Skip to main content

Genetic Programming for Screen Content Image Quality Assessment

  • Conference paper
  • First Online:
Artificial Intelligence: Theories and Applications (ICAITA 2022)

Abstract

The study of Screen Content Image Quality Assessment (SCI-QA) is a new and interesting topic due to its excellent potential for instruction and optimization in various processing systems, it has been attractive recently. In this paper, we proposed a full reference quality assessment method for screen content images named Genetic Programming based Screen Content Image Quality (GP-SCIQ). The proposed method operates via a symbolic regression technique using Genetic Programming (GP). Hence, for predicting subject scores of images in datasets we combined the objective scores of a set of Image Quality Metrics (IQM). Two largest publicly available image databases (namely SICAD and SCID) are used for training and testing the predictive models, according the k-fold-cross-validation strategy. The performance of the proposed approach is evaluated, and several experiments are carried using four performance indices (SRCC, PCC, KROCC and RMSE). The results achieve superior performance to state-of-the-art methods in predicting the perceptual quality of SCIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, H., Fang, Y., Lin, W.: Perceptual quality assessment of screen content images. IEEE Trans. Image Process. 24, 4408–4421 (2015). https://doi.org/10.1109/TIP.2015.2465145

    Article  MathSciNet  MATH  Google Scholar 

  2. Wang, S., Ma, L., Fang, Y., Lin, W., Ma, S., Gao, W.: Just noticeable difference estimation for screen content images. IEEE Trans. Image Process. 25, 14 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Fang, Y., Yan, J., Liu, J., Wang, S., Li, Q., Guo, Z.: Objective quality assessment of screen content images by uncertainty weighting. IEEE Trans. Image Process. 26, 2016–2027 (2017). https://doi.org/10.1109/TIP.2017.2669840

    Article  MathSciNet  MATH  Google Scholar 

  4. Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: Learning a blind quality evaluation engine of screen content images. Neurocomputing 196, 140–149 (2016). https://doi.org/10.1016/j.neucom.2015.11.101

    Article  Google Scholar 

  5. Chandler, D.M.: Seven challenges in image quality assessment: past, present, and future research. ISRN Sig. Process. 2013, 1–53 (2013). https://doi.org/10.1155/2013/905685

    Article  Google Scholar 

  6. Ieremeiev, O., Lukin, V., Ponomarenko, N., Egiazarian, K.: Combined no-reference IQA metric and its performance analysis. Electron. Imaging 31(11), 260-1–260-7 (2019). https://doi.org/10.2352/ISSN.2470-1173.2019.11.IPAS-260

    Article  Google Scholar 

  7. Ieremeiev, O., Lukin, V., Ponomarenko, N., Egiazarian, K.: Robust linearized combined metrics of image visual quality. Electron. Imaging 2018, 260-1–260-6 (2018). https://doi.org/10.2352/ISSN.2470-1173.2018.13.IPAS-260

    Article  Google Scholar 

  8. Merzougui, N., Djerou, L.: Multi-gene genetic programming based predictive models for full-reference image quality assessment. J. Imaging Sci. Technol. 65, 60409-1–60409-13 (2021)

    Google Scholar 

  9. Oszust, M.: Decision fusion for image quality assessment using an optimization approach. IEEE Signal Process. Lett. 23, 65–69 (2016). https://doi.org/10.1109/LSP.2015.2500819

    Article  Google Scholar 

  10. Ni, Z., Zeng, H., Ma, L., Hou, J., Chen, J., Ma, K.-K.: A gabor feature-based quality assessment model for the screen content images. IEEE Trans. Image Process. 27, 4516–4528 (2018). https://doi.org/10.1109/TIP.2018.2839890

    Article  MathSciNet  MATH  Google Scholar 

  11. Ni, Z., Ma, L., Zeng, H., Cai, C., Ma, K.-K.: Gradient direction for screen content image quality assessment. IEEE Signal Process. Lett. 23, 5 (2016)

    Article  Google Scholar 

  12. Bae, S.-H., Kim, M.: A novel image quality assessment with globally and locally consilient visual quality perception. IEEE Trans. Image Process. 25, 2392–2406 (2016). https://doi.org/10.1109/TIP.2016.2545863

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu, K., et al.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimedia 18, 1098–1110 (2016). https://doi.org/10.1109/TMM.2016.2547343

    Article  Google Scholar 

  14. Gu, K., Qiao, J., Min, X., Yue, G., Lin, W., Thalmann, D.: Evaluating quality of screen content images via structural variation analysis. IEEE Trans. Visual Comput. Graphics 24, 2689–2701 (2018). https://doi.org/10.1109/TVCG.2017.2771284

