
Random Generator Quality and GP Performance

Mark M. Meysenburg

Department of Computer Science
Doane College
Crete, NE 68333

mmeysenburg@doane.edu
(402) 826-8267

James A. Foster

Laboratory for Applied Logic
Department of Computer Science

University of Idaho
Moscow, ID 83844
foster@cs.uidaho.edu

(208) 885-7062

Abstract

In previous studies, the authors found that
pseudo-random number generator (PRNG)
quality had little e�ect on the performance
of a simple genetic algorithm (GA). This pa-
per extends our work to the area of genetic
programming (GP). We examine the e�ect
of PRNG quality on the performance of GP
techniques. We detail a set of PRNGs which
generate random numbers through various
techniques, and a method for evaluating the
quality of these PRNGs. We explain the ap-
plication of detailed statistical analysis to the
results of more than 50,000 individual GP
runs, over a set of four GP test problems.
We found no evidence to support the notion
that higher quality PRNGs caused improved
GP performance.

1 INTRODUCTION

Genetic programming (GP) techniques rely heav-
ily on the use of pseudo-random number genera-
tors (PRNGs). From initial population generation,
through selection, crossover, and mutation, the use
of randomness is pervasive through GP algorithms.
Therefore, it is reasonable to wonder how PRNG qual-
ity e�ects GP performance. Previously, Daida, et al.
have shown that PRNG choice can e�ect the solu-
tion quality of GP algorithms, albeit in non-intuitive
ways. In one case [Daida et al., 1997], they found that
a PRNG of lesser quality caused better GP perfor-
mance than a higher quality PRNG. In another case
[Daida et al., 1999], they showed that what appeared
to be a large performance gain caused by PRNG se-
lection was in fact not a statistically signi�cant gain.
Both of these studies focused on the wall-following
robot problem, as described by Koza [Koza, 1992a]. In

this study, we examine more PRNGs and di�erent GP
test problems, to determine if general PRNG quality
e�ects GP performance.

In our previous work with genetic algorithms (GAs)
[Meysenburg, 1997, Meysenburg and Foster, 1997], we
found no evidence that improved PRNG quality led to
improved GA performance. In this study we applied
similar techniques to examine the e�ect of PRNG qual-
ity on the performance of GP algorithms. As for our
GA work, we found no evidence that improved PRNG
quality led to improved GP performance.

2 TOOLS

We used a modular, object-oriented system consisting
of the base GP objects, GP test problems, PRNGs,
and a test suite to evaluate the PRNGs.

We used version 1.0 of Kokkonen's gpjpp package
[Kokkonen, 1997], a Java GP system based on the
gpc++ GP implementation. Like gpc++, gpjpp sup-
ports automatically de�ned functions (ADFs), tour-
nament and �tness-proportionate selection, demetic
grouping, steady state populations, subtree crossover,
and swap and shrink mutation. In addition, gpjpp
produces pictures of expression trees in GIF-�le for-
mat, implements diversity checking in a relatively eÆ-
cient manner, implements Koza's greedy over-selection
scheme, and allows explicit complexity limits to be set.

We performed experiments using several di�erent
Java-coded PRNGs that represent common algorithms
for generating pseudo-random numbers. The cate-
gories of PRNGs, and the PRNGs themselves, are
listed below.

We used two linear congruential PRNGs: RAND and
PM. RAND is the java.util.Random PRNG, which
uses the linear congruential algorithm described in
Knuth's Volume 2, section 3.2.1 [Knuth, 1997]. PM



is a Java version of the Park and Miller minimal stan-
dard linear congruential PRNG. PM is based on the C
implementation in Press, et al. [Press et al., 1992].

We used MOTHER, a multiply with carry generator
termed \the mother of all PRNGs." MOTHER is de-
scribed by Marsaglia [Marsaglia, 1994].

We used an additive and a subtractive PRNG, ADD
and SUB. ADD is a version of the additive genera-
tor described in section 3.2.2 of Knuth's Volume 2
[Knuth, 1997]. SUB is a Java version of the Knuth
subtractive generator, based on the C implementation
in Press, et al. [Press et al., 1992].

We used three compound, or shu�ed, PRNGs:
SHSUB, SHPM, and SHLEC. SHSUB is a version of
SUB, shu�ed using RAND, according to the shu�ing
algorithm described by Knuth [Knuth, 1997]. SHPM
is a shu�ed version of PM, based on the C implemen-
tation from Press, et al. [Press et al., 1992]. SHLEC
is a Java version of the shu�ed L'Ecuyer genera-
tor, based on the C implementation in Press, et al.
[Press et al., 1992].

We used two feedback shift register generators, FSR
and TGFSR. FSR is a standard feedback shift reg-
ister generator of the type described by Schneier
[Schneier, 1994]. TGFSR is a twisted generalized feed-
back shift register generator, described by Matsumoto
and Kurita [Matsumoto and Kurita, 1992].

Finally, we used TAUSS, a Combined Taus-
worthe generator, described by Tezuka and L'Ecuyer
[Tezuka and L'Ecuyer, 1991].

We used Marsaglia's Diehard suite of tests, available
in executable form on the Internet [Marsaglia, 1993,
Marsaglia, 1998], to evaluate the overall quality of our
PRNGs. The Diehard suite contains nineteen tests,
which operate on large (approximately 10 MB) bi-
nary �les created by the PRNG in question. The
Diehard suite includes several tests similar to those
presented by Knuth [Knuth, 1997], such as the Birth-
day Spacings Test and the Runs Test. In addition, the
Diehard suite includes several tests that perform in-
depth binary-level examinations of the sequences pro-
duced by the PRNG in question. So, the Diehard suite
seemed to be a more stringent set of tests than the clas-
sic Knuth PRNG evaluation algorithms. The Diehard
tests are more fully described in the �rst author's the-
sis [Meysenburg, 1997].

We used the four test problems supplied with the
gpjpp package as our GP test suite. The problems are
summarized below. More details regarding test suite
parameters can be found at the �rst author's web cite,

http://www.doane.edu/crete/academic

/science/ist/mark.htm.

We used an arti�cial ant problem, as described by
Koza [Koza, 1992b]. We used the Santa Fe trail for
our experiments, Koza's ramped half-and-half method
for generating the initial population, and elitist �tness-
proportionate (a.k.a. roulette-wheel) selection.

The terminal set for this problem was:

T = f(LEFT ); (RIGHT ); (MOVE)g:

The function set was:

F = fIFFOODAHEAD;PROG2; PROG3g:

We used a lawnmower problem, as described by Koza
[Koza, 1994]. We used a steady-state population, with
ramped half-and-half generation of the initial popu-
lation. We used non-elitist �tness-proportionate se-
lection. With probability pn = 0:02, we allowed the
creation of a new individual while evolving the next
generation. We used shrink mutation and swap muta-
tion for this problem. Shrink mutation �nds a random
function gene in a random branch and then replaces
that gene by one of its immediate children. Swap
mutation �nds a random function gene in a random
branch and changes the node type of that gene. We
used pm = 0:02 for both types of mutation.

The terminal and function sets we used varied slightly
from those described by Koza. The terminal sets for
the result producing branch, the function ADF0, and
the function ADF1 were the same:

Trpb = TADF0 = TADF1 = f(LEFT ); (MOW )g:

The function set for the result producing branch was

Frpb = fADF0; ADF1; PROGNg:

The function set for ADF0 was

FADF0 = fPROGNg:

The function set for ADF1 was

FADF1 = fADF0; PROGNg:

We used a multiplexor problem, also described by
Koza [Koza, 1992b]. We used ramped half-and-half
generation and non-elitist �tness-proportionate selec-
tion.

The terminal set for the result producing branch, the
function ADF0, and the function ADF1 was

Trpb = TADF0 = TADF1 = fA0; A1; D0; D1; D2; D3g;



where Ai represented an address input and Di repre-
sented a data input.

The function set for the result producing branch was

Frpb = fAND;OR;NOT; IF;ADF0; ADF1g:

The function set for ADF0 was

FADF0 = fAND;OR;NOT; IFg:

The function set for ADF1 was

FADF1 = fADF0; AND;OR;NOT; IFg:

Finally, we used a symbolic regression problem, as de-
scribed by Koza [Koza, 1992b]. It involves evolving
symbolic expressions that approximate the function

f(x) = x4 + x3 + x2 + x:

We used ramped half-and-half generation and non-
elitist �tness-proportionate selection.

The terminal set for this problem was:

T = fXg:

The function set was:

F = f+;�; �;%g:

3 METHODOLOGY

Since the quality of some PRNGs can be signi�cantly
e�ected by the seed value used to start the sequence,
we randomly created a set of thirty-two, sixty-four bit
PRNG seed values. We created each seed value by
rolling a four-sided die thirty-two times, interpreting
each roll as a two-bit value. We then concatenated the
bit patterns to form the seed value.

Most of our PRNGs take signed, sixty-four bit inte-
gers as seeds; hence our randomly created sixty-four
bit binary patterns. However, we derived some of the
PRNGs from C implementations; these PRNGs re-
quire thirty-two bit seeds. For these generators, we
cast the sixty-four bit integers to thirty-two bits. In
addition, one generator requires negative thirty-two
bit integers; in this case, we cast to thirty-two bits
and then 
ipped the sign bit of positive seeds.

To summarize how a PRNG performed in the
Diehard tests, we used a scoring and ranking
scheme similar to that in our previous work
[Meysenburg and Foster, 1997]. In particular, we ran
each PRNG through the test suite, with one run for

each of the thirty-two seed values, and then assigned
scores and ranks to the PRNGs based on the results
of the Diehard tests.

Each of the Diehard tests produced one or more
p-values. We categorized the p-values as good,
suspect, or rejected, based on Johnson's scheme
[Johnson, 1996]. We classi�ed a p-value as rejected
if p � 0:998. We classi�ed a p-value as suspect if
0:95 � p < 0:998. We classi�ed all other p-values
as good. We assigned point values to the PRNGs: two
points for every reject classi�cation, one point for ev-
ery suspect classi�cation, and no points for every good
classi�cation. Then, we summed these points to pro-
duce a �nal score for each PRNG. Low scores indicate
good PRNG quality, whereas high scores indicate poor
PRNG quality.

We performed experiments for each of our four GP test
suite problems, and for each of our thirty-two seed val-
ues. For a particular (test problem, PRNG, seed value)
triple, we performed GP runs until a certain number
(�ve for the lawnmower and multiplexor problems, ten
for the ant and symbolic regression problems) of so-
lutions meeting the termination criteria were found.
A given GP run lasted until a suitable solution was
found, or for a maximum of 51 generations.

The gpjppGP system produces volumes of detailed in-
formation about each run, including best, worst, and
average �tness; best, worst, and average complexity;
population diversity, and more. We extracted the
generation-by-generation average �tness information
from the raw output.

For each test suite problem, we used statistical meth-
ods to compare the performance of the GP driven by
PRNG a versus the GP driven by PRNG b (a 6= b), on
a generation-by-generation basis. To do this, we es-
tablished the following null and research hypotheses.

Null Hypothesis. For this generation, the GP algo-
rithm driven by PRNG a does not perform better
than the algorithm driven by PRNG b. In our
notation, �a and �b are the average population
�tness for the algorithm driven by PRNG a and
PRNG b, and Opt is the optimal �tness an indi-
vidual might achieve:

H0 : j�a �Optj � j�b �Optj:

Research Hypothesis. The inverse of the null hy-
pothesis; in other words, for this generation, the
algorithm driven by PRNG a does perform better
than the algorithm driven by PRNG b:

Hr : j�a �Optj > j�b �Optj:



For a given generation, we used the �tness of individ-
uals in the population as the measure of GP perfor-
mance.

We used the Wilcoxson test, described by Green and
Margerison [Green and Margerison, 1978], as our sta-
tistical measure. This is a method for hypothesis test-
ing using the mean of a random variable with an un-
known distribution.

We performed the Wilcoxson test on a generation-
by-genration basis, for each (test problem, PRNG
a, PRNG b) triple. That is, for each generation n,
1 � n � 51, we used the test to compare the average
�tnesses in all runs driven by PRNG a with the average
�tnesses in all runs driven by PRNG b. We only per-
formed the tests when there were enough data points
for it to be meaningful. For example, if PRNG a and
PRNG b both drove the GP to valid solutions within
ten generations, we performed no tests for generations
11 through 51.

After performing the Wilcoxson tests we tallied the
total number of null hypothesis rejections, across all
generations, for each (test suite problem, PRNG a,
PRNG b) triple. We normalized these tallies to be
between zero and one, so that one represented the case
where the null hypothesis was rejected in every case.
Zero represented the case where there were no null
hypothesis rejections.

4 RESULTS

The Diehard scores for our PRNGs are shown in Ta-
ble 1. As expected, the very common linear congruen-
tial PRNGs, PMPM and RAND, scored much worse
than the rest of the PRNGs. Given that PRNGs like
SHSUB, FSR, and ADD are relatively easy to imple-
ment and often faster than linear congruential PRNGs,
one wonders why developers continue to include linear
congruential PRNGs as part of new language imple-
mentations.

However, in our study we wished to determine if bet-
ter PRNGs make GP techniques perform better. If
improved PRNG quality caused improved GP perfor-
mance, one would expect that the GP would perform
better when driven by SHSUB, FSR, or ADD than
when driven by PM or RAND. In this study we found
no evidence to support this expectation.

Figures 1, 2, 3, and 4 illustrate the tallies of null hy-
pothesis rejections we collected during our statistical
analysis.

In the �gures, a relatively tall column would mean that
there were a large number of null hypothesis rejections

PRNG Rank Score

SHSUB 1 548
FSR 2 573
ADD 3 577

TGFSR 4 584
MOTHER 5 602

SUB 6 655
SHLEC 7 751
SHPM 8 799
TAUSS 9 935
PM 10 1619

RAND 11 2129

Table 1: PRNG Test Suite Scores

Figure 1: H0 Rejections for Arti�cial Ant Problem

for that population size, test suite function, PRNG a,
and PRNG b; in other words, there was statistical ev-
idence that the null hypothesis PRNG caused the GP
algorithm to perform better than the research hypoth-
esis PRNG.

Further, a line of tall columns parallel to the null hy-
pothesis axis would indicate that the research hypoth-
esis PRNG labeling the line caused the algorithm to
perform worse than all other PRNGs in the study. A
line of tall columns parallel to the research hypothesis
axis would indicate that the null hypothesis PRNG la-
beling the line caused the algorithm to perform better
than all other PRNGs in the study.



Figure 2: H0 Rejections for 8�8 Lawnmower Problem

Figure 3: H0 Rejections for Multiplexor Problem

Figure 4: H0 Rejections for Symbolic Regression Prob-
lem

5 CONCLUSIONS

We found very few null hypothesis rejections in our
statistical examination of GP performance. The leg-
ends on Figures 1, 2, 3, and 4 show that the maximum
normalized values in the �gures were on the order of
10�4, far from 1.0. So, we found no statistically signi�-
cant evidence that improved PRNG quality caused im-
proved GP performance. Further, there were no pro-
nounced, complete rows or columns of null hypothesis
rejections. Instead, the null hypothesis rejections we
did �nd were scattered.

Although these results were from only a limited num-
ber of GP test problems, the results of this study were
consistent with the results of our previous work. In
this study, as in our GA studies, we found no sta-
tistical evidence that improved PRNG quality caused
improved GP performance.

6 FURTHER RESEARCH

There are several other aspects of GP performance we
would like to examine. For example, how does PRNG
quality e�ect the complexity of individuals in the pop-
ulation, or the diversity of the population? We have
data on these aspects; all that remains is to apply
statistical analyses to the data. We would also like
to expand our work to other GP test problems, and
to add some theoretical weight to our studies, which
have been purely statistical to this point.



