epochs to convergence for network training;
e will improve network accuracy on test data;

e will result in better object detection, that is, higher detection rate and lower false alarm

rate; and

e will be effective for problems of increasing difficulty.

5.2 Centred Weight Initialisation Method

In the basic approach (chapter 4), three layer feed forward neural networks are used and all the
weights in a network are initialised with small random floating point numbers between -0.5 and
+0.5. For convenience, we call the weights which connect the input nodes and hidden nodes
input-hidden weights, and call those linking the hidden nodes and output nodes hidden-output
weights. The input-hidden weights for a particular hidden node can also be expressed as a
matrix, or an input-hidden weight matriz. The number of such matrices is equal to the number
of hidden nodes in the network. A sample of such a matrix with random initial weights is shown
in figure 5.1 (a). In this figure the filled squares represent positive weights and the outline
squares represent negative weights, while the size of the square is proportional to the magnitude
of the weight. To facilitate visualisation the weights are shown as a parallel array to the input

field. Thus weight(i, 7) in figure 5.1 (a) corresponds to pizel(i, j) in the input field.

5.2.1 Centred Weight Initialisation Method

Figure 5.1 (b) shows a matrix with the centred initial weights. The idea of the centred weight

initialisation method is:

e For the input-hidden weights,

— The weight corresponding to the central pixel of the small object is initialised as the
biggest value and the weights corresponding to the pixels close to the corners and

edges of the small object take a very small value.

— The farther the pixels are away from the centre of the object, the smaller the corre-
sponding initial weights.

— The difference between the two weights corresponding to adjacent pixels in the input

field is restricted to a small constant.

121

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

0[] - Oc0d0+*0Omwcom-00mNE

= 0000 o DoQdJoecemmOd0 - m o n[]
cmOgol@ms s O 0w oome@O0 - - 0O
omO@owmo -00m0= =
sODclJ0oc=JeOm

N BCE B W=l BCE]

cO0-mJo-m@McoEO0C
g -OJO0o0cdo s
owm @O0 -
c ofim ocmEe[JO0oc w0
seO0m o oO@-0ocCN - &>
cosmEEMcJesm0d0Om=on
cO0oeooOoO=[]=m« -
= o Q00w co0m [e e mmQO -
gOMomooom e Mepocomsllm - mgQ0o
moOdO- cmms o -W[Jo[JmMJo[]=mo
le-DDIIIDDInDDDD.'DEn--

ocd-ocsJomOs mli®cmEoooc
O®Q0d-=0O@c0d - =W o
mm-OMo-00-00m - =
cEEsNo - s COENNOON =
s MO0 «» smwJ0nm[Jo =
-A00-EJOmO -
o Jw@Oo[]m e
5 g 713 5

(a) Random Initialisation (b) Centred Initialisation

Figure 5.1: Sample initial input-hidden weights. (a) Random initial weights; (b) Centred initial
weights.

e The hidden-output weights and all the biases are randomly initialised in the same way as
those in the basic approach in chapter 4 since there is no direct corresponding relationship

between these weights and the network input patterns.

e A small random value produced by a normal random generator [4] is added to every weight
in all input-hidden weight matrices. This will make the initial weights in the same positions

across the different input-hidden weight matrices slightly different.

The weights initialised by this method meet the needs of the characteristics of image data

and are consistent with the back propagation algorithm.
5.2.2 Centred Weight Initialisation Algorithm
The algorithm for centred weight initialisation is:

1. Load the network architecture and obtain the number of input nodes (no_of _input_nodes),
the number of output nodes (no_of_output_nodes), and the number of hidden nodes

(no_of _hidden_nodes).

122

5.2. CENTRED WEIGHT INITIALISATION METHOD

2. Obtain the training square size (size_square) which is equal to the input field size. This

can be obtained based on the number of input nodes in the network architecture.

size_square = \/no_of input_nodes (5.1)

3. Using the parameter maz_weight for the central weight obtain the gap between the two

neighbouring weights (weight_gap) according to equation 5.2.

weight_gap = 2 X maz_weight / size_square (5.2)

To initialise all the weights in the first input-hidden weight matriz, do steps 4 to 6:

4. Calculate the magnitude of the four central weights corresponding to the four central pixels
of the object according to equation 5.3. Because the width and the height (both equal to
size_square) of a training square that we use are even numbers of pixels, there are four

central pixels in the training square.

cen_weight = max_weight + € (5.3)

€ is a small random number generated by a normal distribution [4] as in equation 5.4:
e = normalised_gaussian(u, o) (5.4)

In order to make € very small we set u to zero, and o to a very small number, such as

weight_gap/30.

5. For each weight (weight(i, j)) other than the central ones in the input-hidden weight matrix,
calculate the distance of the corresponding pixel (pizel(i, j)) from the nearest central pixel

in the object according to equation 5.5:

distance(, §) = /(i — 2)2 + (j — y)? (5.5)

Here, distance(i, j) stands for the distance between a pixel and the nearest central pixel in
the training square, (z, y) denotes the coordinates of the nearest central pixel and (3, j) is

the position of the pixel in the training square, 0 < i < size_square, 0 < j < size_square.

123

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

6. Calculate the magnitude of each weight in the input-hidden weight matriz using the dis-

tance from the corresponding pixel to the nearest centre according to equation 5.6:

weight(i,j) = maz_weight — distance(i, j) X weight_gap + € (5.6)
If weight(i, j) < 0 then weight(i,j) = 0.

7. Repeat step 4 to step 6 for each of the other (no_of_hidden_nodes — 1) input-hidden weight
matrices. As can be seen from the above equations, all the corresponding weights in the

different weight matrices are slightly different because of the small random number e.

8. For the initialisation of the hidden-output weights and all the biases, the standard random

weight initialisation method is used — random numbers in range -0.5 to 0.5.

The algorithm ensures that weights are largest at the centre and decrease uniformly to the
perimeter as shown in figure 5.1 (b). While the weights are not truly random they provide a

satisfactory starting point for training the network with the back propagation algorithm.

5.3 Experimental Results

5.3.1 Object Classification Results

This section presents a series of experimental results of the centred weight initialisation method
for network training and testing on the classification data set cut out from the detection training
set in the three databases. This only involves network training and testing but not network
sweeping. The number of training epochs and the size of the mean squared error on the test set
are used as the evaluation criteria. A comparison of the numbers of training epochs and the test
mean squared errors of the two weight initialisation methods are presented here. The training

and testing classification accuracy is also presented to keep consistency with chapter 4.

Easy Pictures

The first group of network training and testing results for the easy pictures are shown in table
5.1. These results were obtained by the two initialisation methods under the same conditions as
table 4.1 — the basic approach with random initial weights: the network architecture is 196-4-4,
learning rate (n) is 0.5, there is no momentum (), network training stop criterion is when all

the training patterns are correctly classified, or percent = 100%. For each experiment, no matter

124

5.3. EXPERIMENTAL RESULTS

which method is used, we repeat the network training and testing 15 times, and calculate the
mean(p) and standard deviation (o) of the training epochs, the training mean square error, the
test mean square error and the classification accuracy. Line 1 of the table shows that with
random initial weights, network training is terminated at an average of 199.40 epochs with a
standard deviation of 18.09; the average mean squared error on the classification training set is
5.09x10~2 with a standard deviation of 0.30x10~2, and is 5.17x107240.27x10~2 on the test
set. The classification accuracy is 100% on both classification training and test sets. The results
of the centred weight initialisation method on the same data with different values of max_weight

are given in the other lines of the table.

Expt | Initial | Max- | Wei- Epochs Training | Training Test Test
No. | Weights | Wei | Gap MSE Accuracy MSE Accuracy

format (nxo) (nto) (nto) (n+0) (nto)

(x1072) (%) (x107?) (%)
1 random 199.40+18.09 | 5.09+0.30 100+0 | 5.1740.27 100+0
2 centred | 0.420 | 0.060 | 430.80+29.78 | 4.81+0.10 1000 | 4.85+0.11 100+0
3 centred | 0.350 | 0.050 | 263.00+24.56 | 5.01+0.07 100+0 | 5.03+0.05 10040
4 centred | 0.280 | 0.040 | 219.47+14.20 | 4.47+0.12 100+0 | 4.55+0.11 100+0
5 centred | 0.210 | 0.030 | 143.80+23.07 | 4.63+0.17 100+0 | 4.70+0.15 10040
6 centred | 0.140 | 0.020 | 109.87+10.64 | 5.04+0.11 100+0 | 5.08+0.12 100+0
7 centred | 0.070 | 0.010 | 128.874+9.42 | 5.2940.10 100+0 | 5.354+0.07 100+0
8 centred | 0.035 | 0.005 | 139.33+9.03 | 5.37+0.12 100+0 | 5.45+0.11 100+0
9 centred | 0.014 | 0.002 | 153.40+£11.76 | 5.11+0.06 1000 | 5.19+0.04 10040

Table 5.1: Comparison of the results of network training and testing for object classification
in the easy pictures using random and centred initial weights. (Network architecture: 196-4-4;
n = 0.5; a = 0; Stop criterion: Percent = 100%; Training set size = 60; Test set size = 180;
Repetitions = 15.)

As can be seen from table 5.1, many choices of maz_weight/weight_gap can lead to faster net-
work training than random initial weights. The number of network training epochs under random
initial weights is 199.40418.09, where the test mean squared error is 5.17x10724£0.27x1072.
Using the centred weight initialisation method, for example, when maz_weight/weight_gap is
0.140/0.020, the number of training epochs is 109.87+10.64. This is 44.90% (1 — 109.87 /
199.40 = 0.4490) faster than that for random initial weights. The standard deviation is 41.18%
(1 —10.64 / 18.09 = 0.4118) less for random initial weights indicating that the process is more

125

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

stable. At the same time, the test mean squared error is 5.08x107240.12x 1072, which is less
than the error (5.17x107240.27x1072) achieved using the standard random weight initialisa-
tion method. However, the number of the training epochs based on centred initial weights is
not always less than that based on random initial weights. For instance, when the centred ini-
tial weight parameter (maz_weight/weight_gap) is set to “too big” a value (e.g. 0.280/0.040,
0.35/0.05 or 0.42/0.06), the number of training epochs is more than that obtained using ran-
dom initial weights. With regard to the test performance, it can be found that if the centred
initial weight parameter (maz_weight/weight_gap) is set to “too small” a value (e.g. 0.07/0.01,
0.035/0.005 or 0.014/0.002), the test mean squared error will become larger than the error ob-
tained using the random weight initialisation method (the basic approach). It is evident that
for 0.07 < maz_weight < 0.28 the centred weight method is superior.

Table 5.2 shows the results of centred weight initialisation for the same network and learning

parameters as table 4.2 — random weight initialisation in the basic approach.

Expt | Initial | Max- | Wei- Epochs Training | Training Test Test
No. | Weights | Wei | Gap MSE Accuracy MSE Accuracy
format (nto) (uto) (nto) (nw*o) (nto)
(x1072) (%) (x1072) (%)
1 random 177.20+ 8.68 | 5.73+0.11 | 95.0+0 | 5.75+0.10 | 93.58+1.06
2 centred | 0.420 | 0.060 | 463.47+37.54 | 5.714+0.10 95.0+0 5.72+0.11 | 95.13+0.27
3 centred | 0.350 | 0.050 | 285.20+20.60 | 5.63+0.18 | 95.0+0 | 5.65+0.18 | 95.10+0.35
4 centred | 0.280 | 0.040 | 208.67+13.47 | 5.104+0.04 95.0+0 5.15+0.05 | 95.08+0.42
5 centred | 0.210 | 0.030 | 131.80+15.47 | 5.23+£0.07 | 95.0+0 | 5.27+0.07 | 95.04+0.39
6 centred | 0.140 | 0.020 | 105.27+ 5.60 | 5.55+£0.10 | 95.0+0 | 5.554+0.10 | 95.02+0.30
7 centred | 0.070 | 0.010 | 125.20+ 6.68 | 5.784+0.17 | 95.0+0 5.83+0.19 | 94.78+0.24
8 centred | 0.035 | 0.005 | 144.40+ 6.57 | 5.83£0.08 | 95.0+£0 | 5.87+0.07 | 94.25+0.37
9 centred | 0.014 | 0.002 | 149.87+ 4.85 | 5.71+0.03 | 95.0£0 | 5.79+0.03 | 93.45+0.57

Table 5.2: Comparison of the results of network training and testing for object classification
in the easy pictures using random and centred initial weights. (Network architecture: 196-5-4;
n = 0.5; a = 0; Stop criterion: Percent = 95%; Training set size = 60; Test set size = 180;
Repetitions = 15.)

Table 5.2 shows a similar pattern to table 5.1. According to table 5.2, the number of epochs

used for network training based on random initial weights is 177.2048.68, where the test mean

126

5.3. EXPERIMENTAL RESULTS

squared error is 5.75x107240.10x10~2. The best number of epochs taken by network training
under the centred weight initialisation method is 105.27+5.60 when the maz_weight/weight_gap
was 0.140/0.020. This number is 40.59% (1 — 105.27 / 177.20 = 0.4059) faster than for random
initial weights. The standard deviation is 35.48% (1 — 5.60 / 8.68 = 0.3548) less than for random
initial weights indicating that the process is more stable. Also the test mean squared error is
5.55x107240.10x 1072, which is smaller than that under random initial weights. The centred
weight initialisation method under the initial parameter of 0.21/0.03 also results in both faster
training speed and better test error than the standard random weight initialisation method. The
test classification accuracy also supports this idea. However, if the parameter is “too big” (e.g.
0.42/0.06, 0.35/0.05, etc.) or “too small” (e.g. 0.07/0.01, 0.035/0.005, etc.), either the training
speed or the test performance will deteriorate.

The experimental results indicate that for simple object classification in the easy pictures,
the centred weight initialisation method under a certain range of the centred initial weight
parameter can achieve better (faster and more stable) network training speed and better test
error than the random weight initialisation method. On this database, the best improvement

on the network training speed is 44.90%, with a better test performance at the same time.

Coin Pictures

In order to investigate the network training speed and the test performance of regular object
classification in the coin pictures, the network architecture of 576-3-5 is used here. The results
are shown in table 5.3. The network and learning parameters used in this table are the same as
those in table 4.3.

As can be seen from table 5.3, with the standard random weight initialisation method, the
means and standard deviations of the number of epochs needed for training and the test mean
squared error are 234.6465.94 and 2.60x1072+0.46x1072. Using the centred initial weight
method under different initial parameters, different results are obtained. For example, when
the maz_weight/weight_gap is set to 0.048/0.004, the means and standard deviations of the
number of training epochs and test mean squared error are 170.9+14.12 and 2.36+0.22x1072.
This is 27.15% (1 — 170.9/234.6 = 0.2715) faster than for random initial weights. The standard
deviation is also less than that for random initial weights which indicates that the process is more
stable. Also the test mean squared error is less than for the random weight initialisation method.
The centred weight initialisation method using the maz_weight/weight_gap of 0.048/0.0040 and

0.030/0.0025 show a similar result. However, not all parameter values lead to faster training and

127

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

Expt | Initial | Max- | Wei- Epochs Training | Training Test Test,
No. | Weights | Wei Gap MSE Accuracy MSE Accuracy

format (nto) (n+0) (uto) (nto) (nto)

(x10°%) (%) (x10°2) (%)
1 random 234.6+£65.94 | 2.60+0.47 100+0 2.60+0.46 10040
2 centred | 0.280 | 0.023 | 1143.3+417.6 | 0.944+0.40 100+0 1.08+0.56 100+0
3 centred | 0.210 | 0.0175 | 823.3+107.6 | 1.204+0.48 100+0 1.36+0.51 100+0
4 centred | 0.120 | 0.0100 | 362.84+21.77 | 1.97+0.25 10010 2.04+0.24 10040
5 centred | 0.090 | 0.0075 | 266.7+28.70 | 1.974+0.28 100+0 2.03+£0.27 | 10040
6 centred | 0.060 | 0.0050 | 176.8+17.90 | 2.134+0.27 100+0 2.10+0.25 100+0
7 centred | 0.048 | 0.0040 | 170.9+14.12 | 2.39+0.23 10010 2.36+0.22 10010
8 centred | 0.030 | 0.0025 | 182.4+14.89 | 2.63+0.21 100+0 2.60+0.21 10040
9 centred | 0.024 | 0.0020 | 180.7+£20.57 | 2.71+0.33 100+0 2.70+0.33 100+0
10 centred | 0.012 | 0.0010 | 176.2+13.60 | 2.73+0.18 100+0 2.71+0.18 100+0
11 centred | 0.006 | 0.0005 | 186.9+14.81 | 2.914+0.47 100+0 2.89+0.49 100+0

Table 5.3: Comparison of the results of network training and testing for object classification in
the coin pictures using random and centred initial weights. (Network architecture: 576-3-5; 7
= 0.5; a = 0; Stop criterion: Percent = 100%; Training set size = 100; Test set size = 100;
Repetitions = 15.)

better test performance. For instance, if maz_weight/weight_gap is bigger than 0.090/0.0075
or smaller than 0.024/0.002, either the network training epochs or the test error are worse than
those achieved using random initial weights. Both weight initialisation methods achieved 100%
classification accuracy.

Table 5.4 shows the comparison of centred weight initialisation for the same network and
learning parameters as table 4.4 — with random weight initialisation (the basic approach). Ac-
cording to table 5.4, if the centred initial parameter is set to a value bigger than 0.030/0.0025 and
smaller than 0.120/0.010, the centred weight initialisation method results in a faster and more
stable network training speed and a smaller test mean squared error than the standard random
weight initialisation method. In contrast, if “too big” (e.g. equal to or bigger than 0.120/0.010)
or “too small” (e.g. equal to or smaller than 0.030/0.0025) centred initial parameters are used,
either the number of the network training epochs or the test error obtained becomes worse.

In summary, the results of classifying regular objects in the coin database show that if

128

5.3. EXPERIMENTAL RESULTS

Expt | Initial | Max- | Wei- Epochs Training | Training Test, Test
No. | Weights | Wei Gap MSE Accuracy MSE Accuracy
format (nto) (o) (nto) (nto) (pto)
(x107?) (%) (x1072) (%)
1 random 87.13+5.08 | 3.33+0.39 | 95.0£0 | 3.17+0.36 | 94.53+1.25
2 centred | 0.280 | 0.0230 | 218.5+26.8 | 2.75+0.84 | 95.0+0 | 2.43+£0.76 | 95.04+0.98
3 centred | 0.120 | 0.0100 | 93.80+£3.57 | 2.49+0.67 | 95.0£0 | 2.37+0.72 | 96.32+0.76
4 centred | 0.060 | 0.0050 | 67.13+4.79 | 2.65+0.59 | 95.0+0 | 2.48+0.35 | 96.12+0.45
5 centred | 0.048 | 0.0040 | 70.53£1.92 | 3.194+0.52 | 95.0£0 | 3.05+0.52 | 95.23+0.78
6 centred | 0.030 | 0.0025 | 69.73£2.63 | 3.64+0.39 | 95.0£0 | 3.52+0.37 | 95.01+0.89
7 centred | 0.024 | 0.0020 | 69.47+3.00 | 4.03+0.53 | 95.0£0 | 3.85+0.53 | 94.51+0.86
8 centred | 0.012 | 0.0010 | 69.00£1.73 | 4.12+0.52 | 95.0+0 | 3.95+0.51 | 94.35+0.73
9 centred | 0.006 | 0.0005 | 74.87+2.33 | 3.99+0.38 | 95.0+0 | 3.84+0.38 | 94.43+0.68

Table 5.4: Comparison of the results of network training and testing for object classification
in the coin pictures using random and centred initial weights. (Network architecture: 576-5-5;
n = 1.5; a = 0; Stop criteria: Percent = 95%; Training set size = 100; Test set size = 100;
Repetitions = 15.)

the centred initial parameter (max_weight/weight_gap) is set within a certain range, a faster
and more stable network training and better test performance can be achieved using centred
initial weights than using random initial weights. For this medium difficulty database, the best
performance improvement in training speed was 27.15% using the centred weight initialisation

method.

Retina Pictures

Two groups of experiments were carried out to investigate the improvement of the centred weight
initialisation method on the very complex object classification in the retina pictures. The results
are presented in table 5.5 and table 5.6.

Table 5.5 shows the results of centred weight initialisation for the same network and learning
parameters as table 4.5 — the basic approach with random weight initialisation. The centred
weight initialisation method under some parameters does improve the network training speed
and the test performance. When the parameter maz_weight/weight_gap is 0.280/0.035, the
number of training epochs is 161.7+22.05. This is 19.5% (1 — 161.7/200.8 = 0.195) faster

129

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

Expt | Initial | Max- | Wei- Epochs Training | Training Test Test
No. | Weights | Wei Gap MSE Accuracy MSE Accuracy
format (u+0) (nto) (nto) (nto) (o)
(x1072) (%) (x107?) (%)
1 random 200.8+26.67 | 9.444+0.22 | 65.0£0 | 9.12+0.18 | 65.051+2.82
2 centred | 0.960 | 0.120 | 391.5+229.7 | 9.61+0.35 | 65.0+0 | 9.96+0.21 | 64.38+2.76
3 centred | 0.800 | 0.100 | 216.5+25.23 | 9.424+0.20 | 65.0£0 | 9.89+0.10 | 64.53+1.57
4 centred | 0.480 | 0.060 | 170.7£18.66 | 9.67+0.15 | 65.0+0 | 9.30+0.17 | 64.87+2.34
5 centred | 0.320 | 0.040 | 169.0£19.03 | 9.31+0.26 | 65.0+0 | 9.10+£0.25 | 65.34+1.46
6 centred | 0.280 | 0.035 | 161.7+£22.05 | 9.04+0.41 | 65.0£0 | 8.87+0.13 | 66.43+1.15
7 centred | 0.240 | 0.030 | 183.0+£24.27 | 9.01+0.35 | 65.0£0 | 8.93+0.24 | 66.24+1.28
8 centred | 0.200 | 0.025 | 172.0£25.79 | 9.27+0.37 | 65.00 | 9.00+£0.13 | 66.12+1.36
9 centred | 0.160 | 0.020 | 238.7+62.21 | 8.76+0.61 | 65.0+0 | 8.65+0.28 | 65.87+1.65
10 centred | 0.080 | 0.010 | 256.1+19.98 | 8.414+0.06 | 65.0+0 | 8.95+0.28 | 65.24+1.89
11 centred | 0.016 | 0.002 | 285.9+27.74 | 8.33+0.09 | 65.0+0 | 8.98+0.35 | 65.12+2.30

Table 5.5: Comparison of the results of network training and testing for object classification in
the retina pictures using random and centred initial weights. (Network architecture: 256-4-5;
n = 1.5; a = 0; Stop criteria: Percent = 65%; Training set size = 100; Test set size = 61;
Repetitions = 10.)

than for random initial weights. The standard deviation is less than for random initial weights
indicating the process is more stable. Also the test error is 8.8740.13, which is less that the
error (9.1240.18) achieved by the random weight initialisation method. However, not all the
choices of the parameter (maz_weight/weight_gap) accelerate network training and lower the
test error. If the parameter is “too big” (equal to or bigger than 0.480/0.060) or “too small”
(equal to or smaller than 0.160/0.020), either the number of the training epochs or the test mean
squared error will be higher.