    Article  Google Scholar 

  15. Ni, Z., Ma, L., Zeng, H., Chen, J., Cai, C.: ESIM: edge similarity for screen content image quality assessment. iEEE Trans. Image Process. 26, 14 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gandomi, A.H., Alavi, A.H.: A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput. Applic. 21(1), 171–187 (2012). https://doi.org/10.1007/s00521-011-0734-z

    Article  Google Scholar 

  17. Hii, C., Searson, D.P., Willis, M.J.: Evolving toxicity models using multigenesymbolic regression and multiple objectives. Int. J. Mach. Learn. Comput. 1, 30–35 (2011). https://doi.org/10.7763/IJMLC.2011.V1.5

    Article  Google Scholar 

  18. Searson, D.P.: GPTIPS 2: an open-source software platform for symbolic data mining. In: Gandomi, A.H., Alavi, A.H., Ryan, C. (eds.) Handbook of Genetic Programming Applications, pp. 551–573. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20883-1_22

    Chapter  Google Scholar 

  19. Smits, G.F., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In: O’Reilly, U.-M., Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice II, vol. 8, pp. 283–299. Springer-Verlag, New York (2005)

    Chapter  Google Scholar 

  20. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15, 3440–3451 (2006). https://doi.org/10.1109/TIP.2006.881959

    Article  Google Scholar 

  21. MRohaly: VQEG: Final Report from the video quality experts group on the Validation of objective models of video quality assessment. FR-TV Phase II, http://Www.Vqeg.Org/ (2000)

  22. Chen, J., Shen, L., Zheng, L., Jiang, X.: Naturalization module in neural networks for screen content image quality assessment. IEEE Signal Process. Lett. 25, 1685–1689 (2018). https://doi.org/10.1109/LSP.2018.2871250

    Article  Google Scholar 

  23. Fu, Y., Zeng, H., Ma, L., Ni, Z., Zhu, J., Ma, K.-K.: Screen content image quality assessment using multi-scale difference of Gaussian. IEEE Trans. Circuits Syst. Video Technol. 28, 2428–2432 (2018). https://doi.org/10.1109/TCSVT.2018.2854176

    Article  Google Scholar 

  24. Rahul, K., Tiwari, A.K.: FQI: feature-based reduced-reference image quality assessment method for screen content images. IET Image Proc. 13, 1170–1180 (2019). https://doi.org/10.1049/iet-ipr.2018.5496

    Article  Google Scholar 

  25. Jiang, X., Shen, L., Ding, Q., Zheng, L., An, P.: Screen content image quality assessment based on convolutional neural networks. J. Vis. Commun. Image Represent. 67, 102745 (2020). https://doi.org/10.1016/j.jvcir.2019.102745

    Article  Google Scholar 

  26. Xia, Z., Gu, K., Wang, S., Liu, H., Kwong, S.: Toward accurate quality estimation of screen content pictures with very sparse reference information. IEEE Trans. Industr. Electron. 67, 2251–2261 (2020). https://doi.org/10.1109/TIE.2019.2905831

    Article  Google Scholar 

  27. Jiang, X., Shen, L., Feng, G., Yu, L., An, P.: Deep Optimization model for Screen Content Image Quality Assessment using Neural Networks. ArXiv:190300705 [Cs] (2019)

    Google Scholar 

  28. Jiang, X., Shen, L., Yu, L., Jiang, M., Feng, G.: No-reference screen content image quality assessment based on multi-region features. Neurocomputing 386, 30–41 (2020). https://doi.org/10.1016/j.neucom.2019.12.027

    Article  Google Scholar 

  29. Gao, R., Huang, Z., Liu, S.: Multi-task deep learning for no-reference screen content image quality assessment. In: Lokoč, J., et al. (eds.) MMM 2021. LNCS, vol. 12572, pp. 213–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67832-6_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naima Merzougui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Merzougui, N., Djerou, L. (2023). Genetic Programming for Screen Content Image Quality Assessment. In: Salem, M., Merelo, J.J., Siarry, P., Bachir Bouiadjra, R., Debakla, M., Debbat, F. (eds) Artificial Intelligence: Theories and Applications. ICAITA 2022. Communications in Computer and Information Science, vol 1769. Springer, Cham. https://doi.org/10.1007/978-3-031-28540-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28540-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28539-4

  • Online ISBN: 978-3-031-28540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics