Skip to main content
Log in

Towards estimation of electricity demand utilizing a robust multi-gene genetic programming technique

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Multi-gene genetic programming (MGGP) is a new nonlinear system modeling approach that integrates the capabilities of standard genetic programming and classical regression. This paper deals with the application of this robust technique for the prediction of annual electricity demand in Thailand. The predictor variables included in the analysis were population, gross domestic product, stock index, and total revenue from exporting industrial products. Several statistical criteria were used to verify the validity of the model. A sensitivity analysis was performed to evaluate the contributions of the input features. The correlation coefficients between the measured and predicted electricity demand values are equal to 0.999 and 0.997 for the calibration and testing data sets, respectively. In addition to its high accuracy, MGGP outperforms regression and other powerful soft computing-based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Aal, R. E. (2008). Univariate modeling and forecasting of monthly energy demand time series using abductive and neural networks. Computers & Industrial Engineering, 54(4), 903–917.

    Article  Google Scholar 

  • Abdel-Aal, R. E., & Al-Garni, A. Z. (1997). Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis. Energy, 22, 1059–1069.

    Article  Google Scholar 

  • Abdel-Aal, R. E., Al-Garni, A. Z., & Al-Nassar, Y. N. (1997). Modelling and forecasting monthly electric energy consumption in eastern Saudi Arabia using abductive networks. Energy, 22(9), 911–921.

    Article  Google Scholar 

  • Alavi, A. H., & Gandomi, A. H. (2011a). A robust data mining approach for formulation of geotechnical engineering systems. Engineering Computations, 28(3), 242–274.

    Article  MATH  Google Scholar 

  • Alavi, A. H., & Gandomi, A. H. (2011b). Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Computers & Structures, 89(23–24), 2176–2194.

    Article  Google Scholar 

  • Alavi, A. H., & Gandomi, A. H. (2012). Energy-based models for assessment of soil liquefaction. Geoscience Frontiers, 3(4), 541–555.

    Article  Google Scholar 

  • Alavi, A. H., Gandomi, A. H., Mousavi, M., & Mollahasani, A. (2010). High-precision modeling of uplift capacity of suction caissons using a hybrid computational method. Geomechanics and Engineering, 2(4), 253–280.

    Article  Google Scholar 

  • Alavi, A. H., Gandomi, A. H., & Mollahasani, A. (2011a). A genetic programming-based approach for performance characteristics assessment of stabilized soil. Variants of evolutionary algorithms for real-world applications, Springer, Berlin, Chapter 9, 343–375

  • Alavi, A. H., Ameri, M., Gandomi, A. H., & Mirzahosseini, M. R. (2011b). Formulation of flow number of asphalt mixes using a hybrid computational method. Construction and Building Materials, 25(3), 1338–1355.

    Article  Google Scholar 

  • Annunziato, M., Bertini, I., Lucchetti, M., Pannicelli, A., & Pizzuti, S. (2004). The evolutionary control methodology: an overview. Artificial Evolution, Lecture Notes in Computer Science Volume, 2936, 331–342.

    Article  Google Scholar 

  • Annunziato, M., Bertini, I., Iannone, R., & Pizzuti, S. (2006). Evolving feed-forward neural networks through evolutionary mutation parameters. Intelligent Data Engineering and Automated Learning—IDEAL 2006. Lecture Notes in Computer Science Volume, 4224(2006), 554–561.

    Article  Google Scholar 

  • Annunziato, M., Moretti, F., & Pizzuti, S. (2013). Urban traffic flow forecasting using neural-statistic hybrid modeling. Soft computing models in industrial and environmental applications. Advances in Intelligent Systems and Computing Volume, 188, 183–190.

    Article  Google Scholar 

  • Azadeh, A., Ghaderi, S. F., Tarverdian, S., & Saberi, M. (2007). Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Applied Mathematics and Computation, 186, 1731–1741.

    Article  MATH  MathSciNet  Google Scholar 

  • Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. (2008a). Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors. Energy Conversion and Management, 49, 2272–2278.

    Article  Google Scholar 

  • Azadeh, A., Ghaderi, S. F., & Sohrabkhani, S. (2008b). A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy, 36, 2637–2644.

    Article  Google Scholar 

  • Bhattacharya, M., Abraham, A., & Nath, B. (2001). A linear genetic programming approach for modeling electricity demand prediction in Victoria. In Proceedings of the hybrid information systems, Adelaide, Australia, pp. 379–393.

  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: forecasting and control. San Francisco: Holden-Day.

    MATH  Google Scholar 

  • Can, B., & Heavey, C. (2011). Comparison of experimental designs for simulation-based symbolic regression of manufacturing systems. Computers & Industrial Engineering, 61(3), 447–462.

    Article  Google Scholar 

  • Can, B., & Heavey, C. (2012). A comparison of genetic programming and artificial neural networks in metamodeling of discrete-event simulation models. Computers & Operations Research, 39(2), 424–436.

    Article  Google Scholar 

  • Catalao, J. P. S., Mariano, S. J. P. S., Mendes, V. M. F., & Ferreira, L. A. F. M. (2007). Short-term electricity prices forecasting in a competitive market: a neural network approach. Electric Power Systems Research, 77, 1297–1304.

    Article  Google Scholar 

  • Cho, M. Y., Hwang, J. C., & Che, S. (1995). Customer short term load forecasting by using ARIMA transfer function model. In Proceedings of the International Conference on Energy Management and Power Delivery, EMPD’95, Singapore, pp. 317–322.

  • Currie, K. R. (1992). An intelligent grouping algorithm for cellular manufacturing. Computers & Industrial Engineering, 23(1–4), 109–112.

    Article  Google Scholar 

  • Daim, T. U., Kayakutlu, G., & Cowan, K. (2010). Developing Oregon’s renewable energy portfolio using fuzzy goal programming model. Computers & Industrial Engineering, 59(4), 786–793.

    Article  Google Scholar 

  • Desai, C. K., & Shaikh, A. (2012). Prediction of depth of cut for single-pass laser micro-milling process using semi-analytical, ANN and GP approaches. The International Journal of Advanced Manufacturing Technology, 60, 865–882.

    Article  Google Scholar 

  • Ediger, V. S., & Akar, S. (2007). ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy, 35, 1701–1708.

    Article  Google Scholar 

  • Fan, S., & Chen, L. (2006). Short-term load forecasting based on an adaptive hybrid method. IEEE Transactions on Power Systems, 21, 392–401.

    Article  Google Scholar 

  • Gandomi, A. H., & Alavi, A. H. (2011). Multi-stage genetic programming: a new strategy to nonlinear system modeling. Information Sciences, 181(23), 5227–5239.

    Article  Google Scholar 

  • Gandomi, A. H., & Alavi, A. H. A. (2012a). New multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Computing & Applications, 21, 171–187.

    Article  Google Scholar 

  • Gandomi, A. H., & Alavi, A. H. (2012b). A new multi-gene genetic programming approach to nonlinear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Computing & Applications, 21, 189–201.

    Article  Google Scholar 

  • Gandomi, A. H., & Alavi, A. H. (2013). Hybridizing genetic programming with orthogonal least squares for modeling of soil liquefaction. International Journal of Earthquake Engineering and Hazard Mitigation, 1(1), 2–8. Praise Worthy Prize.

    MathSciNet  Google Scholar 

  • Gandomi, A. H., Alavi, A. H., Mirzahosseini, M. R., & Moghadas Nejad, F. (2011a). Nonlinear genetic-based models for prediction of flow number of asphalt mixtures. Journal of Materials in Civil Engineering, 23(3), 1–18.

    Article  Google Scholar 

  • Gandomi, A. H., Alavi, A. H., & Yun, G. J. (2011b). Nonlinear modeling of shear strength of SFRCB beams using linear genetic programming. Structural Engineering and Mechanics, 38(1), 1–25.

    Article  Google Scholar 

  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2. Journal of Molecular Graphics and Modelling, 20, 269–276.

    Article  Google Scholar 

  • Gopalakrishnan, K., Kim, S., Ceylan, H., & Khaitan, S. K. (2010) Natural selection of asphalt stiffness predictive models with genetic programming. Proceedings of the Artificial Neural Networks In Engineering (ANNIE) 2010. In C. H. Dagli et al. (Eds.), St. Louis, Missouri, November 1–3, 2010.

  • Henriksson, E., Söderholm, P., & Wårell, L. (2013). Industrial electricity demand and energy efficiency policy: the case of the Swedish mining industry. Energy Efficiency. doi:10.1007/s12053-013-9233-7.

    Google Scholar 

  • Hong, W. C. (2009). Electric load forecasting by support vector model. Applied Mathematical Modelling, 33, 2444–2454.

    Article  MATH  Google Scholar 

  • Hsu, C. C., & Chen, C. Y. (2003). Regional load forecasting in Taiwan-applications of artificial neural networks. Energy Conversion and Management, 44, 1941–1949.

    Article  Google Scholar 

  • Kandananond, K. (2011). Forecasting electricity demand in Thailand with an artificial neural network approach. Energies, 4, 1246–1257.

    Article  Google Scholar 

  • Kaydani, H., Najafzadeh, M., & Mohebbi, A. (2014). Wellhead choke performance in oil well pipeline systems based on genetic programming. Journal of Pipeline Systems Engineering and Practice, 5(3), 06014001.

    Article  Google Scholar 

  • Kheirkhah, A., Azadeh, A., Saberi, M., Azaron, A., & Shakouri, H. (2013). Improved estimation of electricity demand function by using of artificial neural network, principal component analysis and data envelopment analysis. Computers & Industrial Engineering, 64(1), 425–441.