Table 5.6 shows the results of centred weight initialisation for the same network and learn-
ing parameters as table 4.6 — the basic approach with random initial weights. These results
show a similar pattern to table 5.5. Network training using the centred weight initialisation
method under some values of the initial parameter is faster than that using the random weight
initialisation method. For example, using the maz_weight/weight_gap of 0.48/0.06 the num-
ber of epochs is only 354.14+28.36. This is 25.57% (1 — 354.1/475.8 = 0.2557) faster than for

130

5.3. EXPERIMENTAL RESULTS

Expt | Initial | Max- | Wei- Epochs Training | Training Test Test
No. | Weights | Wei | Gap MSE Accuracy MSE Accuracy
format (nto) (o) (nto) (uto) (n+0)
(x107?) (%) (x107?) (%)
1 random 475.8+132.76 | 6.70+0.52 | 75.4+0 8.34+0.79 | 71.83%+2.63
2 centred | 1.600 | 0.200 | 1048.7+£81.29 | 7.07+0.29 | 75.4+0 | 11.55+0.43 | 64.30+3.24
3 centred | 1.200 | 0.150 | 818.8+122.68 | 7.30+£0.54 | 75.4+0 9.924+0.85 | 70.24+3.12
4 centred | 0.960 | 0.120 | 708.3+ 52.92 | 6.85+0.39 | 75.4+0 8.164+0.53 | 72.461+2.42
5 centred | 0.800 | 0.100 | 597.3+ 24.24 | 6.77+0.26 | 75.4%0 7.984+0.16 | 73.184+2.75
6 centred | 0.480 | 0.060 | 354.1+ 28.36 | 7.55+0.42 | 75.4+0 8.05+0.14 | 73.144+2.12
7 centred | 0.400 | 0.050 | 336.7+ 38.00 | 7.38+0.20 | 75.4+0 8.20+0.11 | 73.06+2.25
8 centred | 0.320 | 0.040 | 311.6+ 17.02 | 7.55+0.13 | 75.4%0 8.33+£0.14 | 71.98+2.48
9 centred | 0.280 | 0.035 | 342.5+ 32.83 | 7.29+0.18 | 75.4+0 8.35+0.23 | 71.76+2.77
10 centred | 0.240 | 0.030 | 341.24+ 22.87 | 7.27+0.23 | 75.4%0 8.55+0.40 | 69.39+2.59
11 centred | 0.160 | 0.020 | 398.6+ 40.30 | 6.98+0.48 | 75.4+0 8.524+0.58 | 69.43+2.98
12 centred | 0.080 | 0.010 | 443.9+ 43.04 | 6.74+£0.56 | 75.4£0 8.414+0.51 | 70.32+2.64
13 centred | 0.040 | 0.005 | 489.2+ 72.06 | 6.51+0.50 | 75.4+0 8.20+£0.45 | 71.65+2.12
14 centred | 0.016 | 0.002 | 465.2+ 52.70 | 6.74+0.47 | 75.4+0 8.33+£0.38 | 71.34+2.73

Table 5.6: Comparison of the results of network training and testing for object classification in
the retina pictures using random and centred initial weights. (Network architecture: 256-5-5;
n = 0.5; a = 0; Stop criterion: Percent = 75%; Training set size = 100; Test set size = 61;
Repetitions = 10.)

random initial weights. The standard deviation (28.36) is much less than that (132.76) for
random initial weights. The test mean squared error is 8.051+0.14, which is also less than that
(8.34£0.79) for random initial weights. The results have a similar pattern if the parameter
maz_weight /weight_gap uses 0.40/0.05 and 0.32/0.04. However, if this parameter is set to “too
big” a value (e.g 1.60/0.20, 1.20/0.15) or “too small” a value (e.g. 0.16/0.02, 0.08/0.01), either
the training speed or the test performance will become worse.

The results indicate that for the very complex object classification, in pixel based neural
systems, the network training speed and the performance on the test set can be improved by
using the centred initial weights under a certain range of the centred initial parameter. For this

very difficult database, the best improvement in training speed is 25.57%.

131

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

Summary of training and test performance

In all three databases there is a range of values for maz_weight which can lead to improved
network training speed and lower test mean squared error. These results are summarised in table
5.7. On the coins database, for example, the network (576-3-5) shows improved performance
for 0.024 < mazx_weight < 0.09. There is an average decrease in training epochs of 27.15% and

19.23% in test mean squared error. There does not appear to be a relationship between problem

difficulty and the amount of improvement.

Database | Network | Range of Centred | Improvement of | Improvement of
Arch. Initial Parameter Training Speed | Test MSE
(max_wei/wei_gap) | (1/0) (/)
Circles 196-4-4 | > 0.07/0.01 and 44.90%/41.18% | 9.09%/44.44%
and < 0.28/0.04
Squares 196-5-4 | > 0.07/0.01 and 40.59%/35.48% | 8.35%/30.00%
(Easy) < 0.28/0.04
Coins 576-3-5 | >0.024/0.002 and | 27.15%/78.59% | 19.23%/45.65%
(Medium <0.090/0.0075
Difficulty) | 576-5-5 | >0.030/0.0025 and | 22.95%/5.70% | 21.77%/2.78%
<0.120/0.0100
Retina 256-4-5 | > 0.16/0.02 and 19.5%/17.32% | 2.74%/27.78%
(Very < 0.48/0.06
Difficult) | 256-5-5 | > 0.28/0.035 and | 25.57%/78.64% | 3.48%/82.28%
< 0.80/0.10

Table 5.7: Summary of the improvement in training time and test performance of the centred

weight initialisation method over the random weight initialisation.

Unfortunately there does not appear to be a reliable way of choosing the best value for
maz_weight. However, as suggested earlier, the major problem in these kinds of object detection
problems is a very high number of false alarms. If the centred weight method can lower this
number significantly then a short search for a good max_weight is a small price to pay. The

next section compares the detection performance of the two weight initialisation methods.

132

5.3. EXPERIMENTAL RESULTS

5.3.2 Object Detection Results

After network training on the cutouts, the trained networks are used as templates to sweep the
large pictures in the detection test set to detect multiple class objects of interest. This has the
same procedure as for the basic approach. This section describes the detection performance of
the centred weight networks on the three detection problems described in chapter 3. Similarly
to random weight initialisation in the basic approach, each of the 15 trained networks with the
centred weight parameter maz_weight of 0.14 shown in table 5.1 was applied to the entire images
in the detection test set of the easy pictures. Each of the 15 trained centred weight networks
with maz_weight of 0.06 shown in table 5.3 was applied to the entire images in the detection
test set of the coin pictures. Each of the 10 trained centred weight networks with maz_weight of
0.28 shown in table 5.5 was applied to the entire images in the detection test set of the retina

pictures. The average detection results are presented in this section.

Easy Pictures

When the trained network is applied to the object detection, the procedure is the same as
that in the basic approach. After network sweeping, different thresholds applied to the centred-
finding algorithm (section 4.6.2, page 100) will result in different detection results. The choice of
thresholds in the object detection process can be seen in figure 4.8 (page 110). Table 5.8 shows
the relationship between the detection rate and false alarm rate and the threshold selection for

class class2 in the easy pictures using the centred weight initialisation method.

Easy Pictures Object Classes
(Centred Weights) Class2

Threshold 0.65 | 0.67 | 0.68 | 0.700 | 0.730 | 0.770 | 0.800 | 0.850 | 0.860 | ... | 0.910
Detection Rate(%) | 100 | 96.67 | 93.33 | 90.00 | 86.67 | 83.33 | 80.00 | 76.67 | 73.33 | ... 0

False Alarm

Rate (%) 45.60 | 1.60 1.05 1.03 0.90 0.35 0.30 0.24 0 0

Table 5.8: Object detection results for class2 in the easy pictures using one of the 15 trained

centred weight networks under different thresholds.

The overall results for detecting simple objects in the easy pictures using the centred weight
initialisation method are presented in table 5.9. Similarly to the results based on the basic

method with random initial weights (table 4.8 on page 111), detecting objects in classes class1

133

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

Easy Pictures Object Classes
(Centred Weights) | Classl | Class2 | Class3
Detection Rate(%) 100 100 100

False Alarm Rate(%) 0 46.4 0

Table 5.9: Object detection results for the easy pictures using the centred initial weights. (Net-
work architecture: 196-4-4; Maz_weight = 0.14; Repetitions = 15.)

(black circles) and class3 (white circles) is relatively straight forward. This can achieve a 100%
detection rate without any false alarms (ideal performance). However, this is not the case for
detecting class class2 (grey squares), which results in a 46.4% false alarm rate at a detection
rate of 100%. The average detection performance for class2 at different thresholds is detailed in

table 5.10.

Easy Pictures Object Classes
(Centred Weights) Class2
Detection Rate(%) 100 | 96.67 | 93.33 | 90.00 | 86.67 | 83.33 | 80.00 | 76.67
False Alarm Rate(%) | 46.4 1.30 1.00 1.00 1.00 | 0.30 | 0.30 | 0.30

Detection Rate(%) 73.33 | 70.00 | 66.67 | 63.33 | 60.00 | 56.67 0
False Alarm Rate(% 0 0 0 0 0 0 0 0

Table 5.10: Object detection results for class2 in the easy pictures using centred initial weights.

(Network architecture: 196-4-4; Max_weight = 0.14; Repetitions = 15.)

Compared with those obtained using the basic method with random initial weights (table 4.9,
page 111), the results for class class2 here are much better. At a detection rate of 100%, the
false alarm rate is 46.4%, which is much better than the 91.2% achieved by the random weight
initialisation method. The best detection rate with no false alarms achieved by the centred
weight initialisation method is 73.33%, which is much higher than the 56.67% obtained by
the basic method under the same conditions. In fact, the centred weight initialisation method
has a lower false alarm rate for each detection rate when compared with the random weight

initialisation method, that is, the basic approach.

134

5.3. EXPERIMENTAL RESULTS

Coin Pictures Object Classes
(Centred Weights) | head005 | tail005 | head020 | tail020

Detection Rate (%) 100 100 100 100
False Alarm Rate(%) 0 0 41.4 0

Table 5.11: Object detection results for the coin pictures using centred initial weights. (Network

architecture: 576-3-5; Maz_weight = 0.06; Repetitions = 15.)

Coin Pictures

Detecting objects of interest in the coin pictures gives a similar pattern to the easy pictures. The
overall results are presented in table 5.11. Compared with the corresponding results achieved
using the basic approach with random initial weights (table 4.10, page 112), these results are
better. All the objects in the three classes, head005, tail005 and tail020 are correctly detected
with no false alarms. Detecting objects in class head020 results in a 41.4% false alarm rate at
a detection rate of 100%. This is, however, much better than the corresponding result (182%)
obtained using the random weight initialisation method. The relationship between detection
rate and false alarm rate under different thresholds for class head020 with the centred weight

initialisation method are presented in table 5.12.

Coin Pictures Object Classes
(Centred Weights) head020
Detection Rate(%) 100 93.75 | 87.50 | 81.25 | 75.0 | 68.75 | 62.5 | 56.25 | 50.0
False Alarm Rate(% 414 36.1 27.8 23.4 16.6 7.10 4.40 1.10 0

Detection Rate(%) 43.75 | 37.5 | 31.25 | 25.0 18.75 12.5 | 6.25 0
False Alarm Rate(%) 0 0 0 0 0 0 0 0

Table 5.12: Object detection results for class head020 in the coin pictures using centred initial

weights. (Network architecture: 576-3-5; maz_weight = 0.06; Repetitions = 15.)

Retina Pictures

The results for detecting objects for classes haem and micro in the retina pictures are presented
in table 5.13 and table 5.14. Compared with those for detecting objects in the easy pictures

and the coin pictures, these results are disappointing. However, they are much better than

135

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

Retina Pictures Object Classes
(Centred Weights) haem
Detection Rate(%) 73.91 | 69.57 | 65.22 | 60.87 | 56.52 | 52.17 | 47.83 | 43.48 | 39.13
False Alarm Rate(%) | 1924 | 1714 | 1642 | 1121 | 1095 | 1053 | 1039 | 992.0 | 934.0

Detection Rate(%) 34.78 | 30.43 | 26.09 | 21.74 | 17.39 | 13.04 | 8.70 4.35 0

False Alarm Rate(%) | 901.0 | 736.2 | 555.4 | 234.1 0 0 0 0 0

Table 5.13: Object detection results for class haem in the retina pictures using centred initial

weights. (Network architecture: 256-4-5; Maz_weight = 0.28; Repetitions = 10.)

Retina Pictures Object Classes

(Centred Weights) micro
Detection Rate(%) | 100 | 90.00 | 80.00 | 70.00 | 60.00 | 50.00 | 40.00 | 30.00 | 20.00 | 10.00 | 0

False Alarm

Rate (%) 2903 | 2581 | 2232 | 1947 | 1940 | 1438 560 460 420 311 0

Table 5.14: Object detection results for class micro in the retina pictures using centred initial

weights. (Network architecture: 256-4-5; Maz_weight = 0.28; Repetitions = 10.)

the corresponding results (tables 4.13 and 4.14, page 113) obtained by the basic approach with

random initial weights.

Summary of Object Detection Results

The detection results are summarised in figure 5.2 where the false alarm rate is plotted against
the detection rate for the difficult classes. In all cases the centred weight results are superior — the
false alarm rate at all levels of detection rate is always lower, in some cases very much so. This
suggests that better object detection performance can be achieved on databases of any degree of
difficulty using the centred initial weights. These results also suggest that the performance for
object detection will deteriorate as the degree of difficulty of the detection problems increases.
For the easy pictures and coin pictures, network thresholds can be chosen which give good
detection and false alarm rates (figure 5.2 (a) and 5.2 (b)). This is not the case for the more

difficult retina pictures (figure 5.2 (c) and 5.2 (d)).

136

5.3. EXPERIMENTAL RESULTS

&
&
A A
A -
A A
XA .
—~ — L&
g i g e
o 60X 1y .
<§ 4 =
S 5
B a0+ 8
o} ---A-- Random initial weights o}
o —— Centred initial weights o
20 4
---&-- Randominitial weights
¥ —x— Centredinitial weights
4
0 — 1 - 1 T T T T o¥———7 T
0 20 40 60 80 100 0 50 100 150 200
Falsealarm rate (%) Falsealarm rate (%)
ROC curve for "class2" in the easy pictures ROC curve for "head020" in the coin pictures
(a) (b)
100 100 &
---&-- Randominitial weights ,"
—>— Centred initial weights
80 80
A
— & A
g A S
o 60 oA T 60 A
® ®
5 § g
B a0+ B 04 g
o
8 g
A
20 . o 20 Iy
A ---&-- Randominitial weights
¥ .4 —— Centredinitial weights <
« .
"
0¥ USRI U S T T T T T T T T T
0 1000 2000 3000 0 2000 4000 6000 8000 10000
Falsealarm rate (%) Falsealarm rate (%)
ROC curve for "haem" in the retina pictures ROC curve for "micro" in the retina pictures

() (d)

Figure 5.2: Comparison of results (in ROC curve) for object detection in the three databases

between the centred weight initialisation and the random weight initialisation.

137

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

5.4 Analysis of Weights

To analyse why centred weight initialisation for object detection is superior to random weight
initialisation, this section interprets the network internal behaviour through visual analysis of the
weights in the trained networks. For presentation convenience, we use the two trained networks
for regular object detection in the coin pictures. Most other networks contained similar patterns.

Figure 5.3 shows the network architecture used in both random and centred weight initiali-
sation methods for object detection in the coin pictures. The weight groups between the input
nodes (24x24 = 576 in the input field) and hidden nodes and between the hidden nodes and
the output nodes are also presented. The weight matrices (a), (b), (c) and (d) shown in figures
5.4 and 5.5 correspond to weight groups (a), (b), (¢) and (d) in the network architecture in this

figure.

Output Nodes (5)

Weight Group (d)

Hidden Nodes(3)

e / %\Wei ght Group (c)

Weight Group (b)

Weight Group (a)

Input Nodes
(24x 24=576)

Figure 5.3: Network architecture with four weight groups for object detection in the coin pictures.

138

5.4. ANALYSIS OF WEIGHTS

Figure 5.4 shows the weights from a trained 576-3-5 network which has been successfully
used in the coin pictures. The network with these weights was trained with the random weight
initialisation method. Part (a) shows the weights from the input nodes to the first hidden node,
part (b) from inputs to second hidden node and part (c) from the inputs to the third hidden
node. The weights are shown in a 2/x 2/ square to facilitate visualisation. Figure 5.4 (d) shows
the weights from the hidden layer to the five output units and the biases of these output nodes.
The five rows in this matrix, in bottom to top order, correspond to the classes head005, tail005,
head020, tail020 and other. The four columns, in left to right order, correspond to weights from
the first hidden node (associated with weight matrix (a)), the second hidden node (associated
with weight matrix (b)) and the third hidden node (associated with weight matrix (c)) to the

five output nodes (classes) and the biases of the five output nodes.

ot her

tail 020

head020

tail 005

head005

(a) (b) () ()

Figure 5.4: Weights in a trained network for object detection in the coin pictures based on

random initial weights.

Inspection of the first column of figure 5.4 (d) reveals that weight matrix (a) has a positive
influence on head005 and a very strong positive influence on tail005. The same matrix has a
negative effect on the other classes. Inspection of the second column reveals weight matrix (b)
has a positive effect on the 5 cent coins (classes head005 and tail005) and a negative effect on
the 20 cent coins (classes head020 and tail020). Also it has a very strong positive influence on
class other. This indicates that matrix (b) might be able to discriminate between the 5 cent
and the 20 cent coins but might not properly distinguish the 5 cent coins from the background.
The third weight matrix in part (c) is relatively difficult to interpret. It does not have a clear

feature for discriminating different classes, however it strongly supports the background and

139

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

has a strong negative influence on the tail side of 5 cent coins. If we regard the nodes of the
hidden layers as representing feature detectors learnt by the network, then figures 5.4 (a)-(c)
are a visual representation of these features. Visually these features ‘make sense’ as there are
regions corresponding to the 5 cent coins, the annulus remaining when a 5 cent coin is ‘removed’

from the centre of a 20 cent coin and to the backgrounds.

ot her

tail 020

head020

tail 005

head005

weights from Hidden (x) to Output (y)

(a) (b) () (d)

Figure 5.5: Weights in a trained network for object detection in the coin pictures based on the

centred initial weights.

Figure 5.5 shows a similar set of weight diagrams for a 576-3-5 network which has been
initialised with the centred weight method. The same features are evident as in figure 5.4 but
in this case they are much better defined. According to this figure, the first weight matrix (part
(a)) has a strong positive effect on the 20 cent coins and a strong negative influence on the
5 cent coins; the second (part (b)) has a significant positive effect on the 5 cent coins and a
slightly positive or a negative influence on the 20 cent coins; the third (part (c)) has a very
strong positive effect on the tail side of both the 5 cent and the 20 cent coins and a very strong
negative influence on the head side of both the 5 cent and the 20 cent coins at the same time.
Accordingly, the first two weight matrices in figure 5.5 can distinguish the 20 cent coins from the
5 cent coins. The third one has a very strong ability to separate all the tail sides from the head
sides of these coins. In addition, all the three weight matrices have a very strong negative effect
on the background, which suggests that they are able to discriminate the objects of interest
from the background. More interestingly, the biases also play a strong role in the discrimination
between the objects and the background by giving a positive influence on the background, as

shown in column four of figure 5.5 (d). It appears that the centred weights initialisation method

140

5.5. SUMMARY AND DISCUSSION

has resulted in learning which is focused on features necessary to discriminate the classes.
In this section, the weight analysis reveals a network internal behaviour which suggests that
the approach with centred initial weights can improve the detection performance achieved with

the random initial weights.

5.5 Summary and Discussion

5.5.1 Next Step

The centred weight initialisation method described in this chapter does improve the network
training and test performance on the classification of the cutouts, and the object detection
performance on entire pictures in the detection test set of all the three databases. However,
there are still false alarms for some classes (class2 in the easy pictures, head020 in the coin
pictures, haem and micro in the retina pictures). The false alarm rates are still quite high in
the retina pictures. The next chapter will investigate whether detection performance can be

improved by using genetic algorithms to train and refine the networks.

5.5.2 Summary

The goal of the work described in this chapter was to investigate a new method of setting initial
weights in pixel based neural networks for object detection problems. Our results show that, for
the three detection problems investigated, centred weight initialisation is superior to standard
random initialisation.

The methods are compared on three detection problems of increasing difficulty. On the
easy (circles and squares), medium difficulty (coins) and very difficult (retinas) problems, it is
possible to find centred initial weights which can result in fewer training epochs and lower test
mean squared error. More importantly, the centred weight method can produce networks which
are much better, in terms of detection rate and false alarm rate, at the task of detecting multiple
class objects of interest in large pictures. The amount of improvement does not appear to be
related to the degree of difficulty of the problem. Overall, detection performance on the easy and
medium difficulty problems is very good, but the performance on the difficult retina problem
still poor.

The central weight initialisation has the disadvantage of requiring an empirical search for a
good initialisation value but this is more than offset by the increase in detection accuracy.

Visualisation of the weights in trained networks resulting from both initialisation methods

141

CHAPTER 5. CENTRED WEIGHT INITIALISATION IN NEURAL NETWORKS FOR
OBJECT DETECTION

reveals that trained networks from both approaches contained feature detectors which ‘made
sense’ for the domain, but learning in networks with centred initial weights is more focused on

features which discriminate between the classes.

142

Chapter 6

Genetic Algorithms for Network
Training and Network Refinement in

Object Detection

Chapter 5 extended the basic approach by the use of centred weight initialisation for network
training using the backward error propagation algorithm. This chapter introduces a two phase
approach, another extension to the basic approach, which uses genetic algorithms to train and
refine the networks defined in chapter 4 for object classification and detection. The algorithms,
methods, corresponding results and a comparison with the basic approach for network training

and refinement are described in this chapter.

6.1 Introduction

This section gives an overview of the two phase approach to the use of pixel based neural networks
for multiple class object detection problems, as shown in figure 6.1. This is an extension of the
process shown in figure 4.2 in chapter 4 (page 90) which does not include phase two. The
terminology used in this figure is defined in section 4.1.1 (page 88).

As shown in this figure, in the first phase, the network is trained on the cutouts in the
classification data set for object classification. Rather than using the backward error propagation
algorithm as in the basic approach in chapter 4, a genetic algorithm is used. In the second phase,
the weights of the trained network are refined using a second genetic algorithm. The first genetic

algorithm uses a fitness function which maximises classification accuracy on the cutouts in the

143

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

Cutouts
(Classification Training Set)

Phase 1: Network Training
(GAYD

) Entire Images
Trained Network (Detection Training Set)

Phase 2: Network Refinement (GA2)

. Entire Images
Refined Network (Detection Test Set)

Object Detection

Detection Results

Figure 6.1: An overview of the two phase approach.

classification training set. The second genetic algorithm uses a fitness function which maximises
detection performance on the entire images in the detection training set.

This two phase approach results in three new object detection methods:

1. Network training by the first genetic algorithm (GA1l).

2. Network training by the first genetic algorithm (G A1) followed by network refinement by
the second genetic algorithm (GA2).

3. Network training by the backward error propagation algorithm (BP) in the basic approach

followed by network refinement by the second genetic algorithm (G A2).

144

6.1. INTRODUCTION

6.1.1 Definitions
To avoid confusion, we define the following terminology:

Definition 6.1 BP-train algorithm and BP-train method

The BP-train algorithm refers to the backward error propagation algorithm used in the basic
approach presented in chapter 4. The BP-train method refers to the basic approach, as described
in chapter 4.

Definition 6.2 GA-train algorithm and GA-train method
The GA-train algorithm refers to the genetic algorithm applied in phase one of the two phase
approach. The GA-train method refers to the method of directly applying the network trained
by the GA-train algorithm to the entire images in the detection test set using the sweeping
procedure described in chapter 4. The fitness function for this genetic algorithm is based on the
mean squared error on the cutouts in the classification training set.

The GA-train method uses the same procedure as the basic approach, except that the BP-

train algorithm is replaced by the GA-train algorithm.

Definition 6.3 GA-refine algorithm

The GA-refine algorithm refers to the genetic algorithm used in phase two of the approach. It
begins with networks that have been initially trained with the GA-train algorithm or the BP-
train algorithm and attempts to improve the detection performance by using a fitness function
based on the detection rate and false alarm rate on the large pictures in the detection training

set.

Definition 6.4 GA-train+GA-refine method

The GA-train + GA-refine method refers to the object detection method in which the GA-train
algorithm is used for network training on the cutouts in the classification data set in phase one
and the GA-refine algorithm is used for network refinement on the entire images in the detection

training set in phase two.

Definition 6.5 BP-train+GA-refine method

The BP-train + GA-refine method is the same as the GA-train + GA-refine method except that
the BP-train algorithm is used for network training on the cutouts in the classification data set.
In other words, the network trained in the basic approach (chapter 4) is refined by the second

genetic algorithm.