References

[Daida et al., 1997] Daida, J., Ross, S., McClain, J.,
Ampy, D., and Holczer, M. (1997). Challenges with
veri�cation, repeatability, and meaningful compar-
isons in genetic programming. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba,
H., and Riolo, R. L., editors, Genetic Programming
1997: Proceedings of the Second Annual Conference,
pages 64{69, Stanford University, CA, USA. Morgan
Kaufmann.

[Daida et al., 1999] Daida, J. M., Ampy, D. S.,
Raatanasavetavadhana, M., Li, H., and Chaudhri,
O. A. (1999). Challenges with veri�cation, repeata-
bility, and meaningful comparison in genetic pro-
gramming: Gibson's conundrum. In Banzhaf, W.,
Daida, J., Eiben, A. E., Garzon, M. H., Honavar, V.,
Jakiela, M., and Smith, R. E., editors, GECCO-99:
Proceedings of the Genetic and Evolutionary Com-

putation Conference, Orlando, FL, USA. Morgan
Kaufmann.

[Green and Margerison, 1978] Green, J. R. and Marg-
erison, D. (1978). Statistical Treatment of Experi-

mental Data. Elsevier Scienti�c Publishing Com-
pany, �rst edition.

[Johnson, 1996] Johnson, B. C. (1996). Radix-b ex-
tensions to some common empirical tests for pseu-
dorandom number generators. ACM Transactions

on Modeling and Computer Simulation, 6(4):261 {
273.

[Knuth, 1997] Knuth, D. E. (1997). The Art of Com-
puter Programming, volume 2. Addison Wesley,
third edition.

[Kokkonen, 1997] Kokkonen, K. (1997).
http://www.pcisys.net/ kimk/gpjpp.htm.

[Koza, 1992a] Koza, J. R. (1992a). Evolution of sub-
sumption using genetic programming. In Varela, F.
and Bourgine, P., editors, Proceedings of the First

European Conference of Arti�cial Life: Towards a

Practice of Autonomous Systems, pages 110 { 119.
The MIT Press.

[Koza, 1992b] Koza, J. R. (1992b). Genetic Program-
ming: On the Programming of Computers by Means

of Natural Selection. The MIT Press.

[Koza, 1994] Koza, J. R. (1994). Genetic Program-

ming II: Automatic Discovery of Reusable Pro-

grams. The MIT Press.

[Marsaglia, 1993] Marsaglia, G. (1993). Monkey tests
for random number generators. Computers & Math-

ematics with Applications, 9:1{10.

[Marsaglia, 1994] Marsaglia, G. (1994). Yet another
rng. Posted to sci.stat.math August 1, 1994.

[Marsaglia, 1998] Marsaglia, G. (1998).
http://stat.fsu.edu/~geo/diehard.html.

[Matsumoto and Kurita, 1992] Matsumoto, M. and
Kurita, Y. (1992). Twisted gfsr generators. ACM

Transactions on Modeling and Computer Simula-

tion, 2(3):179 { 194.

[Meysenburg, 1997] Meysenburg, M. M. (1997). The
e�ect of pseudo-random number generator quality
on the performance of a simple genetic algorithm.
Master's thesis, University of Idaho.

[Meysenburg and Foster, 1997] Meysenburg, M. M.
and Foster, J. A. (1997). The quality of pseudo-
random number generators and simple genetic algo-
rithm performance. In Proceedings of the Seventh

International Conference on Genetic Algorithms,
pages 276 { 281. Morgan Kaufmann.

[Press et al., 1992] Press, W. H., Teukolsky, S. A.,
Vetterling, W. T., and Flannery, B. P. (1992). Nu-
merical Recipes in C. Cambridge University Press,
second edition.

[Schneier, 1994] Schneier, B. (1994). Applied Cryptog-

raphy. John Wiley And Sons.

[Tezuka and L'Ecuyer, 1991]
Tezuka, S. and L'Ecuyer, P. (1991). EÆcient and
portable combined tausworthe random number gen-
erators. ACM Transactions on Modeling and Com-

puter Simulation, 1(2):99 { 112.