145

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

Definition 6.6 Network Training and Network Refinement

These two terms represent the two learning procedures in the two phases. The network learning
procedure performed on the cutouts by the GA-train algorithm in phase one or by the BP-
train algorithm in the basic approach (chapter 4) is called network training. Network training is
directly associated with the object classification procedure in this thesis. The learning procedure
performed on the entire images in phase two by the GA-refine algorithm is called network
refinement. Thus, to some extent, network refinement is further or incremental learning of the

trained networks.

Definition 6.7 Trained Network, Evolved Network and Refined Network

In this approach, we call the networks trained on the cutouts in the classification data set the
trained networks. The networks obtained during the evolutionary process by the second genetic
algorithm are called the evolved networks. The network with the best fitness produced at the

end of the second phase is called the refined network and will be the resulting object detector.

6.1.2 Flow Diagram of the Approach

According to the definitions described above, a flow diagram of this approach is shown in figure

6.2.

6.1.3 Chapter Goals

The overall goal of this chapter is to investigate whether the use of genetic algorithms can result
in improved performance over the basic approach. Specifically, we investigate the following

research questions:

1. Will the first genetic algorithm, GA-train, lead to faster network training and better test
performance on the cutouts for object classification than the backward error propagation

algorithm, BP-train?

2. Will the first genetic algorithm, or the GA-train method, result in better detection per-

formance than the basic approach, the BP-train method?

3. Will the second genetic algorithm, GA-refine, improve the object detection performance

of the GA-train method or the BP-train method?

146

6.1. INTRODUCTION

BP-train GA-train

(Cut out s)

Trained network
(weights)

' Trained network |

I
I
I
I
I
I
I
% Classification Data Set
I
I
I
I
I
I
I
:
i (weights) |

Jp—

GA-refine

Detection training set
(Entire | nages)

L l

: Refined network : 3 Refined network :
i (weights) ! ! (weights) !

[Detection test set (Entire |nmges) }

Results

Figure 6.2: The flow diagram of the two-phase approach associated with four methods: BP-train,
GA-train, BP-train + GA-refine and GA-train + GA-refine.

4. Which of the four methods, that is, BP-train, GA-train, GA-train+GA-refine and BP-

train+GA-refine, gives the best detection performance?

In the remainder of this chapter, we first describe network training with the GA-train algo-
rithm, followed by network refinement with the GA-refine algorithm. A series of experimental

results are given afterwards. This chapter ends with a summary and a discussion.

147

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

6.2 Genetic Algorithm for Network Training — GA-train

The first phase of this approach requires a network to be trained on the cutouts of the multiple
class objects in the classification data set. We use the 2DELTA-GANN [34, 107, 108, 153] system
as the first genetic algorithm. This has been used for training small neural networks such as the
zor network and the 4-2-4 encoder network with reasonable success. In this approach, we extend
this algorithm to training the relatively large networks we are using for object classification and
object detection. As mentioned earlier, we call this algorithm GA-train to distinguish it from
the one in phase two. The goal is to investigate whether the GA-train algorithm can lead to
better classification performance on the cutouts than the backward error propagation algorithm
in the basic approach and whether the GA-train method can result in better performance for
detecting small objects in large pictures.

For presentation convenience, unless otherwise specified, a bias in the network is treated as

just another weight in this chapter.

6.2.1 Gene Structure

A gene in the 2Delta-GANN algorithm corresponds to a single weight in the network and is a

composite structure:

e There are three rule bits, called =1, 22 and z3.

e There are two floating point values called deltal and delta2.

With this gene structure, the number of rule bits in each chromosome, which corresponds
to a single network, will be three times as many as the number of weights in the network. In
addition, the number of the floating point values which represent the deltas associated with each
chromosome is twice as many as the number of the weights in the network. For example, if the
network has 100 weights, then there will be 100 genes which contain 300 (100x3) rule bits and
200 (100x2) floating points values. Each chromosome in this case has 300 rule bits. In other
words, the length of a chromosome is 300.

Note that the weights of the network are not a part of the chromosome, whose genes represent
a method of changing the weights of the network in some way (see weight updating rule in the
next subsection). The network is not defined in the genetic algorithm in any way — the network
is pre-defined and is always a multilayer feed forward network in the experiments reported in

this thesis.

148

6.2. GENETIC ALGORITHM FOR NETWORK TRAINING — GA-TRAIN

6.2.2 Weight Updating Mechanism

The z1,22 and z3 values specify a heuristic rule to apply to delta2. Deltal will then be
modified by delta2, and this will in turn be applied to the weight associated with the gene.
The interpretation of the rule bits and the mechanism of updating weights is presented in figure
6.3. For example if £1,22 and z3 are all 1 then delta2 is doubled, the new value of delta2 is
then added to deltal and the new weight is calculated by adding the new value of deltal to the

original weight.

begin
if x1 = 1 then
if x2 = 1 and x3 = 1 then
delta2 := delta2 * 2;
else
delta2 := delta2 / 2;
endif
deltal := deltal + delta2;
endif
weight := weight + deltal;

end

Figure 6.3: Weight updating mechanism in the genetic algorithm.

The changing mechanism allows for a weight to be changed by a deltal value which in turn
is modified by the delta2 value. The rate of change of the weight and deltal (the “gradient”) is
changeable due to the delta2 value. This is used to provide a heuristic “second order” changing

mechanism to the weight modification rule.

6.2.3 Sample Network with Chromosomes

Figure 6.4 shows the network architecture (196-3-4) for the detection problems in the easy
pictures with sample chromosomes and genes for weight changes. In this figure, there are two
chromosomes corresponding to two evolved networks. The weights are labelled as w1, w2, As
mentioned earlier, the network architecture and the actual weights are not encoded in the genetic

algorithm but saved outside. To explain the calculation of the weights during the evolutionary

149

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

L L
@ () O () Output Nodes

&“ ‘ﬂ (4)
S |
"4"6; Hld((glsn Nodes

‘ ‘ ‘ """ ‘ Input Nodes

(14x14=196)

Weights wl w2 w600

Genes x1 x2 x3 deltal delta2 | x1 x2 x3 deltal delta2 e | X1 X2 x3 deltal delta2
Networkl |1 1 0 013 002 |1 1 1 035 005 .. |1 0 1 -048 021
Network2 |0 0 1 042 -012 |1 0 0 -0.25 0.06 ** |0 1 0 027 -010

Figure 6.4: Sample genes and chromosomes associated with a network for the simple object

detection problem in the easy picture in the genetic algorithm.

process, we suppose the original values of w! and w2 are 0.34 and -0.49 before the mechanism
of updating weights is applied.

For networkl, the three rule bits and the two deltas in the gene for wl are: z1 =1, 22 =1,
3 = 0, deltal = 0.13 and delta2 = 0.02. According to the weight changing mechanism, the
value of the delta2 should be halved and the new value of delta2 becomes 0.02/2 = 0.01. Then
this value is added to deltal and the new value of deltal becomes 0.13 + 0.01 = 0.14. The new
value of wl is accordingly updated to 0.34 + 0.14 = 0.48. Similarly, since z1 = 22 =3 =1 in
the gene of w2, after the weight changing mechanism is applied, the new values for delta2, deltal
and the actual weight for w2 are: delta2 = delta2+2 = 0.05%2 = 0.10, deltal = deltal +delta2 =
0.35 4 0.10 = 0.45 and w2 = w2 + deltal = (—0.49) + 0.45 = —0.04.

For network?2 in figure 6.4, for wl, since x1 = 0, after the weight updating mechanism is

applied, deltal and delta2 are unchanged and the new value of w1l becomes wl = wl +deltal =

150

6.2. GENETIC ALGORITHM FOR NETWORK TRAINING — GA-TRAIN

0.34 + 0.42 = 0.76. For w2, since z1 = 1,22 = z3 = 0, the new values of delta2, deltal and
the actual weight w2 become delta2 = delta2/2 = 0.06/2 = 0.03, deltal = deltal + delta2 =
(—0.25) 4+ 0.03 = —0.22 and w2 = w2 + deltal = (—0.49) + (—0.22) = —0.71.

6.2.4 Fitness Function

The fitness of a chromosome is obtained by realising a network from the weights and delta
values encoded in the chromosome, passing all cases in the classification training data through

this network and calculating the mean squared error (equation 2.12, page 31).

6.2.5 Genetic Operators

The commonly used biased roulette wheel mechanism (section 2.4.1, page 37) is used for parent
selection.

The crossover operator is based on parameterised uniform crossover (section 2.4.1, figure 2.9,
page 38). Crossover is applied only to the rule bits of the chromosome, not the deltas. If there is
an exchange of any of the rule bits during crossover, the deltal and delta2 values are exchanged
between the parent chromosomes. Figure 6.5 shows an example of the crossover operator in the

genetic algorithm.

Parents Offspring

' x1| x2| x3| deital |deitaz | ' x1| x2| x3| deital |deitaz |

o[l o

1 6l o

Figure 6.5: Crossover in the GA-train algorithm.

008 | 032

The mutation operator is based on the standard single bit mutation (section 2.4.1, figure
2.8, page 38). Mutation is also applied only to the rule bits of the chromosome, not the deltas.
If any bit on a gene is mutated, the deltal and delta2 values for that gene will be replaced with
randomly generated values. Figure 6.6 shows an example of the mutation operator in the genetic

algorithm.

151

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

Original chromosome Chromosome after

| x1| xe| x3| deita1 |deltaz | | x1| x2| x3| deita1 |deitaz |

o [l 1 [012 [-004 o o] 1 [Fo2EITGEET

Figure 6.6: Mutation in the GA-train algorithm.

6.2.6 Description of the Entire GA-train Algorithm
The entire algorithm is described as follows:
Step 1: Initialise the network weights to random values in the range (-0.5, 0.5);

Step 2: Create a population with randomly assigned rule bits and delta values;

For the evolutionary process, repeat step 3 to step 8:
Step 3: Evaluate each individual of the population according to the fitness function.

Step 4: If the best performer is an improvement on the previous best, then apply the delta

values of the best performer to the network weights to calculate the new weights;

Step 5: Measure the classification accuracy on the classification training data. If the best one
can solve the problem or some other termination criteria have been reached, then save the

best network, report the result and stop the evolutionary process;
Step 6: Rank and select members of the population;
Step 7: Perform crossover;

Step 8: Perform mutation;

6.2.7 Characteristics of GA-train

The method described in this section is to have the genetic algorithm evolve the changes, or
the values of the two deltas, to the weights of the network being trained. This is done by
modifying the weights according to the gene structure, the combination of the rules and the

weight updating mechanism.

152

6.3. GENETIC ALGORITHM FOR NETWORK REFINEMENT — GA-REFINE

Rather than have the genetic algorithm evolve the actual weights and biases themselves,
only the way in which the rules are to be applied and the delta values are evolved. Accordingly,
the chromosomes being modified by the genetic algorithm do not represent the weights or biases
of the network, only the method by which the rules are to be applied and the delta values are

represented.

6.3 Genetic Algorithm for Network Refinement — GA-refine

Directly applying trained networks obtained in the first phase to detecting large pictures con-
taining the small objects of interest often results in some false alarms, particularly when the
large pictures have a highly cluttered background, as shown in chapter 4 and chapter 5. To
decrease the false alarm rate, the second phase is developed for refining the networks trained in

phase one. This is done by another genetic algorithm GA-refine.

6.3.1 Overview of the GA-refine Algorithm

Figure 6.7 shows a flow diagram of the GA-refine algorithm. After reading the parameters
set/defined by the user, this genetic algorithm uses the entire images in the detection training
set and the centres of the desired objects in the multiple classes of interest to perform the
evolutionary process. As mentioned earlier, to distinguish it from the network training on the
cutouts in the first phase, further training of the networks on the entire images in the second
phase is called refining the networks, or network refinement. The GA-refine algorithm uses
the same gene structure as the GA-train algorithm and begins with the population associated
with the trained network produced by phase one. The fitness of an individual is computed by
generating a network from the saved weights and encoded weight changes and applying it, in a
moving window fashion, over these large pictures to detect the objects of interest. Through the
evolutionary process, the best individual (network) in the population will continue to become
fitter. The genetic operators used here — selection, crossover and mutation — are all the same
as those in the GA-train algorithm in the first phase. However, the fitness function used here
is different from that in the GA-train algorithm. In the remainder of this section, we will
described the fitness function used in the GA-refine algorithm and compare this algorithm with

the GA-train algorithm.

153

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

START

[Read Input Parameters]

Read Entire Images in Detection Training Set
and the Locations of Desired Objects

First Generation? L—[Initialise Popul ation }

No
[Perform Selection]
[Read the Trained Network }
)
[Perform Crossover }
c
=)
®
(]
(% E Perform Mutation }
B
Evaluate Each Individud — }--------- - Sweep Training Images
in Population 77T 0 with Network
e

[Find Object Centres }

END

Problem Solved? ——

[Match Objects } |

No N 3
Max Generation? ! i

[Get DRand FAR }

[Save Best Network }-—
{ Compute Fitness } |

Figure 6.7: Flow diagram of the GA-refine algorithm.

154

6.3. GENETIC ALGORITHM FOR NETWORK REFINEMENT — GA-REFINE

6.3.2 Fitness Function

In network refinement, the GA-refine algorithm directly uses the detection rate and false alarm
rate performance to calculate the fitness of a network. As shown in figure 6.7, the fitness of a

chromosome (associated with a network) is computed according to the following six steps:

1. Realise the network from the weights and the weight changes encoded in the chromosome.

2. Apply the network as a moving nxn window template across the entire images in the
detection training set and obtain the object sweeping maps for the object classes of interest.
We use the neural network to scan all these pictures pixel by pixel. This is identical to
the corresponding detection procedure used in the basic approach (section 4.6.1, page 98)

except that this is now performed as part of the training procedure.

3. Find the centres of all of the objects detected by the centre-finding algorithm as presented
in chapter 4 (section 4.6.2, page 100).

4. Compare the detected object centres with known locations of the desired objects and
obtain the number of objects correctly and incorrectly detected by the network according

to the object matching method described in chapter 4 (section 4.7.1, page 101).

5. Determine the overall detection rate and false alarm rate of this network according to

equation 2.3 (page 16) and equation 2.5 (page 16).

6. Compute the fitness according to equation 6.1.

fitness(FAR,DR) = A x FAR/(FAR + DR) + B x (1 — DR) (6.1)

where DR and FAR represent the detection rate and the false alarm rate of the network,
and A and B are constants which reflect the relative importance of the false alarm rate

and the detection rate.

Under this design, it is clear that the smaller the fitness, the better the detection performance.
The best case is zero fitness when the detection rates for all classes are 100% and the false alarm
rates are zero, that is, all the objects of interest are correctly detected by the network without

any false alarms.

155

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

6.3.3 Characteristics of GA-refine

The differences between the first genetic algorithm GA-train and the second genetic algorithm

GA-refine are:

e The weights of the network are initialised with the trained weights obtained in the first

phase instead of being randomly generated.

e The entire images in the detection training set are used directly for the network learning

process rather than the cutouts in the classification training set.

e Only the object classes of interest are considered. The non-interesting object classes such

as the background are not considered.

e A new fitness function based on the detection rate and false alarm rate for the entire

images is used instead of the mean squared error on the cutouts.

e Different parameters and termination criteria are used. The details will be presented in

the next section.

6.4 Results

This section presents two groups of results. The first the results of network training and testing
for object classification on the cutouts of the three databases using the first genetic algorithm,
GA-train, described in this chapter compared with the backward error propagation algorithm,
BP-train, used in the basic approach described in chapter 4. The second is the results of object
detection on the entire images in the detection test set achieved by the three detection methods

introduced in this chapter compared with the basic approach in chapter 4.

6.4.1 Object Classification Results

To investigate the object classification performance of the GA-train algorithm on large networks
with raw image pixel data, we applied this algorithm to the cutouts in the classification data
sets for the three image databases. Again, this only involves network training and testing but
not network sweeping. The number of evaluations and the test mean squared error (MSE) are
compared with those obtained by the BP-train algorithm in the basic approach. The classifi-
cation accuracy is also presented to keep the consistency with the previous chapters. Before

presenting the results, we define the term, evaluations as follows.

156

6.4. RESULTS

Definition 6.8 Number of Network Evaluations

For the purpose of comparison with the BP-train algorithm, a single evaluation of an individual
network in the population of the GA-train algorithm is considered to be computationally equiv-
alent to a single forward or backward pass of the BP-train algorithm. A generation requires
evaluation of each member of the population for the entire classification training set, so in terms
of the BP-train algorithm a generation is typically computationally equivalent to a number of
epochs. The number of epochs that a generation is equivalent to varies with the number of
individuals in the population.

For example, for the GA-train algorithm with a population of 100 individuals (networks)
which takes 20 generations to train, each network will have been evaluated 20 times for any
training pattern, so there will be 20 x 100 = 2000 network evaluations per training pattern.
For the BP-train algorithm, a training period of 500 epochs will have resulted in 500x2 =
1000 network evaluations per training pattern. This takes into consideration the forward and
backward passes of the backward propagation technique. For ease of comparison, the number
of trials for the GA-train algorithm and the number of epochs for the BP-train algorithm are

converted into the number of network evaluations per training pattern.

Easy Pictures

The parameter values used by the GA-train algorithm for the simple object classification in the
easy pictures are described in table 6.1. These parameters were empirically determined through

experiments in order to obtain good results.

Population Size | 200 || Max Generations | 100
Crossover Rate | 95% || Deltal Range +0.06
Mutation Rate | 5% || Delta2 Range +0.02

Table 6.1: Main parameter values used in the evolutionary process for object classification in

the easy pictures.

Table 6.2 shows the network training and testing results for the easy pictures of the GA-
train algorithm for the same network architecture and training termination criterion as table 4.1
(page 103): the network architecture is 196-4-4, termination is when all the patterns in the

classification training set are correctly classified, or percent = 100%, and the experiment is

157

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

repeated 15 times. As shown in table 6.1, there is another termination condition for GA-train,
that is, the training will also be terminated when the number of generation reaches 100. There
are two main reasons: one is to avoid overtraining and the other is that if GA-train has not

converged at this generation one should change the parameters and retrain the network.

Expt. No. | Generations | Training MSE Training Test MSE Test
(x1072) Accuracy(%) | (x1072) | Accuracy(%)
1 28 5.7 100 5.8 100
2 21 5.9 100 5.9 100
3 30 6.5 100 6.4 100
4 31 6.7 100 6.8 100
5 22 6.1 100 6.2 100
6 25 7.1 100 7.2 100
7 19 5.2 100 5.2 100
8 32 5.6 100 5.7 100
9 26 4.9 100 5.0 100
10 24 5.7 100 5.8 100
11 28 6.2 100 6.3 100
12 23 4.8 100 5.0 100
13 30 5.5 100 5.7 100
14 22 6.0 100 6.1 100
15 25 6.2 100 6.2 100
puto 25.733+3.972 5.87+0.64 100+0 5.95+0.62 100+0

Table 6.2: Results of network training and testing for object classification in the easy pictures
using the GA-train algorithm. (Network architecture: 196-4-4; Stop criterion: Percent = 100%;
Training set size = 60; Test set size = 180; Repetitions = 15.)

As shown in figure 6.2, the number of generations required for network training is 25.733+
3.972, the training mean squared error is (5.8740.64)x10~2 and the test mean squared error
is (5.9540.62) x1072. As with networks trained using the BP-train algorithm in the basic
approach, networks trained using the GA-train algorithm also correctly classify all the patterns
in the classification test set. To compare the results here with those for the basic approach, as
mentioned earlier, we convert the number of generations taken by the GA-train algorithm here

and the number of epochs used by the BP-train algorithm in the basic approach into the number

158

6.4. RESULTS

Training Evaluations | Training MSE Training Test MSE Test
Algorithms (x1072) Accuracy (%) | (x1072) | Accuracy (%)
(k+o0) (k+o0) (n+o) (n=+o) (k+o0)
GA-train | 5146.6+794.4 5.87+0.64 100+0 5.95+0.62 100+0
BP-train 398.8+36.18 5.09+0.30 100+0 5.17+0.27 100+0

Table 6.3: Comparison of the results of network training and testing for object classification in
the easy pictures using the GA-train algorithm and the BP-train algorithm. (Network archi-
tecture: 196-4-4; Stop criterion: Percent = 100%; Training set size = 60; Test set size = 180;
Repetitions = 15.)

of network evaluations, and present the comparison in table 6.3.

According to table 6.3, the number of evaluations needed by the GA-train algorithm is
5146.6£794.4, which is much bigger than that 398.84+36.18 for the basic approach in both mean
and standard deviation. The test mean squared error is (5.95+0.62) x 1072, which is also slightly
higher than that (5.174£0.27)x10~ 2 achieved by the basic approach.

Training Evaluations | Training MSE Training Test MSE Test
Algorithms (x1072) Accuracy (%) | (x1072%) | Accuracy (%)
(n+0) (n+o) (n+o0) (n+o0) (1 +0)
GA-train | 4365.8+537.2 5.95+0.54 95.0+£0 5.96+0.52 | 92.34+1.30
BP-train 354.4+17.36 5.73+0.10 95.0+0 5.75£0.10 | 93.58+1.06

Table 6.4: Comparison of the results of network training and testing for object classification in
the easy pictures using the GA-train algorithm and the BP-train algorithm. (Network archi-
tecture: 196-5-4; Stop criterion: Percent = 95%; Training set size = 60; Test set size = 180;
Repetitions = 15.)

Table 6.4 shows the results of the GA-train algorithm for the same network and termination
criterion as table 4.2 — the BP-train algorithm in the basic approach (page 104). This table shows
a similar pattern to table 6.3. The number of evaluations required by the GA-train algorithm
is 4365.8+537.2, which is much larger than that 354.4+17.36 used by the BP-train algorithm.
The test mean squared error is (5.9640.52) x 102, which is higher than that (5.7540.10)x10~2

for the BP-train algorithm. The classification accuracy is 92.34%, which is also slightly lower

159

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

than that (93.58%) for the BP-train algorithm.
In summary, the results show that the GA-train algorithm can be used to train the large
networks in the easy pictures, however it needed more evaluations and resulted in a higher mean

squared error on the classification test set than the BP-train algorithm in the basic approach.

Coin Pictures

The parameter values for regular object classification in the coin pictures used by the genetic

algorithm are described in table 6.5.

Population Size | 200 || Max Generations | 100
Crossover Rate | 95% || Deltal Range +0.01
Mutation Rate | 5% || Delta2 Range +0.004

Table 6.5: Main parameter values used in the evolutionary process for object classification in

the coin pictures.

Training Evaluations Training MSE Training Test MSE Test
Algorithms (x1072) Accuracy (%) | (x1072) | Accuracy (%)
(n+o) (n+o0) (n+o) (1 +0) (n+o)
GA-train | 9379.3+1031.1 3.50+0.65 10040 3.53+0.67 100+0
BP-train 469.2+131.88 2.60+0.47 10040 2.60+0.46 1000

Table 6.6: Comparison of the results of network training and testing on object classification in the
coin pictures using the GA-train algorithm and the BP-train algorithm. (Network Architecture:
576-3-5; Stop criterion: Percent = 100%; Training set size = 100; Test set size = 100; Repetitions
= 15.)

Table 6.6 shows the results of the GA-train algorithm for the same network and termination
criterion as table 4.3 — the BP-train algorithm in the basic approach (page 105). Using the
GA-train algorithm, the number of evaluations needed for network training is 9379.3+1031.1,
which is about 20 times longer than that (469.2+131.88) for the BP-train algorithm in the basic
approach. In addition, the test mean squared error is (3.534-0.67)x 1072, which is also higher
than for the BP-train algorithm in the basic approach. As in the basic approach, the GA-train

160

6.4. RESULTS

algorithm also led to 100% classification accuracy on the classification test data for the coin
pictures.

Table 6.7 describes the results of the GA-train algorithm on the coin classification for the
same network and termination criterion as table 4.4 — the BP-train algorithm in the basic
approach (page 106). Table 6.7 shows a very similar pattern to table 6.6, which suggests the
G A-train algorithm can be used to train the networks on the cutouts of the coin pictures, however
the training process takes longer and the trained network produces higher mean squared error

on the same test data.

Training Evaluations | Training MSE Training Test MSE Test
Algorithms (x1072) Accuracy (%) | (x1072) | Accuracy (%)
(n+o0) (n+o) (n+o0) (n+o0) (1 +0)
GA-train | 3325.31+432.6 3.97+0.55 95.0£0 3.98+0.56 92.36+1.87
BP-train 174.26+10.16 3.33+0.39 95.0+0 3.17+£0.36 94.53+1.25

Table 6.7: Comparison of the results of network training and testing for object classification in
the coin pictures using the GA-train algorithm and the BP-train algorithm. (Network Archi-
tecture: 576-5-5; Stop criterion: percent = 95%; Training set size = 100; Test set size = 100;
Repetitions = 15.)

Retina Pictures

The parameter values for very complex object classification in the retina pictures used by the

genetic algorithm are described in table 6.8.

Population Size | 300 || Max Generations | 150
Crossover Rate | 90% || Deltal Range +0.004
Mutation Rate | 10% || Delta2 Range +0.002

Table 6.8: Main parameter values used in the evolutionary process for object classification in

the retina pictures.

Table 6.9 shows the object classification results of the GA-train algorithm on the retina
pictures for the same network and training termination criterion as table 4.5 — the BP-train

algorithm in the basic approach (page 107). Compared with network training for the easy and

161

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK

REFINEMENT IN OBJECT DETECTION

Training Evaluations | Training MSE Training Test MSE Test
Algorithms (x1072) Accuracy (%) | (x1072) | Accuracy (%)
(k+o0) (n£o0) (n+0) (k+o0) (n+o)
GA-train | 31350+4021.6 11.5+1.63 65.0+0 13.31+1.53 63.41+3.57
BP-train 401.6+53.34 9.44+0.22 65.0+0 9.12+0.18 65.05+2.82

Table 6.9: Comparison of the results of network training and testing for object classification
in the retina pictures using the GA-train algorithm and the BP-train algorithm. (Network
Architecture: 256-4-5; Stop criterion: Percent = 65%; Training set size = 100; Test set size =

61; Repetitions = 10.)

the coin databases, the GA-train algorithm took much a longer time to reach the termination
point. The number of network evaluations required for network training is 31350+4021.6, which
is about 75 times more than that (401.6+53.34) for the basic approach. The GA-train also
resulted in a higher test mean squared error than the BP-train algorithm.

Table 6.10 shows the object classification results of the GA-train algorithm on the retina
pictures for the same network and training termination criterion as table 4.6 — the BP-train

algorithm in the basic approach (page 108).

Training Evaluations Training MSE Training Test MSE Test
Algorithms (x1072) Accuracy (%) | (x1072) | Accuracy (%)
(1 +0) (n+o0) (1 +0) (n+o0) (n+o0)
GA-train | 42341.5+7538.3 9.81+0.93 75.4+0 13.30£1.72 62.301+7.45
BP-train 951.6£265.52 6.70+0.52 75.4+0 8.34+0.79 71.83+2.63

Table 6.10: Comparison of the results of network training and testing for object classification
in the retina pictures using the GA-train algorithm and the BP-train algorithm. (Network
Architecture: 256-5-5; Stop criterion: Percent = 75%; Training set size = 100; Test set size =

61; Repetitions = 10.)

Table 6.10 shows a similar pattern to table 6.9. The GA-train algorithm took very a long
time to train the network to the termination criterion, that is, when 75% of the training patterns
were correctly classified. Furthermore, the network trained by this algorithm resulted in a much

higher test mean squared error than the basic approach. Comparing the test mean squared error

162

6.4. RESULTS

with the training mean squared error, it is found that the overtraining problem occurred in both
training procedures. This was conformed by checking the classification accuracy. The network
trained by the BP-train algorithm in the basic approach produced an average classification
accuracy of 71.83% on the classification test set, while the GA-train algorithm resulted in 62.30%
classification accuracy.

This subsection described a series of comparisons of the network training and testing results
for object classification using the first genetic algorithm in this approach with the backward
error propagation algorithm in the basic approach on the cutouts of the three image databases.
On all cases for training the relatively large networks with the inputs of the image pixel data
described here, the GA-train algorithm needed more evaluations to train the networks and the
trained network resulted in a higher test mean squared error than the BP-{rain algorithm in the
basic approach. While the GA-train algorithm is worse on object classification, the real goal is

object detection so we persevere.

6.4.2 Object Detection Results

This section describes a series of comparisons of the object detection results of the three methods
introduced in this chapter, that is, the GA-train method, the BP-train+GA-refine method and
the GA-train+GA-refine method, with the BP-train method or the basic approach described in
chapter 4.

For the GA-train method, each of the 15 trained networks shown in table 6.2 was applied to
the detection test set of the easy pictures, each of the 15 trained networks shown in table 6.6
was applied to the entire images in the detection test set of the coin pictures, and each of the 10
trained networks shown in table 6.9 was applied to the detection test set of the retina pictures.
The averages are presented in tables 6.12, 6.13 and 6.14 and figures 6.8 and 6.9.

For the GA-train+GA-refine method, each of the 15 trained networks learnt by the GA-
train algorithm in table 6.2 was used in the network refinement procedure to obtain 15 refined
networks. Each of the 15 refined networks was then applied to the the entire images in the
detection test set of the easy pictures. Similarly, each of the 15 refined networks based on the
15 trained networks shown in table 6.6 was applied to the entire images in the detection test set
of the coin pictures. Each of the 10 refined networks based on the 10 trained networks shown in
table 6.9 was applied to the detection test set of the retina pictures. The averages are presented
in tables 6.12, 6.13 and 6.14 and figures 6.8 and 6.9.

For the BP-train+GA-refine method, the 15, 15 and 10 trained networks shown in tables

163

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

4.1, 4.3 and 4.5 for the easy, the coin and the retina pictures were used in the second genetic
algorithm for network refinement. Then each of the 15, 15 and 10 refined networks was applied
to the entire images in the detection test set of the easy, the coin and the retina pictures to
obtain the object detection results and the averages are presented in tables 6.12, 6.13 and 6.14
and figures 6.8 and 6.9.

The choosing of thresholds was done in the same way as for the basic approach, as shown in

figure 4.8 (page 110).

Main Parameters for Network Refinement and Termination Strategy

Algorithms | Parameters Easy Pictures | Coin Pictures | Retina Pictures
Net Architecture 196-3-4 576-3-5 256-4-5
Population size 200 200 500
GA-refine | Crossover rate 95% 95% 90%
Mutation rate 5% 5% 10%
Based on | Max Generations 50 50 50
Deltal range +0.08 +0.04 +0.02
GA-train | Delta2 range +0.05 +0.02 +0.005
A 5 2 3
B 2 3 2
Net Architecture 196-3-4 576-3-5 256-4-5
Population size 200 200 500
GA-refine | Crossover rate 95% 95% 90%
Mutation rate 5% 5% 10%
Based on | Max Generations 50 50 50
Deltal range +0.06 +0.008 +0.02
BP-train | Delta2 range +0.02 +0.002 +0.005
A 2 1 3
B 1 1 2

Table 6.11: The main parameters for network refinement used by the GA-refine algorithm based
on the GA-train algorithm and the BP-train algorithm.

164

6.4. RESULTS

Table 6.11 shows the main parameters used by the GA-refine algorithm based on the GA-train
algorithm in the GA-train+GA-refine method and the BP-train algorithm in the BP-train+GA-
refine method for the three databases.

For example, for the easy pictures, GA-refine in both GA-train+GA-refine and BP-train+GA-
refine used the same network architecture (196-3-4), population size (200), crossover rate (95%),
mutation rate (5%) and the maximum number of generations (50). The ranges of deltal and
delta2 used in the GA-refine algorithm for the GA-train+GA-refine method were +0.08 and
+0.05 and the constants A and B were 5 and 2. For the GA-refine algorithm in the BP-
train+GA-refine method, the ranges of deltal and delta2 were +0.06 and +0.02 and the fitness
parameters A and B were 2 and 1.

The parameters described in figure 6.11 were carefully selected through empirical search
to achieve good results. For both cases, the evolutionary process for network refinement was

terminated when either the problem was solved or the number of generations reached 50.

Easy Pictures

Easy Pictures Object Classes
Classl | Class2 | Class3
Best Detection Rate(%) 100 100 100
BP-train (the basic approach) 0 91.2 0
False Alarm GA-train 80 839 273
Rate (%) BP-train + GA-refine 0 0 0
GA-train + GA-refine 0 663 144

Table 6.12: Comparison of object detection results for the easy pictures using the four detection

methods. (Network architecture: 196-4-4; Repetitions = 15.)

Table 6.12 shows a comparison of the results for the easy pictures. As in the basic approach
(the BP-train method), the detection rate for the three classes obtained using the three methods
introduced in this chapter reached 100%. Under this detection rate, the best corresponding false
alarm rates achieved for each class, however, were quite different. Take class2 detection as an
example, BP-train+GA-refine did not produce any false alarms, which was much better than
the basic approach (the BP-train method) that produced a false alarm rate of 91.2%. The
GA-train method and the GA-train+GA-refine method resulted in 839% and 663% false alarm

165

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

rates respectively, which suggests that the GA-train+GA-refine method is superior to the GA-
train method for the easy pictures. As can be seen from table 6.12, the GA-train method
led to more false alarms than the basic approach, however the methods with the GA-refine
algorithm resulted in fewer false alarms for all classes than the corresponding methods without
the refinement. The BP-train+GA-refine method gave the best detection performance, that is,

all the objects of interest in each class were correctly detected without any false alarms produced.

Coin Pictures

Experiments with the coin images gave similar results to the easy pictures. The best false alarm
rates for all the four classes head005, tail005, head020 and tail020 under the detection rate of
100% obtained by the four methods are shown in table 6.13. Of all the four methods, BP-
train+GA-refine gave the best results, where the detection rate for all the four object classes
reached 100% without any false alarms. The methods with the GA-refine algorithm always
resulted in fewer false alarms than the corresponding basic methods without the refinement.

The GA-train method produced more false alarms than the basic approach.

Coin Pictures Object Classes
head005 | tail005 | head020 | tail020
Best Detection Rate (%) 100 100 100 100
BP-train (the basic approach) 0 0 182 37.5
False Alarm GA-train 357 19 333 778
Rate (%) BP-train + GA-refine 0 0 0 0
GA-train + GA-refine 125 0 37.5 215

Table 6.13: Comparison of object detection results for the coin pictures using the four detection

methods. (Network architecture: 576-3-5; Repetitions = 15.)

According to table 6.13, detecting heads and tails of 5 cent coins turns out to be relatively
straight forward, while detecting the heads and tails of 20 cent coins is a difficult problem. To
give a clearer view of the comparison of the four methods, we present the extended ROC curves
of detecting the heads and tails of 20 cent coins in figure 6.8. As can be seen from this figure,
at all levels of detection rate, the BP-train+GA-refine did not produce any false alarms, the
GA-train+GA-refine method always resulted in fewer false alarms than the GA-train method

and GA-train always resulted in more false alarms than BP-train.

166

6.4. RESULTS

» 100

100 * y 1 » »
. ¥ - ¥ /i o
’ p o i . o
. 4 . -
s04 ¥ # » 80 4+ + .
+ + » L] ¢
7 /
=] + /‘ = * /‘
S * £ ' s [} »
o 60T ’ o 60 p
% l‘ ¥ . 5 + K
= .
s o 4 s 1 d
I 2 y P
8 40 8 40 . o
gz ot f 3 ‘
fa o fa A .
Y ---- BP-train !/ o --+-- BPrain
204 ’/ —a— BP-train + GA-refine 204 R —a— BP-train + GA-refine
p - - GA-train + ’ - -e— GA-train
2 — & — GA-train + GA-refine ;,’ — & — GA-train + GA-refine
0 T T T T 0 T T T
0 100 200 300 400 500 0 200 400 600 800
False Alarm Rate (%) False Alarm Rate (%)
ROC curve for "head020" in the coin pictures ROC curve for "tail020" in the coin pictures

(a) (b)
Figure 6.8: Comparison of the results for class head020 and class tail020 in the coin pictures

using the four detection methods.

Retina Pictures

Retina Pictures Object Classes
haem micro
Detection Results Best DR (%)/FAR(%) | Best DR(%)/FAR(%)
BP-train(the basic approach) 73.91 /2859 100 / 10104
GA-train 50.37 /4000 90 / 5606
BP-train + GA-refine 82.61 / 2156 100 / 2706
GA-train + GA-refine 82.61 / 2298 100 / 5055

Table 6.14: Comparison of object detection results for the retina pictures using the four detection
methods. (Network architecture: 256-4-5; Repetitions = 10. DR: Detection Rate. FAR: False
Alarm Rate.)

Table 6.14 shows a comparison of the best detection rate and the corresponding false alarm
rate achieved using the four detection methods. These results were not as good as those for
the easy and the coin pictures. As can be seen from this table, none of these methods resulted
in 100% detection rate for detecting haemorrhages. However, the two methods incorporating

the refinement genetic algorithm resulted in 82.61% detection rate at which fewer false alarms

167

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

were produced than the other two methods without the refinement. BP-train, GA-train+GA-
refine and BP-train+ GA-refine correctly detected all the micro aneurisms in the retina pictures,
however resulted in 10104%, 5055% and 2706% false alarm rates. The GA-train only achieved
a detection rate of 90%.

100

80

60

40

Detection Rate (%)

(]
./+..

BP-train

20

|

\

\

®
Detection Rate (%)

*
i+ b é ,®—4— BP-train + GA-refine
r W & _ - GA-ran

(ol ',’ — & — GA-train + GA-refine

+ ~+-- BP-train

© —a— BP-train + GA-refine
- -e— GA-train
—&— GA-train + GA-refine
T T

5000 10000
False Alarm Rate (%)

ROC curve for "micro" in the retina pictures
(a) (b)

Figure 6.9: Comparison of the results for detecting class haem and class micro in the retina

"‘

T T T
0 1000 2000 3000 4000
False Alarm Rate (%)
ROC curvefor "haem" in the retina pictures

pictures using the four detection methods.

Figure 6.9 shows the ROC curves of detecting class haem and class micro in the retina
pictures. These results show the same pattern as the other two databases. In all cases, the
methods with the refinement genetic algorithm, GA-refine, were clearly superior to the corre-
sponding methods without the refinement — the false alarm rate at all levels of detection rate
was lower, and the BP-train+GA-refine method gave the best results among the four methods.
Unlike the results of detecting other objects, the GA-train method produced fewer false alarms
than the BP-train method (the basic approach) at most detection rates for detecting class micro
in the retina pictures, but it could not result in 100% detection rate. The overall detection

performance on the retina pictures, however, is still not satisfactory.

6.5 Summary and Discussion

6.5.1 Discussion

This approach has some disadvantages:

168

6.5. SUMMARY AND DISCUSSION

e The training times for the network refinement are quite long. Some of the runs took longer

than 48 hours on a SPARC station.

e Overall, the method of the backward error propagation algorithm with refinement by
genetic algorithms (BP-train+GA-refine) produces pixel based networks that work well
on objects on a relatively uniform background. However it does not work very well for
detecting very irregular objects against highly cluttered backgrounds in the retina pictures,

even if it has greatly improved the detection performance achieved by the basic approach.

e The best method for object detection described in this chapter is based on two phases.

This needs the further computational effort of network refinement.

6.5.2 Next Step

As discussed earlier, genetic algorithms can be applied to the further training/refinement of the
networks on the full images in the detection training set and improve the object detection per-
formance. This suggests the evolutionary process can produce better solutions for the detection
problems. This raises the question of whether some other use of the evolutionary process can
be used to improve the detection performance, particularly on the retina pictures. In chapter
7, we investigate another evolutionary process, genetic programming, for the three detection

problems.

6.5.3 Summary

The goal of the work described in this chapter was to investigate the use of genetic algorithms for
network training and network refinement for the object classification and detection problems. A
two phase approach was introduced here. In phase one, the networks were trained by a genetic
algorithm with the fitness of mean squared error on cutouts of the classification data set. In
phase two, the trained networks produced in phase one were refined by applying a second genetic
algorithm. The fitness function in this case was based on a linear combination of the false alarm
rate and detection rate on the entire images in the detection training set. The trained networks
produced by the backward error propagation algorithm in the basic approach were also used with
the network refinement procedure. The two phase approach described here produced three new
detection methods, the GA-train method, the BP-train + GA-refine method and the GA-train
+ GA-refine method. These three methods and the basic approach (the BP-train method) were

169

CHAPTER 6. GENETIC ALGORITHMS FOR NETWORK TRAINING AND NETWORK
REFINEMENT IN OBJECT DETECTION

compared on three detection problems of increasing difficulty. The experimental results showed

that:

e The first genetic algorithm, GA-train, did not lead to faster training and better test per-

formance on the cutouts of any of the three databases than BP-train.

e The genetic algorithm without the network refinement, the GA-train detection method,

did not give better detection performance in most cases compared with the basic approach.

e The methods which incorporated the refine genetic algorithm always resulted in better
detection performance than the corresponding methods without the refinement in all three
detection problems. In other words, the second genetic algorithm, GA-refine, can be used
to improve the detection performance of networks trained by either the BP-train algorithm

or the GA-train algorithm.

e Of the four methods, the hybrid method of the backward error propagation algorithm
in the basic approach and the refinement genetic algorithm, the BP-train + GA-refine

method, always produced the best detection performance.

170

Chapter 7

Genetic Programming for Multiple

Class Object Detection

7.1 Introduction

Chapter 4 described the detection results on the three databases achieved by the basic approach
in which the networks were trained on the cutouts by the backward error propagation algorithm.
In chapter 6, it was shown that the detection performance could be improved by an extension
of the work — applying a genetic algorithm based refinement process to the entire images. In
this chapter, we investigate a further extension of these methods. We consider the replacement
of the neural networks with programs that will be evolved using genetic programming. As in
the refinement step described in the previous chapter the fitness will be based on detection
performance on the entire training images. We call this method the genetic programming based

approach.

7.1.1 Overview of the Approach

Figure 7.1 shows an overview of the genetic programming based approach. As in the basic
approach, this approach also has a learning process and a testing procedure. In the learning
process the evolved programs are applied, in a moving window fashion, to the entire images in
the detection training set to locate the objects of interest. This is very similar to the network
sweeping procedure in the basic approach where the neural networks were applied to the entire
images in the detection test set. This learning process is also similar to the network refine-

ment procedure by the genetic algorithm except that general computer programs are evolved

171

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

rather than neural networks. The best evolved programs are applied to the entire images in the

detection test set to measure object detection performance.

Entire Images
(Detection Training Set)

Genetic Programming Process

Entire Images

Generated Programs (Detection Test Set)

Object Detection

Detection Results

Figure 7.1: An overview of the genetic programming based approach for multiple class object

detection.

7.1.2 Chapter Goals

In keeping with the goal of domain independent object detection, a number of pizel level, domain
independent features, or pizel statistics are used as terminals and a set of standard arithmetic
operators are used as functions. The genetic programming evolutionary process is expected
to automatically select just those relevant to a specific domain. The overall goal of the genetic
programming based approach is to determine whether programs evolved by genetic programming
can do a good enough job of detecting the objects of interest in the three databases used in this

thesis (chapter 3). Specifically we are interested in:

e What pixel based, domain independent image features would make useful terminals.

172

7.2. GENETIC PROGRAMMING ADAPTED TO OBJECT DETECTION

Whether the four standard arithmetic operators (+, —, *, /) will be sufficient for the func-

tion set.

How the fitness function can be constructed given that there are several classes of interest.

How the performance will vary with increasing difficulty of image detection problems.

Whether the performance will be better than the basic approach on the same detection

problems.

7.1.3 Structure of the Chapter

In the remainder of this chapter, we will describe the different components of this approach, the
key issues relating to the terminal set, the function set and the fitness function. After giving the
parameters used in this approach, we present and analyse the experimental results and compare

them with the basic approach. This chapter ends with a summary and a discussion.

7.2 Genetic Programming Adapted to Object Detection

As in the neural network sweeping procedure, the programs use a square input field which is
large enough to contain each of objects of interest and are applied, in moving window fashion,
over the large pictures in the detection training set to locate the objects of interest. The
terminals are computed from the square input field and form the inputs of the programs during
the evolutionary process. The output of an evolved program is a floating point value, which is
used for object classification during the sweeping procedure.

The flow diagram presented in figure 7.2 shows the learning procedure of genetic program-
ming adapted to multiple class object detection. Before the learning process starts, a series
of pre-defined input parameters, the entire images in the detection training set, and the pre-
determined terminal set and function set are loaded. At the beginning of the learning process, a
number of individual programs in the population are randomly created according to the termi-
nals, functions and the program maximum depth. Each of the programs is then applied to the
sweeping procedure to locate the objects of interest. The evolved programs are then evaluated
by the fitness function. If the best of the programs reaches the termination criterion, then the
programs are saved and the learning process is terminated. Otherwise, the evolutionary pro-
cess will continue by applying the genetic operators of selection, reproduction, crossover and

mutation to produce new programs in the population for the next generation. In general, the

173

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

best program in the population will continue becoming fitter through the evolutionary learning

process.

START

‘ Read Input parameters ‘

Load Entire Images in Detection Training Set
and the Locations of Desired Objects

‘ Load Termina Set ‘
Branch | l

Load Function Set
‘ ‘ ‘ o Sweep Training Images

Branch I11

.L : 7 with Programs
Initialise Population l
——l Find Object Centres
Evauate Each Program e l
Match Objects
Reach Stop Criteria? Yes !

Get DR and FAR

l

B Compute Fitness

‘ Next gengeration ‘

1 1 '

Selection | | Selection | | Selection

ngcl’,ronj Perform | | Perform
duggon Mutation | | Crossover| Save Best Program

oy ¢

‘ New p;opulation ‘
] Branch |1 »

Figure 7.2: Learning procedure of genetic programming adapted to multiple class object detec-

tion.

For presentation convenience, we separate this approach into three main branches — Branch I,
Branch Il and Branch III, as shown in figure 7.2. The first branch loads a set of input parameters,
the terminal set, function set and the entire training images for the evolutionary process. The
terminal set and the function set are pre-determined. The second branch is the actual genetic
programming process, which was described in section 2.4.2 (page 42). Branch III describes the
key steps in the development of the fitness function for multiple class object detection problems.

Branch I and Branch I1I vary with different tasks, while Branch II is relatively task independent

174

7.3. THE TERMINAL SET

and can be constructed from the existing genetic programming tools. In this approach, we used
the genetic programming shell written by Wilson [205].
The following tasks are necessary for using genetic programming for multiple class object

detection problems:

1. Determine the terminal set;
2. Determine the function set;
3. Determine the method of measuring fitness;

4. Determine the input parameters and the termination criterion.

7.3 The Terminal Set

El
Al B1 Squares

A1-B1-C1-D1-Al, A2-B2-C2-D2-A2,
A2 E2 B2 A1-E1-0-G1-Al, E1-B1-H1-O-E1,
G1-O-F1-D1-G1, O-H1-C1-F1-O
Rows and Columns:
G1-H1, E1-F1, G2-H2, E2-F2
c Gl G2 H2 H1 Sizes of the Squares and lines:
Suppose: A1-B1=A1-D1 = n, then:
Al-El= E1-B1 = n/2
Al1l-G1=G1-D1 = n/2
b2 F2 €2 E1-O=0O-F1=n/2
G1-O=0-H1=n/2
D1 F1 c1 A2-B2=G2-H2 = A2-D2 = E2-F2:
n/2 ‘ n/2 User Defined (Default: n/2)
nl

n/2

n/2

Figure 7.3: The input field and the image regions and lines for feature selection in constructing

terminals.

For object detection problems, terminals correspond to image features. To pursue the goal
of domain independent object detection, we use twenty general, pixel level “features” (pixel
statistics) rather than domain specific features. These features are obtained from the input field
as shown in figure 7.3. The method of determining the size of the square input field can be
found in section 4.3.2 (page 94). In figure 7.3 (left), the grey filled circle denotes an object of
interest, the square A1-B1-C1-D1-A1 represents the square input field. The other five squares

represent local regions from which features will be computed. The four central lines (rows and

175

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

columns) are also used for a similar purpose. These six squares and four lines and their sizes
are presented in figure 7.3 (right). The mean and standard deviation of the pixels comprising
each of these regions are used as two separate features. There are 6 regions giving 12 features,
F1 to F12. Also we use pixels along the main axes (four lines) of the input field, giving features
F13 to F20. These 20 features are shown in table 7.1. Compared with domain specific features,
these mean and standard deviation features do not need the hand-crafting of feature extraction
programs; they still belong to the pixel level and represent the least step away from pure pixel

based object detection.

Features Regions and Axes of interest

mean | standard deviation

F1 F2 big square A1-B1-C1-D1-A1l

F3 F4 small central square A2-B2-C2-D2-A2
F5 F6 upper left square A1-E1-O-G1-A1

F7 F8 upper right square E1-B1-H1-O-E1

F9 F10 lower left square G1-O-F1-D1-G1

F11 F12 lower right square O-H1-C1-F1-O

F13 F14 central row of the big square G1-H1
F15 F16 central column of the big square E1-F1
F17 F18 central row of the small square G2-H2
F19 F20 central column of the small square E2-F2

Table 7.1: Twenty domain independent, pixel level features based on image pixel intensities.

In addition to these features we have a terminal which generates a random number in the
range [0,255]. This corresponds to the number of grey levels in the images.

These features have the following characteristics:

e They are symmetrical and contain some information of object translation and rotation

Invariance.

e Local region features are included. This assists the finding of object centres in the sweeping
procedure — if the evolved program is considered as a moving window template, the match
between the template and the sub-image forming the input field will be better when the

moving template is close to the centre of an object.

176

7.4. THE FUNCTION SET

e They are general, domain independent and easy to extract. These features belong to the
pixel level and can be part of a domain independent pre-existing feature library of terminals
from which the genetic programming evolutionary process is expected to automatically
learn and select only those relevant to a particular domain. This is quite different from the
traditional image processing and computer vision approaches where the specific features

for a particular domain are often needed.

7.4 The Function Set

We use the function set: F = {4, —, %, /} which represents four arithmetic operations that form
the second order nodes (i.e. 2 arguments). The +, -, and * operators have their usual meanings
while / represents “protected” division which is the usual division operator except that a divide
by zero gives a result of zero. These functions are standard arithmetic functions which are
consistent with the goal of development of domain independent approaches.

A generated program consisting of the four functions and a number of terminals is shown in

figure 7.4. This program performed particularly well for the coin pictures.

(+ (- (+ (+ (/ £16 £14) £5) (+ (/ (/ f11 (x £f14 £20)) f11) (- £12
£14))) (- (*x (- (% (x (* £9 f11) f1) £10) (x f9 £17)) (/ £f5 £18))
(

(
£3 £6)) (/ (+ (+ f1 145.765) (x f16 £10)) £f18)) £12) (+ (+ £17 (x

(+ (+ £f17 (¢ (+ f11 £12) £20)) (*x (- (+ f2 145.765) (/ f6 f11))

133.082 £f17))) (/ f11 (* f14 £20))))) (*x (- (x (- (- f6 £5) (*

(+ £17 £12) £20)) (x (+ f14 £12) (- (+ f1 £12) £17)))))

Figure 7.4: A generated program for the coin detection problem

7.5 The Fitness Function

As presented in Branch III, figure 7.2 (page 174), the fitness of a program in the population is
calculated by using its detection rate and false alarm rate on the entire images in the detection

training set.

177

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

7.5.1 Object Classification Strategy

The output of any program is a floating point number which must indicate which of the objects
of interest is currently in its input field. This is achieved by the program classification map, as
shown in figure 7.5 where m is the number of object classes of interest, ProgQOut is the output

value of the evolved program and 7T is a constant defined by the user.

ProgOut
begin

if (ProgOut € (-00, 0)) then

(m-1)*T
the object is classified as background
else if (ProgOut € [0, T)) | 77~
T

the object is classified as class 1

Class n

else if (ProgOut € [(i-1)xT, ixT))

the object is classified as class @

else if (ProgOut € [(m-1)xT, +00)) T

the object is classified as class n

endif 0

end Background

(a) (b)

Figure 7.5: Mapping of program output to an object classification.

7.5.2 Fitness Function

The fitness of a program is obtained as follows:

1. Apply the program as a moving nxn (n is the size of the input field) window template
to each of the entire images in the detection training set and obtain the output value of
the program at each possible pixel position. Label each pixel position with the ‘detected’
object according to the object classification strategy described in figure 7.5. Call this data
structure a detection map. This step is similar to the network sweeping procedure. A

detection map is similar to an object sweeping map described in section 4.6.1 (page 98),

178

7.6. MAIN PARAMETERS AND TERMINATION CRITERION

except that an object in a detection map is associated with a floating point program output

varying with the fitness value rather than a neural activation value within (0, 1).

2. Find the centres of objects of interest only. The objects in non-interesting classes including

the backgrounds are ignored. This is done as follows:

e Scan the detection map for an object of interest. When one is found mark this point
as the centre of the object and continue the scan n/2 pixels later in both horizontal

and vertical directions.

3. Match these detected objects with the known locations of each of the desired true objects
and their classes. A match is considered to occur if the detected object is within TOL-
ERANCE pixels of its known true location. Here, TOLERANCE is a constant parameter
defined by the user.

4. Calculate the detection rate DR and the false alarm rate FAR of the evolved program
according to equation 2.3 (page 16) and 2.5 (page 16).

5. Compute the fitness of the program as shown in equation 7.1.
fitness(FAR,DR) = Ax FAR+ B x (1 - DR) (7.1)

where A and B are constants which reflect the relative importance of false alarm rate
versus detection rate. It is noted that this fitness function is slightly different from the
one for the refinement genetic algorithm (page 155). It was determined according to the
empirical search during experiments. The evolutionary process converges faster using this

fitness function than using equation 6.1 for the refinement genetic algorithm (page 155).

With this design, it is clear that the smaller the fitness, the better the performance. Zero
fitness is the ideal case, which corresponds to the situation in which all of the objects of interest

in each class are correctly found by the evolved program without any false alarms.

7.6 Main Parameters and Termination Criterion

7.6.1 Main Parameters

The values for the various system parameters used in the experiments are shown in table 7.2.

POPULATION SIZE is the number of individuals in the population, ELITISM _PCNT gives the

179

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

Parameters Easy Pictures | Coin Pictures | Retina Pictures
POPULATION_SIZE 100 500 500
ELITISM_PCNT 10% 1% 2%
CROSS_RATE 65% 74% 73%
MUTATION_RATE 25% 25% 25%
CROSS_.CHANCE_TERM 15% 15% 15%
CROSS_.CHANCE_FUNC 85% 85% 85%
INITTAL_ MAX_DEPTH 5 5 5
MAX_DEPTH 8 12 20
MAX_GENERATIONS 100 200 250
T 100 100 100
A 50 50 50

B 1000 1000 3000
TOLERANCE (pixels) 2 2 2
INPUT_FIELD_SIZE 14x14 24x24 16x16

Table 7.2: Parameters used for GP training for the three databases.

percentage of the best individuals in the current population that are copied unchanged to the
next generation, CROSS_RATE is the percentage of individuals in the next generation that are
to be produced by crossover, MUTATION_RATE is the percentage of individuals in the next
generation that are to be produced by mutation (thus ELITISM_PCNT + CROSS_RATE +
MUTATION_RATE = 100%), CROSS_CHANCE_TERM is the probability that in a crossover
operation two terminals will be swapped, CROSS_CHANCE_FUNC is the probability that
in a crossover operation random subtrees will be swapped (thus CROSS_CHANCE_TERM +
CROSS_CHANCE_FUNC = 100%), INITTAL_ MAX DEPTH is the maximum depth of the ran-
domly generated programs in the initial population, MAX DEPTH is the maximum depth per-
mitted for programs resulting from crossover and mutation operations, MAX_GENERATIONS
gives the stopping condition, T, A, B and TOLERANCE are as defined in the previous section,
INPUT_FIELD_SIZE is the size of the input field.

For detecting circles and squares in the easy pictures, we set 100 programs in the population,
10% of the programs (the number is 100x 10%=10) are used for reproduction (elitism), 65%
of the individuals (the number is 100x 65%=65) for crossover, and 25% (100x25%=25) for

180

7.7. RESULTS

mutation. Of the programs for crossover, 15% (65x15%=10) are used to swap terminals and
85% (65x85%=55) to swap subtrees. The programs are randomly initialised with a maximum
depth of 5 at the beginning of the evolutionary process and the depth can be increased to
8 during the process. We also use 100, 50, 1000 and 4 as the constant parameters T, A, B
and TOLERANCE, which are used for the program classification and the calculation of the
fitness function during the evolutionary process. The maximum generation permitted for the
evolutionary process is 100 for this detection problem. The size of the input field is the same as

the basic approach, that is, 14x14.

7.6.2 Termination Criteria

In this approach, the learning and evolutionary process will be terminated when one of the

following conditions is met:

e The detection problem has been solved, that is, all objects in each class of interest have
been correctly detected with no false alarms. In this case, the fitness of the best individual

program becomes zero.

e The number of generations reaches the pre-defined number, MAX_GENERATIONS.

7.7 Results

This section presents the results of a series of the experiments on the three databases described
in chapter 3. The results are compared with those obtained using the basic neural network
approach for object detection (chapter 4).

It is important to note that:

e The results presented here were obtained by applying the best generated programs to the

entire images in the detection test set;

e No object classification results are presented here, since the genetic programming evolu-
tionary process was applied directly to the entire images in the detection training set,

rather than cutouts;

e The constant parameter T" (figure 7.5, page 178) is, in a sense, equivalent to the threshold in
the basic approach (figure 4.8, page 110) in that the detection performance can be changed

by changing T at the test stage. However, the parameter 7" has to be pre-defined in the

181

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

training stage and the genetic process will search for the best program for a particular
detection problem. Thus one generated program corresponds one value of 7. It is not
possible to set different values for T' during the test stage. Accordingly, we only present
the results achieved by the best programs for each of the three detection problems and

compare them with the best results achieved by the basic approach for the same problem.

e Each of best generated programs in 10 runs was applied to the entire images in the detection
test set of the easy and the coin pictures. Each of the five best generated programs in 5 runs
was applied to the entire test images of the retina pictures due to the high computational

cost. The averages are presented in this section.

7.7.1 Easy Pictures

Table 7.3 shows a comparison of the best results between the two methods. For class class?
(black circles) and class class3 (grey circles) both methods achieved a 100% detection rate with
no false alarms. For class class2 (grey squares) the genetic programming based method also
achieved 100% detection rate with 0% false alarms. However the basic approach had a false
alarm rate of 91.2% at a detection rate of 100%. The average training time of the genetic

programming method was less than two minutes.

Easy Pictures Object Classes
Classl | Class2 | Class3
Best Detection Rate(%) 100 100 100
False Alarm | The Basic Approach 0 91.2 0
Rate (%) | Genetic programming 0 0 0

Table 7.3: Comparison of the object detection results for the easy pictures: Genetic programming
based approach versus the basic neural network approach. (Input field size = 14x 14; Repetitions

= 10.)

7.7.2 Coin Pictures

Experiments with coin pictures gave similar results to the easy pictures. These are shown in
table 7.4. Detecting the heads and tails of 5 cents (class head005, tail005) appears to be relatively

straight forward. The basic neural network approach had a 100% detection rate without any

182

7.7. RESULTS

false alarms. Detecting heads and tails of 20 cent coins (class head020, tail020) is more difficult
and the basic neural network approach resulted in many false alarms. The genetic programming
based method gave the ideal results, that is, all the objects of interest were correctly detected
without any false alarms for all the four object classes. However, the genetic programming
method took a long time for training. The average training time was 28 hours on an eight

processor ULTRA-SPARC4.

Coin Pictures Object Classes
head005 | tail005 | head020 | tail020
Best Detection Rate(%) 100 100 100 100
False Alarm | The basic approach 0 0 182 37.5
Rate (%) | Genetic programming 0 0 0 0

Table 7.4: Comparison of the object detection results for the coin pictures: Genetic programming
based approach versus the basic neural network approach. (Input field size = 24 x24; Repetitions

=10.)

7.7.3 Retina Pictures

The results for the retina pictures are summarised in table 7.5. Compared with the results for
the previous image databases, these results are not satisfactory. However, the false alarm rate is
greatly improved over the basic neural network method. The training time was quite long here

(110 hours on an eight processor ULTRA-SPARCA4).

Retina Pictures Object Classes

haem | micro

Best Detection Rate(%) 73.91 100

False Alarm | The basic approach | 2859 | 10104

Rate (%) | Genetic programming | 1357 588

Table 7.5: Comparison of the object detection results for the retina pictures: Genetic program-
ming based approach versus the basic neural network approach. (Input field size = 16x16;

Repetitions = 5.)

183

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

The results over the three databases show similar patterns: the genetic programming based
method can be used for the multiple class object detection problems and always gave a lower
false alarm rate for the same detection rate.

The comparison we have shown in tables 7.3, 7.4 and 7.5 is not entirely fair since the basic
approach used pixel values directly while the genetic programming approach used pixel statistics.

We address this issue further in section 7.8.3, page 190.

7.8 Summary and Discussion

7.8.1 Analysis of Results on Retina Pictures

The genetic programming based approach achieved the ideal results on the easy pictures and
the coin pictures, but resulted in some false alarms on the retina pictures, particularly for the
detection of objects in class haem in which the false alarm rate was very high.

We found three main reasons why the results on the retina pictures are not as good as those
on the easy and the coin pictures. Firstly, in the easy and coin pictures the background is
relatively uniform, whereas in the retina pictures it is highly cluttered. Secondly, in the retina
pictures, there are only two classes of interest, that is, class micro (micro-aneurisms) and class
haem (haemorrhages), but there are also several other classes such as veins and other anatomical
features. Thus the objects of non-interest are classified as the background. It appears that this
makes the background too complex to be considered as a single class. Thirdly, in the easy and
coin pictures all of the objects in a class have similar sizes whereas the sizes of the objects in
each class in the retina pictures are quite different. The sizes of class micro vary from 3 x 3 to
5 x 5 pixels and the sizes of class haem vary from 7 x 7 to 14 x 14 pixels. Thus the sizes of class
micro are relatively similar, but this is not the case for class haem. This might be the main
reason that the results for detecting class micro are much better than those for class haem. The
results also suggest that the current set of functions and terminals cannot be successfully used
for detecting objects in the same class with a large variation in size. In other words, this genetic
programming based approach can be successfully used for translation and rotation invariant

detection problems, but not size invariant problems.

7.8.2 Analysis of the Evolved Programs

This subsection gives an analysis of the best generated programs for the three databases.

184

7.8. SUMMARY AND DISCUSSION

Easy Pictures

Figure 7.6 shows four sample good evolved programs for detecting the simple objects in the
easy pictures. All of these programs achieved the ideal results: all the circles and squares were

correctly detected with no false alarms.

(/ (+ (- (- (/ (* (x £3 £f14) f15) (* f6 f14)) £19) (* (*x (* (x £f7 £10)
£17) f16) f18)) (+ (x (/ f5 £f5) f14) (/ £3 £5))) (+ (x (/ £3 £5) (/ (/
£f5 f6) (/ f11 £15))) (/ (/ £19 £6) (/ £5 £15))))

(- (/ £18 (- (+ £3 f15) (* £3 £f5))) (x (x f4 f16) (/ (- (x £18 (+ £fb
£18)) (+ (+ £7 f14) (- £10 £19))) (x f4 £16))))

(/ (/ (x (/ (- £f4 (/ £5 (/ £18 £3))) (/ £18 £10)) £7) (+ (/ (- 227.013
£12) £f7) (+ (/ (- (x £f5 £8) £2) (* £3 £2)) (* £3 £2)))) (+ (+ (x f18
£3) (/ (/ £5 (/ f18 f1)) 7)) (+ (/ f18 (/ £f18 £3)) £18)))

(x (/ (x (+ £16 £7) (* £15 f4)) (+ (- £19 (/ (x £13 £f5) (/ £18 £10)))
£11)) (/ £f9 (*x f9 f4)))

Figure 7.6: Sample generated programs for simple object detection in the easy pictures.

The frequency of terminals used in the four sample generated programs for the easy pictures
is shown in table 7.6. In the first evolved program, F5 was used 6 times, {3, {6, f14 and f15 were
used 3 times, f19 was used twice, f7, f10, f11, f16, f17 and f18 were used once only while other
features, f1, 2, f4, 18, {9, f12, f13 and 20, were not used at all. In the second program, {3, 4,
5, f16 and f18 appeared two or more times and {7, f10, f14, f15 and f19 were used once only
but other features were not used. The third and the fourth generated programs gave a similar
pattern to the first and the second programs: the twenty features play different roles and some
features were used while other not. However, all these programs resulted in the best detection
performance. This suggests that there is some redundancy in the twenty features and the four

standard arithmetic operators are sufficient for detecting simple objects in the easy pictures.

185

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

No. Programs | fl f2 3 f4 15 6 fr 18 9 f10 f11
1 0 0 3 0 6 3 1 0 0 1 1
2 0 0 2 2 2 0 1 0 0 1 0
3 1 3 5 1 3 0 3 1 0 1 0
4 0 0 0 2 1 0 1 0 2 1 1

No. Programs | f12 13 f14 f15 f16 f17 {18 f19 {20 Rand

1 0 0 3 3 1 1 1 2 0 0
2 0 0 1 1 2 0 3 1 0 0
3 1 0 0 0 0 0 7 0 0 1
4 0 1 0 1 1 0 1 1 0 0

Table 7.6: Frequency of terminals used in the four sample generated programs for the easy

pictures.

Coin Pictures

In addition to the program shown in figure 7.4 (page 177), we present another generated program

in figure 7.7, which performed perfectly for detecting regular objects in the coin pictures.

(+ (/ (/ (+ (= (= (x £10 £12) £9) £2) (- (* f12 (/ (- (x £10 £12) £9)
87.2561)) (- f2 (+ (/ (- (x f12 £12) (- £17 £2)) f1) (/ 87.251 (/ £19
£6)))))) (+ (- (x £11 (- (/ £9 £16) (/ (+ (- £17 £2) (- (* £12 £12)
£11)) (x £15 (/ (/ £16 £15) £8))))) £15) £8)) (- £17 £2)) (+ (+ (/ (/
f9 (- £13 £15)) f1) (/ 87.251 (/ £19 £5)) (- (* £10 £12) £9)))

Figure 7.7: A sample generated program for regular object detection in the coin pictures.

Compared with those for the easy pictures, these programs are more complex, which can
be interpreted as the detection problems in the coin pictures are more difficult than those in
the easy pictures. Again, different terminals gave different effects in these programs. Random

numbers were also used in these generated programs.

186

7.8. SUMMARY AND DISCUSSION

Retina Pictures

One of the five generated programs by the evolutionary process for detecting very complex

objects in the retina pictures is presented in figure 7.8.

(x (* (- (/ £6 (+ (x (/ (x £2 (/ (* £f6 (+ f1 (- £10 £15))) (- (- £18
£17) (- £19 87.0518)))) (+ 17.0792 (+ £f9 £14))) (/ (+ £19 (* (+ (+ f11
(- (x (- (- £f15 £18) (+ 40.5811 £16)) (- (* f13 (+ (/ 57.6382 £16)
£13)) (- £9 £6))) (/ (x £3 f1) £1))) (x (- (x (- (/ (+ (+ f18 (+ (/ (/
f14 £6) (+ £6 f1)) 89.7037)) (x £10 £12)) £2) f9) (+ (+ f16 14.7513)
£9)) £18) (/ (/ £13 £1) (x (+ £6 £f12) £9)))) (+ £16 £8))) (+ (- (- (+
(/ £10 (* £f9 £6)) £13) £10) £18) (+ (x (- (+ f1 £2) (+ £17 £8)) £5) (*
(* £20 £16) £10))))) (* (+ (- (* (+ f11 (+ (* f14 £3) (/ £15 (/ (+ (*
£2 14.5251) (x (x (/ (* £18 (/ (x f2 £13) £15)) f1) (/ (/ f11 £13) (/
£7 £5))) (+ (+ £18 (* £2 £13)) (/ £8 £12)))) £17)))) £11) £16) (* (-
f1 (+ £3 £8)) £5)) (/ (+ (- £7 £20) £18) £20)))) (* (x (x (x £2 £13)
£2) (/ (x £4 (/ (* £2 £13) £15)) (x £18 £12))) (x £14 £2))) (+ (+ (-
(+ (- £19 £3) £2) £7) (- (+ £8 £17) £18)) (/ (+ £15 60.1046) (* (* f1
(/ (/ £f12 (- (+ (/ (/ £12 £13) (/ £15 £5)) £f17) f18)) (/ £7 £5)))
£8)))) (x (/ (x £10 (/ (x £2 £13) £15)) £18) (* (* (x (* £2 £2) (/ (/
(/ £18 (+ f1 £2)) £13) (/ (/ (- £15 96.16) (* f4 14.5251)) £5))) £f4)
(/ (/ £12 £13) (/ £1 (+ (/ £10 £1) £4))))))

Figure 7.8: A sample generated program for very difficult detection problems in the retina

pictures

As can be seen from figure 7.8, this program is much more complex in both the length and
the number of image features than those generated for the easy pictures and the coin pictures.
As discussed earlier, this program resulted in a better performance than the neural networks, but
still gave a quite high number of false alarms. This is due mainly to the difficulty of the detection
problem in the retina pictures particularly the size variation and the highly cluttered background.

All the 20 features and 8 random floating point numbers were used in this program, but the

187

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

frequencies of these terminals occurring in the program were quite different. This suggests that
the 20 features might not be sufficient for such difficult detection problems, and different features

have different effects in the evolved programs.

Summary

Table 7.7 summarises the relationship between the 10, 10 and 5 generated programs for the easy,
the coin and the retina pictures and the 20 features. For example, f1 was used in three of ten
generated programs for the easy pictures, six of the ten generated programs for the coin pictures

and all the five generated programs in the retina pictures.

Features/Terminals Number of programs using features
Easy Pictures | Coin Pictures | Retina Pictures

f1 3 6 5
2 4 8 5
£3 9 7 5
f4 6 9 5
f5 10 8 5
16 5 5 5
f7 8 4 5
£8 3 6 5
f9 2 5 5
10 7 3 5
f11 5 6 5
f12 4 8 5
f13 2 3 5
f14 5 6 5
f15 6 5 5
f16 6 4 5
f17 1 3 5
f18 9 8 5
f19 6 1 5
20 0 2 5
Rand 2 6 5

Table 7.7: Summary of the frequency of terminals used in the generated programs.

188

7.8. SUMMARY AND DISCUSSION

In general, the programs generated by the evolutionary process for the three detection prob-

lems are difficult to interpret. However, they are similar in the following points:

e The twenty features have different influences in a generated program. A feature has dif-

ferent influences in different generated programs.

e The genetic programming evolutionary process can automatically select the features (ter-

minals) that are relevant to a particular domain.

e The twenty features and four functions are sufficient for detecting simple objects and
regular objects against a relatively uniform background in the easy and the coin pictures,
but might not be enough for detecting complex, irregular objects against a highly cluttered
background in the retina pictures.

7.8.3 Further Experiments

Experiments with an Alternative Terminal Set

Features local boundaries
mean standard deviation
F1 F2 central pixel
F3 F4 circle boundary C1

.|Ci..Cn F5 F6 Circle boundary C2

F(2i+1) F(2i+2) Circle boundary Ci
F(2n+1) F(2n+2) Circle boundary Cn

(a) (b)

Figure 7.9: The input field and the image boundaries for feature extraction in constructing

terminals.

We experimented with an alternative set of terminals based on a circular set of features, as
shown in figure 7.9. The features were computed based on a series of concentric circles centred
in the input field. This terminal set focused on boundaries rather than regions. The number
of features in this case depends on the size of the input field. For instance, if the input field

is 19x19 pixels, then the number of central circles will be 19/2 + 1 = 10 (the central pixel is

189

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

considered as a circle with a zero radius); accordingly, there would be 20 features. The gap
between the radii of two neighbouring circles is one pixel.

As with the square feature set, this terminal set gives ideal results for the easy pictures. In
the coin and retina pictures, however, the results based on this terminal set are slightly worse
than those obtained with the square feature set. This suggests that the local region features are

better for these detection problems than these boundary features.

Experiments with an Alternative Function Set

We also experimented with a different function set. We hypothesised that convergence might
be quicker if the function values were close to the range (-1,1). We used dabs, sin and ezp,
(absolute value, sine and exponent to base e) in addition to the four arithmetic operators (+, -,
*and /). The detection results are similar to those based on the function set of only the four
arithmetic operators. Convergence was slightly faster for training the coin and retina pictures,
but slightly slower for the easy pictures. This suggests that dabs, sin and exp may be useful for

more difficult problems, however considerably more experimentation is required.

Experiments with “Pixel” Inputs

We also investigated this approach with “pixels” as terminals. To decrease the computation cost,
we considered a 2% 2 square as a single “pixel”. In this way, there are 49 (7x7), 144 (12x12),
and 64 (8x8) terminals, which correspond to the sizes of the input fields of 14x14, 24x2/,
and 16x 16, for the easy, the coin, and the retina pictures respectively. For the easy pictures,
the learning took about 70 hours on an 8 processor ULTRA-SPARC4 machine to reach perfect
detection performance and 78 generations were needed. The population size used was 500, the
maximum depth of the program was 30, the maximum initial depth 10, the maximum number
of generations 100. For the coin pictures and the retina pictures, the situation was worse. Since
a large number of terminals were used, the maximum depth of the program trees was increased
to 50 for the coin pictures and 60 for the retina pictures. The population size for both databases
used was 1000 with a maximum number of generations of 100. The evolutionary process took
three weeks to complete 50 generations for the coin pictures and four weeks to complete 50
generations for the retina pictures. The best detection results were 90% false alarm rate at a
100% detection rate for the coin pictures, and about 850% false alarm rate at a detection rate
of 100% for micro aneurisms in the retina pictures.

These results indicate that using pixel statistics is better than using pixels directly. This in

190

7.8. SUMMARY AND DISCUSSION

turn suggests that it might be necessary to investigate whether the neural network results will

be improved by pixel statistics in the future.!

7.8.4 Limitations

The genetic programming based approach has the following limitations:

e The training times for the coin problem and the retina problem are quite long. Some of

the runs took longer than 48 hours on a 8 processor ULTRA-SPARCA4.

e The method is not particularly effective in detecting objects with different sizes which
are in the same class, for example the haemorrhages in the retina pictures. This might
be related to insufficient image features being used. More features which contain size

invariant information need to be investigated.
e The classification strategy employed in the generated programs is not easy to determine.

e Some experimentation is required to find good values of the various parameters for each

different problem.

e A threshold T (figure 7.5) was used to give fixed size ranges for determining the class of the

object from the output of the program. It is not clear how T" should properly be chosen.

7.8.5 Summary

The goal of this chapter was to extend the basic approach to a genetic programming based
approach for detecting small objects of multiple classes in large pictures and to investigate
the improvements in detection performance of the method over the basic approach described
in chapter 4. In the basic approach, the neural networks were trained by the backward error
propagation algorithm on cutouts in the classification data set constructed from the detection
training set, and tested on the entire images in the detection test set. In this approach, the
programs were directly trained by the genetic programming process on the entire images in the
detection training set and the locations of the known objects of interest in each class. Twenty
domain independent, pixel level image features were selected to form a general, pre-existing
feature library to be the terminal set. The four standard arithmetic operators were used as the

function set. A program classification map was developed for classifying the detected object

!Subsequent work by Rai [150] which used the 20 pixel statistics as inputs to neural networks showed that

pixel statistics gave significantly larger error rates.

191

CHAPTER 7. GENETIC PROGRAMMING FOR MULTIPLE CLASS OBJECT
DETECTION

in each pixel position by the evolved program. The fitness function was based on a linear
combination of the detection rate and false alarm rate of the evolved program. After the learning
process was finished, the best individual obtained was directly applied to the entire images in
the detection test set. In all cases on the easy and medium difficulty detection problems in the
easy and the coin pictures the genetic programming based approach produced ideal results, that
is, all the objects of interest in every class were correctly detected without any false alarms. For
micro and haem detection in the very difficult retina pictures, the genetic programming method
resulted in much better performance than the basic neural network approach. These results
suggest that the genetic programming based approach with pixel statistics is viable as a domain

independent, learning/adaptive approach for multiple class object detection problems.

192

Chapter 8

Conclusions

In this chapter, we first summarise the object detection results achieved using the methods
described in this thesis. We then examine the hypotheses and present the conclusions. Finally,

some related future work is suggested.

8.1 Summary of the Detection Results

In this thesis, six object detection methods were introduced and described. They are the basic
approach (BP-train), the central weight initialisation method, the GA-train method, the BP-
train+GA-refine method, the GA-train+GA-refine method and the genetic programming based
method. The best detection results, that is, the best detection rate and the corresponding false
alarm rate, for the easy, the coin and the retina pictures achieved by the six detection methods

are summarised in this section.

Easy Pictures

Table 8.1 compares the best results achieved by the six detection methods for the three object
classes of interest in the easy pictures: class! (black circles), class2 (grey squares) and class3
(white circles).

As shown in table 8.1, all the six detection methods described in this thesis successfully
detected all the objects of the three classes (detection rate = 100%). For detecting class!, the
GA-train method resulted in 80% false alarm rate at a detection rate of 100%, while all other
methods did not produce any false alarms. Detecting class3 is similar: most of the six methods
gave ideal results while the GA-train method and the GA-train+GA-refine method led to 273%
and 144% false alarm rates at a detection rate of 100%. However, it is clear that the GA-

193

CHAPTER 8. CONCLUSIONS

Easy Pictures Object Classes
Classl | Class2 | Class3

The Best Detection Rate(%) 100 100 100

The Basic Approach (BP-train) 0 91.2 0

Corresponding | Centred Weight Initialisation 0 46.4 0
False Alarm | GA-train 80 839 273
Rate (%) GA-train + GA-refine 0 663 144

BP-train + GA-refine 0 0 0

Genetic Programming 0 0 0

Table 8.1: Comparison of the best detection results achieved using the six detection methods

for the easy pictures.

train+GA-refine method is superior to the GA-train method. Detecting class2 is a relatively
difficult problem. Only the genetic programming based method and the BP-train+GA-refine
method achieved ideal performance and other methods produced different numbers of false
alarms. The GA-train method resulted in a large number of false alarms. The false alarm rate
was 839%. The method with the network refinement GA-train+GA-refine was better, the false
alarm rate was 663%. The basic approach resulted in a 91.2% false alarm rate at a detection
rate of 100%, while the centred weight initialisation improved the detection performance by
decreasing the false alarm rate to 46.4%. For all the three classes in the easy pictures, the
BP-train+GA-refine method and the genetic programming based method always led to ideal

performance, that is, all the objects of interest were correctly detected with no false alarms.

Coin Pictures

Table 8.2 shows a comparison of the results for the coin pictures. The best detection rate and
the corresponding false alarm rate for the four object classes of interest, that is, class head005
(head side of 5 cent coins), class tail005 (tail side of 5 cent coins), class head020 (head side of
20 cent coins) and class tail020 (tail side of 20 cent coins) are presented in this table.

As shown in table 8.2, detecting heads and tails of 5 cent coins was relatively easy. The basic
approach (BP-train), centred weight initialisation method, the BP-train+GA-refine method and

the genetic programming based method always resulted in ideal results where all the objects

194

8.1. SUMMARY OF THE DETECTION RESULTS

Coin Pictures Object Classes
head005 | tail005 | head020 | tail020
The Best Detection Rate(%) 100 100 100 100
The Basic Approach (BP-train) 0 0 182 37.5
Corresponding | Centred Weights Initialisation 0 0 414 0
False Alarm | GA-train 357 19 333 778
Rate (%) GA-train+GA-refine 125 0 37.5 215
BP-train+GA-refine 0 0 0 0
Genetic Programming 0 0 0 0

Table 8.2: Comparison of the best detection results achieved using the six detection methods

for the coin pictures.

of interest were correctly detected with no false alarms. For detecting class head005 objects,
the GA-train method produced 357% false alarm rate while the GA-train+GA-refine method
resulted in a better performance, that is, 125% false alarm rate. For class tail005, the GA-train
method led to a 19% false alarm rate at the detection rate of 100%, while the GA-train+GA-
refine achieved the ideal results.

Detecting heads and tails of 20 cents was more difficult. However, the results show a similar

pattern to those for heads and tails of 5 cents:

e The basic approach, could successfully detect these regular objects against a relatively

uniform background, but it produced a number of false alarms for head020 and tail020.

e The centred weight initialisation produced a lower false alarm rate than the basic approach

for all classes in this database.

e The GA-train method resulted in more false alarms for any class in this database than the

basic approach.

e The genetic algorithm for network refinement, GA-refine, always improved the detection
performance achieved by the GA-train method or the basic approach for all the four classes

in this database.

195

CHAPTER 8. CONCLUSIONS

e The genetic programming based approach and the BP-train+GA-refine method always

resulted in ideal detection performance for all the object classes of interest in this database.

Retina Pictures

Table 8.3 compares the best results for detecting very irregular, complex objects against a
highly cluttered background in the retina pictures. In this database, there are only two classes
of interest: micro (micro aneurisms) and haem (haemorrhages); however there are also some

other classes of non-interest such as veins and other eye anatomy.

Retina Pictures Object Classes
micro haem

Detection Results Best DR (%)/FAR(%) | Best DR(%)/FAR(%)
BP-train(the basic approach) 100 / 10104 73.91 /2859
Centred Weight Initialisation 100 / 2903 73.91 /1924
GA-train 90 / 5606 50.37 /4000
BP-train+GA-refine 100 / 2706 82.61 / 2156
GA-train+GA-refine 100 / 5055 82.61 / 2298
Genetic Programming 100 / 588 73.91 /1357

Table 8.3: Comparison of the best object detection results achieved using the six detection

methods for the retina pictures. (DR: Detection Rate. FAR: False Alarm Rate)

For detecting class micro objects, even if most of the six methods successfully detected all
the objects of interest (the GA-train method is an exception, which only detected 90% of these
objects), they also resulted in a large number of false alarms. The basic approach, for example,
produced 100 times more false alarms than the desired objects in the database (false alarm rate
was 10104%) at a detection rate of 100%. The genetic programming based approach improved
the performance by 17 times as the false alarm rate was decreased to 588% at the same detection
rate.

Detecting class haem objects was even more difficult, where none of the six methods success-
fully detected all the objects of this class. The best detection rate is 82.61%, which was achieved
by the two phase methods with the refinement genetic algorithm. As analysed earlier, this is

due mainly to the large variation in the size of the objects in this class (section 7.8.1, page 184).

196

8.2. CONCLUSIONS

These results also show that:

e The basic approach produced a large number of false positives for these classes, which
suggests that it can not be successfully applied to very difficult detection problems with

very complex, irregular objects against a highly cluttered background.

e The centred weight initialisation method always improved the detection performance for

all classes in this database.

e The genetic algorithm used for network training without network refinement did not detect
all the objects in class micro (the detection rate was about 90%), but resulted in less false

alarms than the basic approach.

e The methods with the refinement genetic algorithm always produced a lower false alarm

rate for each class than the corresponding methods without the refinement.

e The genetic programming approach greatly improved the false alarm rate for detecting

class micro at a detection rate of 100%.

e None of the six methods detected all the objects in class haem in this database, which
suggests that these methods could not be successfully applied to the detection problems

with a large variation in size of the objects for the same class.

8.2 Conclusions

The overall goal of this thesis was to investigate a learning/adaptive, domain independent ap-
proach to multiple class, translation and limited rotation invariant object detection problems.
This goal has been achieved for the easy and medium difficulty detection problems, that is,
simple object detection against a uniform background in the easy pictures and regular, medium
complexity object detection against a relatively uniform background in the coin pictures. The
methods that gave the best detection performance for the easy and the medium difficulty detec-
tion problems were the genetic programming based method and the refinement genetic algorithm
based on the network trained by the backward error propagation algorithm, BP-train+ GA-refine.
Both of them achieved ideal performance on these detection problems. For the very difficult de-
tection problems, that is, very irregular and complex object detection against a highly cluttered
background in the retina pictures, the results obtained in this thesis, while not satisfactory, were

consistent with results obtained by alternative methods on similar problems. The method that

197

CHAPTER 8. CONCLUSIONS

gave the best results on the very difficult, translation and limited rotational invariance detection
problems in the retina pictures was the genetic programming based method.

We expect that the methods described in this thesis could be successfully used for any
databases similar to the easy and the coin pictures, that is, detecting multiple class objects with
translation invariance and limited rotational invariance and with the size less than or equal to
24 x 24 pixels against a relatively uniform background.

Specifically, the theoretical research and experimental results have led to the following con-
clusions.

The five hypotheses addressed in chapter 1 were examined in the course of the investigation:

1. Hypothesis 1: Can the basic pizel based neural network approach be applied to multiple

class object detection problems?

For the three databases described in this thesis, the basic approach was successfully applied
to the easy and the coin databases but not for the retina pictures. The basic approach
could successfully detect all the objects with translation and rotation variation in each class
described in this thesis, however with a number of false alarms for some detection prob-
lems, particularly for detecting very irregular, complex objects against a highly cluttered

background.

2. Hypothesis 2: Can the centred weight initialisation algorithm be used to improve the net-

work training and the detection performance over the basic approach?

On all of the detection problems in the easy, the coin and the retina databases, it was
always possible to find centred initial weights which resulted in fewer training epochs and
lower test mean squared error than the basic approach with random weight initialisation.
More importantly, the centred weight initialisation method produced networks which were
much better, in terms of detection performance, at the task of detecting multiple class
objects of interest in large pictures. The amount of the improvement did not appear to be
related to the difficulty of the problem. Overall, the detection performance for the easy
and medium difficulty problems was good. On the very difficult detection problems the

detection rate was good but the false alarm rate was still quite high.

Visualisation of the weights in trained networks resulting from both initialisation methods
revealed that the trained networks from both approaches contained feature detectors which
“made sense” for the problem domain and that learning in networks with the centred initial

weights was more focused on features which discriminated between classes.

198

8.2. CONCLUSIONS

3. Hypothesis 3: Can a genetic algorithm with the fitness of mean squared error result in an
improvement of network training and object detection performance over the backward error

propagation algorithm?

The genetic algorithm with the fitness of mean squared error for network training, the
GA-train algorithm, was successfully applied to training the networks for classifying the
cutouts in the three databases described in this thesis. It did not, however, result in
any improvement of network training and testing performance, either in terms of faster
training speed or lower test error, over the backward error propagation algorithm for the
same problems. As an independent detection method, it did not improve the detection
performance over the basic approach on most of the object detection problems in the three

databases described in this thesis.

The networks used here were considerably larger than those previously used with the

GA-train (formerly called 2Delta- GANN) algorithm.

4. Hypothesis 4: Can network refinement using a genetic algorithm, with the fitness based
on the detection rate and the false alarm rate, improve the detection performance of the

networks trained on the object cutouts?

For all the detection problems described in this thesis, the refinement genetic algorithm
markedly improved the detection performance achieved by the networks trained on the
cutouts by the corresponding training algorithm without the refinement. The BP-train+
GA-refine method achieved better detection results than the BP-train method and the

GA-train+GA-refine method performed better than the GA-train method.

5. Hypothesis 5: Can genetic programming be applied to multiple class object detection and
produce an improvement of detection performance over the basic approach on the same

detection problems?

The genetic programming paradigm has been successfully applied to multiple class object
detection problems and a genetic programming based approach has been developed for

this purpose.

On all detection problems described in this thesis, the genetic programming based approach
markedly improved the detection performance over the basic neural network approach.
This approach led to ideal performance for all detection problems in the easy and the coin

pictures. In particular, it greatly improved the performance for the detection problems in

199

CHAPTER 8. CONCLUSIONS

the retina pictures.

One of the major differences between the genetic programming method and all neural
network based detection methods described in this thesis is that these neural network based
methods used raw pixel data as inputs, while the genetic programming based method used
20 pixel statistics, that is, 20 domain independent, pixel level features as inputs. The fact
that genetic programming based method achieved the best results might be related to this
difference. It is necessary to investigate whether better performance can be achieved if the
20 pixel statistics are applied to these neural network based methods. We suggest this as

a future research direction.

Although they are not primarily related to the hypotheses, the following observations have

been also resulted from this thesis.

1. Compared with all other detection methods described in this thesis, the genetic program-
ming based approach achieved the best results for all the translation and rotation invariant
object detection problems. For all the object detection problems described in this thesis
except for class haem (in which the objects have a big variation in size), the genetic
programming based approach was the best, followed by BP-train+GA-refine and centred
weight initialisation, and then the GA-train+GA-refine, the basic method and the GA-

train method.

2. The detection method BP-train+ GA-refine achieved the ideal results for detecting the easy
and coin pictures, that is, this method successfully detected all the objects of interest with
no false alarms on all the detection problems in the easy and the coin pictures. It also
resulted in better detection performance on the difficult detection problems in the retina
pictures than all methods other than the genetic programming based approach, including
the basic approach, centred weight initialisation method, the GA-train method and the
GA-train+GA-refine method.

3. The methods described here were not particularly effective in detecting haemorrhages in
retina pictures, which suggests that they can not be used to detect objects with different

sizes which are in the same class.

4. In all the methods described in this thesis, it is necessary to find good values for the
various parameters. This generally has to be done through empirical search for each

detection problem.

200

8.3. FUTURE WORK

5. For developing a detection system for a completely new image database, the genetic pro-
gramming based method requires the least work of all the detection methods described in

this thesis.

6. The genetic algorithm for network refinement and the genetic programming approach in-
volve long training times. However, this could be greatly improved with parallel hardware.

The centred weight initialisation method has the shortest training time.

7. The genetic programming approach, which generates computer programs after training,
has a shorter detection time in general than neural network related methods, since there
are sigmoid and other functions and all the pixel inputs in the feed forward pass while
there are only simple arithmetic operators and fewer pixel statistics inputs in the genetic
programming approach. Under the same network architecture, all neural network related

methods have the same object detection time.

8. The size of training set used for network training is consistent with the literature, that is,
networks can be successfully trained using fewer training examples than those suggested

by the learning theory (section 2.3.5, page 34).

8.3 Future Work

Several potential research directions or topics were suggested during the investigation of this

thesis.

1. In the basic approach and the two phase approaches raw image pixel data were used as
inputs to neural networks while pixel statistics were used in genetic programming base
approach. Investigation of using the twenty domain independent, pixel level features as
inputs to the networks is an interesting direction and would reveal whether good perfor-

mance of the genetic programming approach was due to these pixel statistics.

2. For the centred weight initialisation algorithm, it might be also interesting to investigate an
alternative way of initialising the weights: set the big values for the weights corresponding

the the edges of the input field and small value for the weight in the centre.

3. In the centred weight initialisation method, the range of the biggest centred weight needs

to be properly set to obtain fast training speed and good detection performance. Ways or

201

CHAPTER 8. CONCLUSIONS

rules for quickly setting the biggest value for the centred weight need to be investigated

and whether or not a general starting point for different problems can be found.

4. In the genetic algorithm related detection methods — GA-train, BP-train+GA-refine and
GA-train+GA-refine, the network weights are randomly initialised before the network
training starts. The investigation of integrating the methods with the centred weight

initialisation algorithm is another interesting direction.

5. In the genetic programming based approach, a threshold T was used to give fixed size
ranges for determining the class of the objects from the output of an evolved program.
It might be very interesting to investigate the ways of finding individual thresholds for

different classes.

6. In the genetic programming based method, twenty local region features are used to form
the general pre-existing feature library in the terminal set. This seems to be sufficient for
the easy and medium difficulty detection problem. It would be interesting to try a larger

pre-existing feature library as the terminals, especially for the difficult detection problems.

7. In the genetic algorithm for network refinement and the genetic programming based ap-
proach, the training times are quite long. Ways of shortening the training time need to be

investigated.

8. It might be also interesting to investigate the improvement of the object detection perfor-
mance by rotating the cutouts in the classification data set to produce more examples for

network training.

202

Bibliography

[1]

H. Abdi. A generalized approach for connectionist auto-associative memories: interpreta-
tion, implications and illustration for face processing. In J. Demongeot, T. Herve, V. Ri-
alle, and C. Roche, editors, Artificial Intelligence and Cognitive Sciences, chapter 6, pages
149-165. Manchester University Press, 1988.

S. Ahmad and S. Omohundro. A network for extracting the locations of point clusters
using selective attention. In the 12th Annual Conference of the Cognitive Science Society,

MIT, July 1990. Also in Technical Report #90-011.

S. Ahmad and V. Tresp. Some solutions to the missing feature problem in vision. In C. J.
Hanson S.J. and G. C.L., editors, Advances in Neural Information Processing Systems,

chapter 5. Morgan Kaufmann Publishers, San Mateo, CA., 1993.

J. H. Ahrens and U. Dieter. Extensions of Forsythe’s method for random sampling from

the normal distribution. Math. Comput., 27(124):927-937, Oct. 1973.

J. T. Alander. An indexed bibliography of genetic algorithms and neural networks. Tech-
nical Report 94-1-NN, University of Vaasa, Department of Information Technology and
Production Economics, September 1998. (ftp.uwasa.fi: cs/report94-1/gaNNbib.ps.Z).

D. Andre. Automatically defined features: The simultaneous evolution of 2-dimensional
feature detectors and an algorithm for using them. In K. E. Kinnear, editor, Advances in

Genetic Programming, pages 477-494. MIT Press, 1994.

R. Andrews, J. Diederich, and A. Tickle. A survey and critique of techniques for extracting
rules from trained artificial neural networks. Knowledge-Based Systems, 8(6):373-389,

1995.

N. Ansari and K. Li. Landmark-based shape recognition by a modified Hopfield neural
network. Pattern Rocognition, 26(4):531-542, 1993.

203

BIBLIOGRAPHY

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. Anthony and N. Biggs. PAC learning and neural networks, pages 694-697. In The
Handbook of Brain Theory and Neural Networks, 1995.

T. Back, U. Hammel, and H. Schwefel. Evolutionary computation: Comments on the
history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3-17,
April 1997.

J. Bala, K. D. Jong, J. Huang, H. Vafaie, and H. Wechsler. Using learning to facilitate the
evolution of features for recognising visual concepts. Evolutionary Computation, 4(3):297—

312, 1997.

K. Balakrishnan and V. Honavar. Evolutionary design of neural architectures — a prelim-
inary taxonomy and guide to literature. Technical Report CS TR 95-01, Department of
Computer Science, lowa State University, Ames,Joma 50011-1040, USA, Jan 1995.

D. H. Ballard and C. M. Brown. Computer Vision. Englewood Cliffs, N.J: Prentice-Hall,
Inc., 1982.

S. Bannour and M. R. Azimi-Sadjadi. Principal component extraction using recursive least

squares learning method. IEEF transactions on neural networks, 6:457-469, March 1995.

W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming: An
Introduction on the Automatic Evolution of computer programs and its Applications. San
Francisco, Calif. : Morgan Kaufmann Publishers; Heidelburg : Dpunkt-verlag, 1998. Sub-
ject: Genetic programming (Computer science); ISBN: 1-55860-510-X.

Y. Bar-Shalom and X. R. Li. Estimation and Tracking. Artech House, 1993.

P. L. Barlett. The sample complexity of pattern classification with neural networks: The
size of the weights is more important than the size of the network. Journal of Evolutionary

Economics, 3:1-22, 1998.

E. B. Baum and D. Haussler. What size net gives valid generalisation? Neural Computa-

tion, 1:151-160, 1989.

R. K. Belew, J. Mclnerney, and N. N. Schraudolph. Evolving networks: Using the ge-
netic algorithm with connectionist learning. Technical Report CS 90-174, University of
California, San Diego, 1990. Also in Artificial Life II, pages 511-547, Addison-Wesley,
1992.

204

BIBLIOGRAPHY

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. Bernardon and J. E. Carrick. A neural system for automatic target learning and
recognition applied to bare and camouflaged SAR targets. Neural Networks, 8(7/8):1103—
1108, 1995.

H. Bosch, R. Milanese, and A. Labbi. Object segmentation by attention-included oscilla-
tions. In 1998 IEEE World Congress on Computational Intelligence — IJCNN’98, pages
1167-1171, Anchorage, Alaska, 1998. 0-7803-4859-1/98, IEEE.

F. Z. Brill, D. E. Brown, and W. N. Martin. Fast genetic selection of features for neural

network classifiers. IEEE Transactions on Neural Networks, 3(2):324-328, March 1992.

R. Brunelli and T. Poggio. Face recognition through geometrical features. In S. M. Ligure,

editor, Proceedings of ECCV ’92, pages 792-800, 1992.

R. Brunelli and T. Poggio. Face recognition: Features versus templates. IEEE Transactions

on PAMI, 15(10):1042-1052, 1993.

L. L. Burton and H. Lai. Active sonar target imaging and classification system. In
Proceeedings of the SPIE International Symposium on Aerospace/Defence Sensing and
Control, pages 19-33, Orlando, FL, April 1997.

T. Caelli and W. F. Bischof. Machine Learning and Image Interpretation. Plenum Press,
New York and London, 1997. ISBN 0-306-45761-X.

G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-organising
neural pattern recognition machine. Computer Vision, Graphics and Image Processing,

37:54-115, 1987.

G. A. Carpenter and S. Grossberg. Stable self-organisation of pattern recognition codes

for analog input patterns. Applied Optics, 26:4919-4930, 1987.

D. P. Casasent and L. M. Neiberg. Classifier and shift-invariant automatic target recog-

nition neural networks. Neural Networks, 8(7/8):1117-1129, 1995.

K. Chellapilla and D. B. Fogel. Evolution, neural networks, games, and intelligence. Proc.

IEFEFE, 87(9):1471-1498, 1999.

R. Chellappa, K. Fukushima, A. K. Katsaggelos, S.-Y. Kung, Y. LeCun, N. M. Nasrabadi,
and T. A. Poggio. Applications of artificial neural networks to image processing. IEEE
Transactions on image processing, 7(8):1093-1096, Augest 1998.

205

BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

V. Cherkassky and F. Mulier. Vapnik-Chervonenkis (VC) learning theory and its applica-
tions. IEEE Transactions on Neural Networks, 10(5):985-987, Spetember 1999.

Y. Chigawa, O. Hasegawa, and K. Nakayama. Handwritten digit recognition by using
feature extracting neural network and modified self-organising feature map. In Report
of Technical Meeting on Neural Computing, pages 15-22, Japan, Oct 1991. IEICE. Vol.
NC91-50.

V. Ciesielski and J. Riley. An evolutionary approach to training feed forward and recurrent
neural networks. In L. C. Jain and R. K. Jain, editors, Proceedings of the Second Inter-
national Conference on Knowledge Based Intelligent Electronic Systems, pages 596-602,
Adelaide, Apr. 1998.

V. Ciesielski and M. Zhang. Using genetic algorithms to improve the accuracy of object
detection. In N. Zhong and L. Zhou, editors, Knowledge Discovery and Data Mining —
Research and Practical Ezperiences, pages 19 — 24, Beijing, China,, April 1999. Tsinghua
University Press. Proceedings of the third Pacific-Asia Knowledge Discovery and Data

Mining Conference.

V. Ciesielski and J. Zhu. A very reliable method for detecting bacterial growths using
neural networks. In Proceedings of the International Joint Conference on Neural Networks,

pages 62—67, Beijing, November 1992.

V. Ciesielski, J. Zhu, J. Spicer, and C. Franklin. A comparison of image processing tech-
niques and neural networks for an automated visual inspection problem. In Proceedings
of the 5th Joint Australian Conference on Artificial Intelligence, pages 147-152, Hobart,
Tasmania, 1992. World Scientific.

A. G. Constantinides, S. Haykin, Y. H. Hu, J.-N. Hwang, S. Katagiri, S.-Y. Kung, and
T. A. Poggio. Special issue on neural networks. IEEE Transactions on signal processing,

45(11), Nov 1997.

J. Cooley and J. Tukey. An algorithm for the machine calculation of complex fourier series.

Mathematics of Computation, 19(4):297-301, 1965.

D. Corne, H. L. Fang, and C. Mellish. Solving the modular exam scheduling problem with
genetic algorithms. In Proc. of 6th Int’l Conf. on Industrial and Engineering Applications

206

BIBLIOGRAPHY

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

of Artificial Intelligence and Fxpert Systems, pages 370-373. Gordon and Breach Science
Publishers, 1993.

N. Cross and R. Wilson. Neural networks for object recognition. Technical report, De-

partment of Computer Science, University of Warwick, Coventry, October 1995.

D. de Ridder. Shared weights neural networks in image analysis. Master’s thesis, Delft

University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands, Feb 1996.

D. de Ridder, A. Hoekstra, and R. P. W. Duin. Feature extraction in shared weights
neural networks. In Proceedings of the Second Annual Conference of the Advanced School

for Computing and imaging, ASCI, pages 289-294, Delft, June 1996.

K. DeJong and W. Spears. On the virtues of parameterised uniform crossover. In R. K.
Belew and L. B. Booker, editors, Proceedings of the Fourth International Conference on

Genetic Algorithms, pages 230-236, San Mateo, July 1991. Morgan Kaufman.

P. Del Moral and A. Guionnet. Large deviations for interacting particle systems: Ap-
plications to non linear filtering problems. Stochastic Processes and their Applications,

78:69-95, 1998.

T. Dillon, P. Arabshahi, and R. J. Marks, II. Everyday applications of neural networks.
IEEFE Transactions on Neural Networks, 8(4):825-826, 1997. Special Issue on Everyday

Applications of Neural Networks.

P. S. Dunston, S. "Ranji”, and L. E. Bernold. Neural network model for the automated
control of springback in rebars. IEEE Ezxpert — Intelligent system and their applications,
11(4):45-49, August 1996.

O. Faugeras. Three-Dimensional Computer Vision — A Geometric Viewpoint. The MIT
Press, 1993. ISBN 0-262-06158-9.

D. B. Fogel. Ewvolutionary Computation: Toward a New Philosophy of Machine Intelli-
gence. IEEE Press, IEEE Neural Network Council, Inc., New York, 1995.

D. B. Fogel. Evolutionary computation: A new transactions. IEEFE Transactions on

Evolutionary Computation, 1(1):1-2, April 1997.

D. B. Fogel. A message from the program committee chair. In The fifth IEEE International
Conference on Evolutionary Computation, 1998. WCCI’98.

207

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

J. Fontanari and R. Meier. Evolving a learning algorithm for the binary perceptron.

Network, 2:353-359, November 1991.

R. Friedberg. A learning machine, Part I. IBM Journal of Research and Development,
2:2-13, 1958.

R. Friedberg, B. Dunham, and J. North. A learning machine, Part II. IBM Journal of
Research and Development, 3:282-287, 1959.

M. Fuchs. Crossover versus mutation: An empirical and theoretical case study. In J. R.
Koza, W. Banzhaf, and et al., editors, Genetic Programming 1998, Proceedings of the third
annual conference, pages 78-85, University of Wisconsin, Madison, July 1998. Morgan

Kaufmann Publisher.

K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic Publisher, New

York, 1990.

K. Fukushima. Neocognitron: A hierarchical neural network capable of visual pattern

recognition. Neural Networks, 1(2):119-130, 1988.

K. Fukushima, E. Kimira, and H. Shouno. Neocognitron with improved bend-extractors.
In 1998 IEEE World Congress on Computational Intelligence — IJCNN’98, pages 1172—
1175, Anchorage, Alaska, 1998. 0-7803-4859-1/98, IEEE.

K.-I. Funahashi. On the approximate realization of continuous mappings by neural net-

works. Neural Networks, 2(3):183-192, 1989.

P. D. Gader, J. R. Miramonti, Y. Won, and P. Coffield. Segmentation free shared weight

neural networks for automatic vehicle detection. Neural Networks, 8(9):1457-1473, 1995.

M. N. Gibbs and D. J. C. MacKay. Variational Gaussian process classifiers. IEEE Trans-
actions on Neural Networks, 11(6):1458-1464, November 2000.

C. L. Giles, R. Sun, and J. M. Zurada. Neural networks and hybrid intelligent models:
Foundations, theory, and applications. IEEE Transactions on Neural Networks, 9(5):721—
723, 1998. Special Issue on Neural networks and hybrid intelligent models.

G. L. Giles and T. Maxwell. Learning, invariances, and generalisation in high-order neural

networks. Applied Optics, 26(23):4972-4978, 1987.

208

BIBLIOGRAPHY

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

D. Goldberg. Genetic Algorithms in Search, Optimisation and Machine learning. Addison
Wesley, Reading, Ma, 1989.

A. L. Gorin and R. J. Mammone. Introduction to the special issue on neural networks
for speech processing. IEEE Transactions on Speech and Audio Processing, 2(1):113-114,
1994.

E. Gose, R. Johnsonbaugh, and S. Jost. Pattern Recognition and Image Analysis. Prentice
Hall PTR, Upper Saddle River, NJ 07458, 1996. ISBN 0-13-236415-8.

J. Y. Goulermas and P. Liatsis. Genetically fine-tuning the Hough transform feature space,

for the detection of circular objects. Image and Vision Computing, 16:615-625, 1998.

K. Harries and P. Smith. Exploring alternative operators and search strategies in genetic
programming. In J. R. Koza, W. Banzhaf, and et al., editors, Proceedings of the sec-
ond international conference on Genetic Programming (GP-97), pages 147-155. Morgan

Kaufmann Publisher, 1997.

C. Harris. An Investigation into the Application of Genetic Programming Techniques to
Signal Analysis and Feature Detection. PhD thesis, the University of London, London,
UK, September 1997. Department of Computer Science, University College London.

N. R. Harvey and S. Marshal. The use of genetic algorithm in morphological filter design.
Signal Processing: Image Communication, 8:55-71, 1996.

S. Hayes and V. Ciesielski. A neural network approach to positional and rotational invari-
ant recognition of 3D objects. Technical report, Royal Melbourne Institute of Technology,

Melbourne, Victoria, Australia, 1997.
S. Haykin. Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition, 1991.

R. Hecht-Nielsen. Neural networks and image analysis. In Carpenter and Grossbury,
editors, Neural networks for vision and image processing, chapter 17, pages 449-460. MIT
Press, 1992.

M. Hilario. An overview of strategies for neurosymbolic integration. In Connectionist-
Symbolic Integration: From Unified to Hybrid Approaches, chapter 2. Kluwer Academic
Publishers, 1997.

209

BIBLIOGRAPHY

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

M. Hilario, C. Pellegrini, and F. Alexandre. Modular integration of connectionist and sym-
bolic processing in knowledge-based system. In International Symposium on Integrating

Knowledge and Neural Heuristics, pages 123-132, Pensacola, Florida, May 1994.

G. E. Hinton. Connectionist learning procedures. Artificial Intelligence, 40(1-3):185-234,
1989. Reprinted in J. Carbonell, editor, "Machine Learning: Paradigms and Methods”,
MIT Press, 1990. Also appears as Technical Report CMU-CS-87-115 (version 2), Carnegie
Mellon University, Pittsburgh, PA, December 1987.

S. Holden and M. Niranjan. On the practical applicability of VC dimension bounds. Tech-
nical Report CUED /F-INFENG /TR.155, Cambridge University Engineering Department,
Cambridge CB2 1 PZ, Octobor 1994.

S. Holden and M. Niranjan. On the practical applicability of VC dimension bounds. Neural
Computation, 7(6):1265-1288, 1995.

J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor : University
of Michigan Press; Cambridge, Mass. : MIT Press, 1975.

J. J. Hopfield. Neural networks and physical system with emergent collective computa-
tional abilities. In Proceedings of National academy of Sciences, USA79, vol. 2, pages
554-558, 1982.

A. Howard, C. Padgett, and C. C. Liebe. A multi-stage neural network for automatic target
detection. In 1998 IEEE World Congress on Computational Intelligence — IJCNN’98,
pages 231-236, Anchorage, Alaska, 1998. 0-7803-4859-1/98.

D. Howard, S. C. Roberts, and R. Brankin. Target detection in SAR imagery by genetic
programming. Advances in Engineering Software, 30:303-311, 1999.

J.-S. Huang and H.-C. liu. Object recognition using genetic algorithms with a Hopfield’s
neural model. Ezpert Systems with Applications, 13(3):191-199, 1997.

Q. Huang, M. R. Azimi-Sadjadi, B. Tian, and G. Dobeck. Underwater target classifi-
cation using wavelet packets and neural networks. In 1998 IEEE World Congress on
Computational Intelligence — IJCNN’98, pages 177-182, Anchorage, Alaska, 1998. TEEE.
0-7803-4859-1/98, IEEE.

210

BIBLIOGRAPHY

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

B. Igelnik, Y. H. Pao, S. R. LeClair, and C. Y. Shen. The ensemble approach to neural-
network learning and generalisation. IEEE Transactions on Neural Networks, 10(1):19-30,
January 1999.

J. Illingworth and J. Kittler. A survey of the Hough transform. Computer Vision Graphics
and Image Processing, 44:87-116, 1988.

B. Irie and S. Miyake. Capability of three-layered perceptrons. In Proceedings of the IEEE
1988 International Conference on Neural Networks, pages 1(641-648), New York, 1988.
IEEE. Vol. 1.

S. Isaka. An empirical study of facial image feature extraction by genetic programming.
In J. R. Koza, editor, the Genetic Programming 1997 Conference, pages 93-99. Stanford
Bookstore, Stanford University, CA, USA, July 1997. Late Breaking Papers.

A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs,
NJ, 1989.

A. K. Jain, J. Mao, and K. M. Mohiuddin. Artificial neural networks: A tutorial. IEEFE
Computer, 29(3):31-44, March 1996.

J. S. N. Jean and J. Wang. Weight smoothing to improve network generalisation. IEEE
Transactions on neural networks, 5(5):752-763, September 1994.

J. L. Johnson, M. L. Padgett, and O. Omidvar. Overview of pulse coupled neural network

special issue. IEEE Transactions on Neural Networks, 10(3):461-463, May 1999.

G. G. Judge and et al. Introduction to the Theory and Practice of Econometrics. New
York: Wiley, 2nd edition, 1988.

G. G. Judge, W. E. Griffiths, R. C. Hill, and T. Lee. The Theory and Practice of Econo-
metrics. New York: Wiley, 1980.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory.

The MIT Press, Cambridge, Massavhusetts, London, England, 1994.

M. W. Kim and M. Arozullah. Generalised probabilistic neural network based classifier.
In International Joint Conference on Neural Networks (IJCNN’92), pages I11-648-653,
Baltimore, Maryland, June 1992. IEEE.

211

BIBLIOGRAPHY

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

M. W. Kim and M. Arozullah. Neural network based optimum radar target detection in
non-Gaussian noise. In International Joint Conference on Neural Networks (IJCNN’92),

pages 111-654-659, Baltimore, Maryland, June 1992. IEEE.

T. Kohonen. Associative Memory: A System Theoretic Approach. SpringerVerlag, Berlin,
1977.

T. Kohonen. Self-organization and Associative Memory. Springer, Berlin Heidelberg

New York, 3rd edition, 1988.

P. G. Korning. Training neural networks by means of genetic algorithms working on very
long chromosomes. International Journal of Neural Systems, 6(3):299-316, September

1995.

J. R. Koza. Genetic programming : on the programming of computers by means of natural

selection. Cambridge, Mass. : MIT Press, London, England, 1992.

J. R. Koza. Simultaneous discovery of reusable detectors and subroutines using genetic
programming. In S. Forrest, editor, Proceedings of the 5th International Conference on

Genetic Algorithms, ICGA-93, pages 295-302, Morgan Kauffman, 1993.

J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs. Cam-

bridge, Mass. : MIT Press, London, England, 1994.

J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, D. E.
Goldberg, H. Iba, and R. Riolo. Genetic Programming 1998 — Proceedings of the Third
Annual Conference on Genetic Programming. San Francisco, CA: Morgan Kaufmann,

1998.

J. R. Koza, F. H. Bennet, III, D. Andre, and M. A. Keane. Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco, California,

1999.

J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. Riolo. Genetic Pro-
gramming 1997 — Proceedings of the Second Annual Conference on Genetic Programming.

San Francisco, CA: Morgan Kaufmann, 1997. ISBN 1-55860-483-9.

212

BIBLIOGRAPHY

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

R. Krishnan. 2DELTA-GANN: A new method of training neural networks using genetic
algorithms. Enhanced minor thesis, RMIT, Department of Computer Science, Melbourne,

Apr. 1994.

R. Krishnan and V. Ciesielski. 2DELTA-GANN: a new approach to using genetic algo-
rithms to train neural networks. In A. C. Tsoi, editor, Proceedings of the Fifth Australian

Neural Networks Conference, pages 38—41, University of Queensland, Brisbane, Feb 1994.

S.Y. Kung and J. S. Taur. Decision-based neural networks with signal /image classification

applications. IEEE Transactions on Neural Networks, 6:170-181, Jan 1995.

W. B. Langdon. Scheduling planned maintenance of the national grid. In T. C. Fogarty,
editor, Evolutionary Computing, pages 132-153. Springer-Verlag, 1995. Vol. 993, Lecture

Notes in Computer Science.

S. Lawrence, C. Giles, and A. Tsoi. What size neural network gives optimal generalization?
convergence properties of backpropagation. Technical Report UMIACSTR, -96-22 and CS-
TR-3617, Institute for Advanced Computer Studies, University of Maryland, College Park,
MD 20742, April 1996.

S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recognition: A hybrid neural
network approach. Technical Report UMIACS-TR-96-16 and CS-TR-3608, Institute for
Advanced Computer Studies, University of Maryland, College Park, MD 20742, April
(revised Augest) 1996.

S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recognition: A convolutional

neural network approach. IEEE transactions on Neural Networks, 8(1):98-112, Jan 1997.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. H. W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1:541—

551, 1989.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. H. W. Hubbard, and L. D. Jackel.
Handwritten zip code recognition with a back-propagation network. In D. S. Touretzky,
editor, Advances in Neural Information Processing Systems, volume 2. Morgan Kaufmann,

San Mateo, CA, 1990.

Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, . Guyon, D. Henderson, R. E.

Howard, and W. Hibbard. Handwritten digit recognition: application of neural network

213

BIBLIOGRAPHY

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

chips and automatic learning. IEEE Communications Magazine, pages 41-46, November

1989.

C. Lee and D. A. Landgrebe. Decision boundary feature extraction for neural networks.

IEEE Transactions on Neural Networks, 8(1):75-83, 1997.

M. Li and A. Maruoka. Lecture Notes in Artificial Intelligence 1816. Springer-Verlag,
1997. Proceedings of the Eighth International Workshop on Algorithmic Learning Theory
(ALT’97), Sendai, Japan.

S.-H. Lin, S.-Y. Kung, and L.-J. lin. Face recognition/detection by probabilistic decision-
based neural network. IEEE Transactions on Neural Networks, 8(1):114-132, Jan 1997.

X. Liu, D. Wang, and J. R. Ramirez. Extracting hydrographic objects from satellite
images using a two-layer neural network. In 1998 IEEE World Congress on Computational
Intelligence — IJCNN’98, pages 897-902, Anchorage, Alaska, 1998. IEEE. 0-7803-4859-
1/98.

S.-C. B. Lo, H.-P. Chan, J.-S. Lin, H. Li, M. T. Freedman, and S. K. Mun. Artifi-
cial convolution neural network for medical image pattern recognition. Neural Networks,

8(7/8):1201-1214, 1995.

B. J. Lucier, S. Mamillapalli, and J. Palsberg. Program optimisation for faster genetic
programming. In Genetic Programming — GP’98, pages 202-207, Madison, Wisconsin,
July 1998.

L. B. Lusted. General problems in medical decision making — with comments on ROC

analysis. Seminars Nucl. Med, 8:299-306, 1978.

A. Mahalanobis, B. V. K. Kumar, and D. Casasent. Minimum average correlation energy

filters. Applied Optics, 26:3633-3640, 1987.

W. McCulloch and W. Pitts. A logical calculus of the ideal immanent in nervous activity.

Bulletin of Mathematical Biophysics, 5:115-133, 1943.
C. E. Metz. Basic principle of ROC analysis. Seminars Nucl. Med, 8:283-298, 1978.

C. E. Metz. ROC methodology in radiologic imaging. Investigative Radiology, 21(9):720-
732, September 1986.

214

BIBLIOGRAPHY

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

X. Miao, M. R. Azimi-Sadjadi, A. C. Dubey, and N. H. Witherspoon. Detection of mines
and minelike targets using principal component and neural network methods. IEEE Trans-

actions on Neural Networks, 9(3):454-463, May 1998.

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell. Machine Learning, An Artificial
Intelligence Approach. Tioga Publishing Company, Palo Alto, California, 1983.

R. Milanese, S. Gil, and T. Pun. Attentive mechanisms for dynamic and static scene

analysis. Optical Engineering, 34(8):2428-2434, 1995.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geometry. MIT
Press, Cambridge, Mass., 1969.

T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

D. J. Montana and L. Davis. Training feedforward networks using genetic algorithms.
In Proceedings of the Eleventh International Conference on Artificial Intelligence, pages

762-767, San Mateo, CA, 1989. Morgan Kaufmann.

B. Muller, J. Reinhardt, and M. T. Strickland. Neural Networks: An Introduction.
Springer-Verlag, Berlin Heidelberg, Germany, 2nd edition, 1995.

P. Murphy and D. Aha. UCI repository of machine learning datasets. Technical report,

Department of Information and Computer Science, University of California, Irvine, 1994.

K. Nakayama, Y. Chigawa, and O. Hasegawa. Handwritten alphabet and digit charac-
ter recognition using feature extracting neural network and modified self-organising map.
In International Joint Conference on Neural Networks (IJCNN’92), pages IV-235-240,
Baltimore, Maryland, June 1992. IEEE.

N. M. Nasrabadi and L. Wei. Object recognition by a Hopfield neural network. IEEE
Transactions on Systems, Man, and Cybernetics, 21(6):1623-1535, 1991.

E. Niebur and C. Koch. Control of selective visual attention: Modeling the “where”
pathway. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in
Neural Information Processing Systems, pages 802-808, Japan, 1996. The MIT Press. Vol.
8.

P. Nordin and W. Banzhaf. Programmatic compression of images and sound. In J. R.

Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, editors, Genetic Programming 1996:

215

BIBLIOGRAPHY

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Proceedings of the First Annual Conference, pages 345-350, Stanford University, CA, USA,
1996. MIT Press.

S. Nowlan. Maximum likelihood competitive learning. In D. S. Touretzky, editor, Advances
in Neural Information Processing Systems, volume 2, pages 574-582. Morgan Kaufmann,

San Mateo, CA, 1990.

H. Ogata, Y. Akiyama, and M. Kanehisa. A genetic algorithm based molecular modelling
technique for RNA stem-loop structures. Nucleic Acid Research, 23(3):419-426, 1995.

M. A. E. Okure and M. A. Peshkin. Quantitative evaluation of neural networks for NDE
applications using the ROC curve. In the 21th Annual Review of Progress in Quantita-

tive Nondestructive Evaluation, Snowmass CO, 1994. http://apo.mech.nwu.edu/okure-

lib/ROC.html.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector
machines. In J. Principle, L. Gile, N. Margan, and E. Wilson, editors, Neural Networks
for signal processing VII, Proceedings of the 1997 IEEE Workshop, pages 276-285, Amelia
Island, FL, September 1997.

D. A. Panagiotopoulos, R. W. Newcomb, and S. K. Singh. Planning with a functional
neural-network architecture. IEEE Transactions on Neural Networks, 10(1):115-127, Jan-
uary 1999.

W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Standard. Van
Nostrand Reinhold, New York, NY, USA, 1993.

W. Pitts and W. S. McCulloch. How we know universals: The perception of auditory and
visual foems. Bulletin of Mathematical Biophysics, 9:127-147, 1947. University of Chicago

Press, Chicago.

V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben. Evolutionary Programming VII:
Proceedings of Tth International Conference, EP98. San Diego, CA: Springer-verlag, 1998.
ISBN 3-540-64891-7.

M. A. Potter. A genetic cascade-correlation learning algorithm. In Schaffer and Whitley,
editors, Proceedings of the International Workshop on Combinations of Genetic Algorithms

and Neural Networks, pages 366-372. Morgan Kaufmann, July 1992.

216

BIBLIOGRAPHY

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

J. R. Quinlan. C4.5: Programs for Machine Learning — Constructing Decision Trees,
chapter 2, pages 17-43. Morgan-Kaufmann, San Mateo, California, 1993. ISBN 1-55860-
238-0.

N. Rai. Pixel statistics in neural networks for object detection. Minor thesis, RMIT

University, Department of Computer Science, 2001.

H. S. Ranganath, D. E. Kerstetter, and S. R. F. Sims. Self partitioning neural networks
for target recognition. Neural Networks, 8(9):1475-1486, 1995.

H. S. Ranganath and G. Kuntimad. Object detection using pulse coupled neural networks.

IEEE Transactions on Neural Networks, 10(3):615-620, May 1999.

J. Riley. An evolutionary approach to training feed forward and recurrent neural networks.

Minor thesis, RMIT University, Department of Computer Science, 1997.

G. Robinson and P. Mcllroy. Exploring some commercial applications of genetic program-
ming. In T. C. Fogarty, editor, Fvolutionary Computation, Volume 993, Lecture Note in
Computer Science. Springer-Verlag, 1995.

S. K. Rogers, J. M. Colombi, C. E. Martin, J. C. Gainey, K. H. Fielding, T. J. Burns,
D. W. Ruck, M. Kabrisky, and M. Ocley. Neural networks for automatic target recognition.
Neural Networks, 8(7/8):1153-1184, 1995.

R. J. Rogler, M. W. Koch, M. M. Moya, L. D. Hostetler, and D. R. Hush. Feature
discovery via neural networks for object recognition in SAR imagery. In International Joint
Conference on Neural Networks (IJCNN’92), pages IV-408-413, Baltimore, Maryland,
June 1992. IEEE.

H. L. Roitblat, W. W. L. Au, P. E. Nachtigall, R. Shizumura, and G. Moons. Sonar
recognition of targets embedded in sediment. Neural Networks, 8(7/8):1263-1273, 1995.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mech-
anisms. Spartan Books, New York, 1962.

M. W. Roth. Neural network technology and its applications. The Johns Hopkins APL
Tech. Dig., 9(3):242-253, 1988.

217

BIBLIOGRAPHY

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

M. W. Roth. Neural networks for extraction of weak targets in high clutter environments.
IEEE Transactions on System, Man, and Cybernetics, 19(5):1210-1217, September-
October 1989.

M. W. Roth. Survey of neural network technology for automatic target recognition. IEEE
Transactions on neural networks, 1(1):28-43, March 1990.

H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(1):23-38, Jan 1998.

C. D. W. Ruck. Multisensor target detection and classification. In Proceedings of the
SPIE, 931, April 1988.

D. E. Rumelhart, G. E. Hinton, and J. L. McClenlland. A general framwork for parallel
distributed processing. In D. E. Rumelhart, J. L. McClelland, and the PDP research group,
editors, Parallel distributed Processing, Fxplorations in the Microstruct ure of Cognition,
Volume 1: Foundations, chapter 2. The MIT Press, Cambridge, Massachusetts, London,
England, 1986.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. In D. E. Rumelhart, J. L. McClelland, and the PDP research group,
editors, Parallel distributed Processing, Explorations in the Microstructure of Cognition,
Volume 1: Foundations, chapter 8. The MIT Press, Cambridge, Massachusetts, London,
England, 1986.

D. E. Rumelhart, J. L. McClelland, and the PDP research group. Parallel Distributed
Processing, Explorations in the Microstructure of Cognition. The MIT Press, Cambridge,

Massachusetts, London, England, 1986. Volume 1: Foundations.

F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model for human face
identification. In Proceedings of the 2nd IEEE Workshop on Applications of Computer

Vision, Sarasota, Florida, December 1994.

J. D. Schaffer, D. Whitely, and L. J. Eshelman. Combinations of genetic algorithms and
neural networks: A survey of the state of the art. In COGANN-92, International Workshop
on Combinations of Genetic Algorithms and Neural Networks, pages 1-37, Baltimore, June

1992. IEEE Computer Society Press.

218

BIBLIOGRAPHY

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

R. Schohn and D. Cohn. Less is more: Active learning with support vector machines.
In Proceedings of 17th International Conference on Machine Learning, pages 839-846,
Stanford University, USA, 2000. Morgan Kaufmann, San Francisco, CA. 29 June - 2 July.

J. R. Sherrah, R. E. Bogner, and A. Bouzerdoum. The evolutionary pre-processor: Auto-
matic feature extraction for supervised classification using genetic programming. In J. R.
Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors, Ge-
netic Programming 1997: Proceedings of the Second Annual Conference, pages 304-312,
Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

M. V. Shirvaikar and M. M. Trivedi. Design and evaluation of a multiple stage object
detection approach. In Proceedings of Applied Artificial Intelligence VII Conference, pages
14-22, Orlando, FL, April 1990. SPIE.

M. V. Shirvaikar and M. M. Trivedi. A network filter to detect small targets in high clutter
backgrounds. IEEE Transactions on Neural Networks, 6(1):252-257, Jan 1995.

M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Programming Approach.
Springer-Verlag, Heidelberg, 1997.

M. Sipper, D. Mange, and A. Perez-uribe. FEvolable Systems 1998 — Proceedings of the
Second International Conference on Evolvable Systems: From Biology to Hardware. Hei-

delberg, Germany: Springer-verlag, 1998. ISBN 3-540-64954-9.

F. F. Soulie, E. Viennet, and B. Lamy. Multi-modular neural network architectures:
applications in optical character and human face recognition. International journal of

pattern recognition and artificial intelligence, 7(4):721-755, 1993.
D. F. Specht. Probabilistic neural networks. Neural Networks, 3:109-118, 1990.

L. Spirkovska and M. B. Reid. Higher-order neural networks applied to 2D and 3D object
recognition. Machine Learning, 15(2):169-199, 1994.

R. Sun. On neural networks and symbolic processing. In R. Sun and L.Bookman, edi-
tors, Computational Architectures Integrating Neural and Symbolic Processes, chapter 1.

Kluwere Academic Press, 1994.

219

BIBLIOGRAPHY

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

R. Sun. Introduction to connectionist symbolic integration. In R. Sun and F. Alexan-
dre, editors, Connectionist-Symbolic Integration, chapter 1. Lawrence Erlbaum Associates,

1997.

D. Swets and B. Punch. Genetic algorithms for object localisation in a complex scene,
1995. Genetic Algorithms Research and Applications Group (GARAGe), Michigan State
University. http://garage.cps.msu.edu/papers/GARAGe95-01-06.ps.

D. L. Swets, B. Punch, and J. Weng. Genetic algorithms for object recognition in a
complex scene. In Proceedings of International Conference on Image Processing, pages

595-598, Washington D. C., Oct 1995. Vol. I1.

O. Syed. Applying genetic algorithms to recurrent neural networks for learning network
parameters and architecture. Master’s thesis, Department of Electrical Engineering, Case

Western Reserve University, Ohio, USA, 1995.

W. A. Tackett. Genetic programming for feature discovery and image discrimination. In
S. Forrest, editor, Proceedings of the 5th International Conference on Genetic Algorithms,
ICGA-93, pages 303-309, University of Illinois at Urbana-Champaign, 17-21 July 1993.

Morgan Kaufmann.

W. A. Tackett. Recombination, Selection, and the Genetic Construction of Computer
Programs. PhD thesis, Faculty of the Graduate School, University of Southern California,
Canoga Park, California, USA, April 1994.

1. Taha and J. Ghosh. Three techniques for extracting rules from feedforward networks. In
C. F. Dagli Akay and Ghosh, editors, Intelligent Engineering Systems Through Artificial
Neural Networks. ASME Press, 1996.

A. Teller and M. Veloso. A controlled experiment : Evolution for learning difficult image
classification. In C. Pinto-Ferreira and N. J. Mamede, editors, Proceedings of the 7th
Portuguese Conference on Artificial Intelligence, volume 990 of LNAI, pages 165-176,
Berlin, 3-6 Oct. 1995. Springer Verlag.

A. Teller and M. Veloso. PADO: Learning tree structured algorithms for orchestration into
an object recognition system. Technical Report CMU-CS-95-101, Department of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, USA, 1995.

220

BIBLIOGRAPHY

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

B. Tian, M. R. Azimi-Sadjadi, T. H. V. Haar, and D. Reinke. A temporal adaptive
probability neural network for cloud classification from satellite images. In 1998 IEEE
World Congress on Computational Intelligence — IJCNN’98, pages 1732-1737, Anchorage,
Alaska, 1998. IEEE. 0-7803-4859-1/98, IEEE.

T. Tollenaere. Supersab: Fast adaptive back propagation with good scaling properties.

Neural Networks, 3:561-573, 1990.

L. C. W. Tong and et al. Multisensor data fusion of laser radar and forward looking infrared
(FLIR) for target segmentation and enhancement. Proceedings of the SPIE, 782:10-18,
Arpil 1987.

G. Towell and J. Shavlik. Extracting refined rules from knowledge-based neural networks.

Machine learning, 13(1):71-101, 1993.

G. Towell and J. Shavlik. Knowledge-based artificial neural networks. Artificial Intelli-
gence, 70(1/2):119-165, 1994.

S. E. Troxel, S. K. Rogers, and M. Kabrisky. The use of neural networks in PSRI target
recognition. In IEEFE International Conference on Neural Networks, pages 1-593 — 600,
Sheraton Harbor Island, San Diego, California, July 1988.

P. W. M. Tsang. A genetic algorithm for aligning object shapes. Image and Vision
Computing, 15:819-831, 1997.

D. Valentin and H. Abdi. Can a linear autoassociator recognise faces from new orienta-

tions? Journal of the Optical Society of America, series A,, 13:717-724, 1996.

D. Valentin, H. Abdi, and O’Toole. Categorization and identification of human face im-
ages by neural networks: A review of linear auto-associator and principal component

approaches. Journal of Biological Systems, 2(3):413-429, 1994.

D. Valentin, H. Abdi, and A. J. O’Toole. Principal component and neural network analyses
of face images: Explorations into the nature of information available for classifying faces
by sex. In P. T. C. Dowling, F.S. Roberts, editor, Progress in Mathematical Psychology.
Hillsdale: Lawrence Erlbaum, Hillsdale, Erlbaum, 1996. in press.

D. Valentin, H. Abdi, A. J. O’Toole, and G. W. Cottrell. Connectionist models of face

processing: A survey. Pattern Recognition, 27:1208-1230, 1994.

221

BIBLIOGRAPHY

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

207]

B. Verma. A feature extraction technique in conjunction with neural network to classify
cursive segmented handwritten characters. In 1998 IEEE World Congress on Computa-
tional Intelligence — IJCNN’98, pages 332-336, Anchorage, Alaska, 1998. IEEE. 0-7803-
4859-1/98, IEEE.

B. Verma. A neural network based technique to locate and classify microcalcifications
in digital mammograms. In 1998 IEEE World Congress on Computational Intelligence —
IJCNN’98, pages 1790-1793, Anchorage, Alaska, 1998. 0-7803-4859-1/98, IEEE.

P. D. Wasserman. Advanced Methods in Neural Computing. Van Nostrand Reinhold, New
York, 1993. Neural Engineering, Chapter 11. ISBN: 0-442-00461-3.

A. M. Waxman, M. C. Seibert, A. Gove, D. A. Fay, A. M. Bernandon, C. Lazott, W. R.
Steele, and R. K. Cunningham. Neural processing of targets in visible, multispectral ir

and sar imagery. Neural Networks, 8(7/8):1029-1051, 1995.

P. Werbos. Beyond Regression: New tools for prediction and analysis in the behavioral
science. PhD thesis, Department of Applied Mathematics, Harvard University, Cambridge,
Mass., 1974.

D. Whitley and T. Hanson. Optimising neural networks using faster more accurate genetic
search. In Proceedings of the Third International Conference on Genetic Algorithms and

their Applications, pages 391-396. Morgan Kaufman, 1989.

P. Wilson. Development of genetic programming strategies for use in the robocup domain.

Technical report, Department of Computer Science, RMIT, 1998. Honours Thesis.

J. F. Winkeler and B. S. Manjunath. Genetic programming for object detection. In
J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors,
Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 330-335,
Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

P. Winter, S. Sokhansanj, H. C.Wood, and W. Crerar. Quality assessment and grading
of lentils using machine vision. In Agricultural Institute of Canada Annual Conference,
Saskatoon, SK S7TN 5A9, Canada, July 1996. Canadian Society of Agricultural Engineering.
CASE paper No. 96-310.

222

BIBLIOGRAPHY

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

P. Winter, W. Yang, S. Sokhansanj, and H. Wood. Discrimination of hard-to-pop pop-
corn kernels by machine vision and neural network. In ASAE/CSAE meeting, Saskatoon,

Canada, Sept. 1996. Paper No. MANSASK 96-107.

Y. Won, P. D. Gader, and P. C. Coffield. Morphological shared-weight networks with
applications to automatic target recognition. IEEE Transactions on neural networks,

8(5):1195-1203, September 1997. ISSN 1045-9227.

Y. C. Wong and M. K. Sundareshan. Data fusion and tracking of complex target maneuvers
with a simplex-trained neural network-based architecture. In 1998 IEEE World Congress
on Computational Intelligence — IJCNN’98, pages 1024-1029, Anchorage, Alaska, May
1998. 0-7803-4859-1/98.

J. Yang and V. Honavar. Feature subset selection using A genetic algorithm. In J. R.
Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H. Iba, and R. L. Riolo, editors,
Genetic Programming 1997: Proceedings of the Second Annual Conference, pages 380—
385, Stanford University, CA, USA, 1997. Morgan Kaufmann. Also in TEEE Intelligent

System Special Issue: Feature Transformation and Subset Selection, 1998.

X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-1447,
September 1999.

A. Yla-Jaaski and F. Ade. Grouping symmetrical structures for object segmentation and

description. Computer Vision and Image Understanding, 63(3):399-417, May 1996.

A. Yli-Jaaski and F. Ade. Grouping symmetrical structures for object segmentation and

description. Computer Vision and Image Understanding, 63(3):399-417, May 1996.

K. Yuen, J. Princen, J. Illingworth, and J. Kittler. Comparative study of hough transform
methods for circle finding. Image and Vision Computing, 8(1):71-77, 1990.

A. Zell, G. Mamier, and et al. SNNS User Manual. University of Stuttgart, 1995. Version
4.1.

M. Zhang. A pixel-based approach to recognising small objects in large pictures using
neural networks. In Proceedings of the Annual RMIT Computer Science Postgraduate
Students’ Conference, pages 57-68, Melboune, Australia, December 1997. Department of
computer science, RMIT. TR 97-51.

223

BIBLIOGRAPHY

[218]

[219]

[220]

[221]

[222]

[223]

[224]

M. Zhang and V. Ciesielski. Centred weight initialisation to improve the performance of
network training speed and the performance of object detection. Technical Report TR
98-10, Department of Computer Science, RMIT University, Melbourne, Australia, May
1998.

M. Zhang and V. Ciesielski. Using back propagation algorithm and genetic algorithms to
train and refine neural networks for object detection. In Proceedings of Annual RMIT Com-
puter Science Postgraduate Students’ Conference (CSPS(C’98), pages 37-48, Melbourne,
Australia, December 1998. Department of Computer Science, RMIT. Also in technical
report TR 98-25.

M. Zhang and V. Ciesielski. Centred weight initialisation in neural networks
for object detection. In J. Edwards, editor, Proceedings of the Twenty Sec-
ond Australasian Computer Science Conference, pages 39-50, Auckland, Feb 1999.
http://goanna.cs.rmit.edu.au/ ve/papers/ve-conf.html.

M. Zhang and V. Ciesielski. Genetic programming for multiple class object detection. In
N. Foo, editor, Proceedings of the 12th Australian Joint Conference on Artificial Intelli-
gence (AI'99), pages 180-192, Sydney, Australia, December 1999. Springer-Verlag Berlin
Heidelberg. Lecture Notes in Artificial Intelligence (LNAI Volume 1747).

M. Zhang and V. Ciesielski. Genetic programming for multiple class object detection.
In Proceedings of Annual RMIT Computer Science Postgraduate Students’ Conference
(CSPSC’99), pages 70-78, Melbourne, Australia, December 1999. Department of Com-
puter Science, RMIT. Also in technical report TR-99-10.

M. Zhang and V. Ciesielski. Using back propagation algorithm and genetic algorithm to
train and refine neural networks for object detection. In T. Bench-Capon, G. Soda, and
A. M. Tjoa, editors, Proceedings of the 10th International Conference on Database and
Ezpert Systems Applications (DEXA’99), pages 626635, Florence, Italy, August 1999.
Springer-Verlag. Lecture Notes in Computer Science, (LNCS Volume 1677).

J. M. Zurada. Challenges and changes. IEEE Transactions on Neural Networks, 10(1):1-2,
1999.

224

Index

accuracy, 13

activation function, 26

actual output, 27

artificial convolution neural networks, 116
artificial neural networks, 23

automatic object recognition, 9

automatic target recognition, 9

backward error propagation algorithm, 27
backward propagation phase, 28
forward propagation phase, 28

backward propagation algorithm, see back-

ward error propagation algorithm

bias, 25

BP, see backward error propagation algo-

rithm
BP-train, 145
the BP-train algorithm, 145
the BP-train method, 145
BP-train+GA-refine method, 146

centred initial weights, 120
centred weight initialisation, 119, 121
centred weight initialisation algorithm,
122
centred weight initialisation method, 121
chromosomes, 37, 149
classification data set, 88

classification test set, 89

225

classification training set, 89

classifier systems, 36, 48

computer programs, 42

connections, 25

crossover, 37, 46, 151
segmented crossover, 39
shuffle crossover, 39
uniform crossover, 38

cutouts, 88

cycle, see epoch

deltal, 148, 149

delta2, 148, 149
detection map, 179
detection rate, 16
detection test set, 88
detection training set, 88
domain independent, 3

DR, 16

early stopping strategy, 30
epoch, 27
epoch/cycle control strategy, 29
error, 30

mean square error, 30

total sum squared error, 30
error control strategy, 30
evaluation, 101

evaluations, 156

INDEX

number of network evaluations, 157
evolutionary computation, 36, 48
evolutionary process, 37
evolutionary programming, 36, 48

evolutionary strategies, 36, 48

false alarm rate, 16
false negative fraction, 13
false positive fraction, 13
fan-in, 29
FAR, 16
feature based approach, 11
fitness, 37, 42, 44
fitness cases, 44
fitness function, 37, 43, 44, 151, 155,
177, 179
continuous fitness function, 45
normalised fitness function, 45
standardised fitness functions, 45
fitness function, 178
FNF, 13
FPF, 13
function set, 177

functions, 44, 172

GA, see genetic algorithms
BP-train+GA-refine method, see BP,BP-
train+GA-refine method
GA-refine, 145, 153, 156
termination strategy, 164
GA-refine algorithm, see GA,GA-refine
GA-train, 145, 148
GA-train algorithm, 145
GA-train method, 145

226

GA-train+GA-refine method, 145

gene, 148

gene structure, 148

generalisation, 21

generation, 37, 42

genetic algorithms, 23, 36, 37, 64, 143
for network refinement, 153
for network training, 148

genetic operator, 46, 151

genetic programming, 23, 42, 67, 171

GP, see genetic programming
adapted to object detection, 173
fitness function, 177, 179
function set, 177, 190
terminal set, 175, 189

termination criterion, 181

hidden-output weights, 121

hidden-output weight matrix, 121

image data set, 88
image databases, 75
coin pictures, 78
easy pictures, 76
retina pictures, 80
image features, 172
image boundaries, 190
pixel level, domain independent features,
172, 176, 177
specific features, 172
image regions, 175
individuals, 37
input field, 94, 175
input field size, 94

INDEX

input-hidden weights, 121

input-hidden weight matrix, 121

layer, 26
hidden layer, 26
input layer, 26
output layer, 26
learning and adaptive, 3
linearisation, 116

links, 25

machine learning, 19, 21
learning algorithm, 21
learning paradigm, 21, 22
analytic learning, 24
connectionist, 23
genetic learning paradigm, 23
induction learning, 23
instance based learning, 23
rule induction, 23

learning rule, 21

learning strategies, 22
hybrid learning, 22
reinforcement learning, 22
supervised learning, 22
unsupervised learning, 22

learning system, 21

momentum, 29

MSE, 30, 31

multiple classes, 3

multiple stage approach, 12

mutation, 37, 38, 46, 151

network evaluations, see evaluations

networks, see neural networks

evolved networks, 146
refined networks, 146
trained networks, 146
neural network
network training, 26
neural networks, 23, 24, 49, 95
network architecture, 95
number of hidden nodes, 97
number of input nodes, 95
number of output nodes, 96
network refinement, 146
network sweeping, 98
network testing, 98
classification criterion, 98
network training, 97, 146
termination criterion, 98
neuron, 25
node, 25
hidden nodes, 25, 26, 97
input nodes, 25, 26, 95
output nodes, 25, 26, 96

object classification, 3, 9, 50, 68, 97
object detection, 3, 57, 65, 69, 98
finding object centres, 100
centre finding algorithm, 100
multiple class object detection, 10
network sweeping, 98
object matching, 101
one class object detection, 10
performance measurement, 101
object identification, 9

object localisation, 3, 9

INDEX

object sweeping map, 99
off-line learning, 29
online learning, 29

output function, 26

PAC learning, 32
patterns, 26
input patterns, 26, 94
output patterns, 26, 94
target patterns, 26
test patterns, 94
training patterns, 94
pixel based approach, 11
population, 37
primitive
function set, 43
terminal set, 43
primitive set, 43
probabilitistic decision-based neural network,
59
program, 42, 43
program generation, 44
full method, 44
grow method, 44
ramped half-and-half method, 44
program classification algorithm, 178

proportion control strategy, 30

random initial weights, 120
random weight initialisation, 120
recombination, 37

reproduction, 37, 46

RMSE, 31

ROC curve, 14

228

extended ROC curves, 15, 17
standard ROC curve, 14
rotation invariance, 3

rotation invariant, see rotation invariance

rule bits, 148

selection, 37
proportional selection, 45
tournament selection, 45
shared weight neural networks, 58, 116
single stage approach, 12
size invariance, 3
size invariant, see size invariance
standard arithmetic operators, 172

stochastic gradient procedure, 29

target detection, see object detection
target output, 27
teaching input, see target output
terminal set, 175
terminals, 44, 172
test set, 21
the basic approach, 87
the GA-train algorithm, 152
threshold, 109
TNF, 13
TPF, 13
training set, 21
transfer function, 26
logistic, 26
sigmoid, 26
translation invariance, 3
translation invariant, see translation invari-

ance

INDEX

tree-structured genome, 42
true gradient procedure, 29
true negative fraction, 13
true positive fraction, 13

TSS, 30, 31

unit, see node

user control strategy, 30
VC dimension, 32

weight, 25
centred initial weights, 120
hidden-output weights, 121
incoming weights, 25
input-hidden weights, 121
outgoing weights, 25
random initial weights, 120

weight smoothing, 116

weight updating mechanism, 149

229