    Article  Google Scholar 

  • Koza, J. R. (1992). Genetic programming, on the programming of computers by means of natural selection. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Lee, D. G., Lee, B. W., & Chang, S. H. (1997). Genetic programming model for long-term forecasting of electric power demand. Electric Power Systems Research, 40, 17–22.

    Article  Google Scholar 

  • Miranda, V., Srinivasan, D., & Proenca, L. M. (1998). Evolutionary computation in power systems. International Journal of Power & Energy Systems, 20(2), 89–98.

    Article  Google Scholar 

  • Mitchell, T. (1997). Does machine learning really work? AI Magazine, 18(3), 11–20.

    Google Scholar 

  • Moghrabi, C., & Eid, M. S. (1998). Modeling users through an expert system and a neural network. Computers & Industrial Engineering, 35(3–4), 583–586.

    Article  Google Scholar 

  • Mohamed, N., Ahmad, M. H., Ismail, Z., & Suhartono. (2010). Double seasonal ARIMA model for forecasting load demand. Matematika, 26, 217–231.

    MathSciNet  Google Scholar 

  • Mostafavi, E. S., Mostafavi, S. I., Hosseinpour, F., & Jaafari, A. (2013a). A novel machine learning approach for the estimation of electricity demand. Energy Conversion and Management, 74, 548–555.

    Article  Google Scholar 

  • Mostafavi, E. S., Saeedi, S., Sarvar, R., Izadi Moud, H., & Mousavi, S. M. (2013b). A hybrid computational approach to estimate solar global radiation: an empirical evidence from Iran. Energy, 49, 204–210.

    Article  Google Scholar 

  • Najafzadeh, M., & Azamathulla, H. M. (2013a). Group method of data handling to predict scour depth around bridge piers. Neural Computing and Applications, 23(7–8), 2107–2112.

    Article  Google Scholar 

  • Najafzadeh, M., & Azamathulla, H. (2013a). Neuro-fuzzy GMDH to predict the scour pile groups due to waves. Journal of Computing in Civil Engineering. doi:10.1061/(ASCE)CP.1943-5487.0000376, 04014068.

  • Najafzadeh, M., & Lim, S. Y. (2014). Application of improved neuro-fuzzy GMDH to predict scour depth at sluice gates. Earth Science Informatics 8(1), 187–196.

  • Najafzadeh, M., Barani, G., & Azamathulla, H. M. (2012). Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling. Neural Computing and Applications, 24(3–4), 629–635.

    Google Scholar 

  • Najafzadeh, M., Barani, G., & Hessami-Kermani, M. (2013). Group method of data handling to predict scour depth around vertical piles under regular waves. Scientia Iranica, 20(3), 406–413.

    Google Scholar 

  • Najafzadeh, M., Barani, G., & Hessami Kermani, M. (2014a). Estimation of pipeline scour due to waves by GMDH. Journal of Pipeline Systems Engineering and Practice, 5(3), 06014002.

    Article  Google Scholar 

  • Najafzadeh, M., Barani, G., & Hessami-Kermani, M. (2014b). Group method of data handling to predict scour at downstream of a ski-jump bucket spillway. Earth Science Informatics, 7(4), 231–248.

    Article  Google Scholar 

  • Pino, R., de la Fuente, D., Priore, P., & Parreño, J. (2000). Short term forecasting of the electricity market of Spain using neural networks. In: The 20th International Symposium on Forecasting, ISF’00, pp. 39-53, Lisboa, Portugal.

  • Pino, R., Parreno, J., Gomez, A., & Priore, P. (2008). Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks. Engineering Applications of Artificial Intelligence, 21(1), 53–62.

    Article  Google Scholar 

  • Pizzuti, S., Annunziato, M., & Moretti, F. (2013). Smart street lighting management. Energy Efficiency, 6(3), 607–616.

    Article  Google Scholar 

  • Ringwood, J. V., Bofelli, D., & Murray, F. T. (2001). Forecasting electricity demand on short, medium and long time scales using neural networks. Journal of Intelligent and Robotic Systems, 31, 129–147.

    Article  MATH  Google Scholar 

  • Roy, P. P., & Roy, K. (2008). On some aspects of variable selection for partial least squares regression models. QSAR and Combinatorial Science, 27, 302–313.

    Article  Google Scholar 

  • Searson, D. P. (2009). GPTIPS: genetic programming & symbolic regression for MATLAB. White paper. http://www.cs.bham.ac.uk/~wbl/biblio/cache/http___sites.google.com_site_gptips4matlab_file-cabinet_GPTIPSGuide1.0.pdf. Accessed 01 November 2013.

  • Searson, D. P., Willis, M. J., & Montague, G. A. (2007). Co-evolution of nonlinear PLS model components. Journal of Chemometrics, 2, 592–603.

    Article  Google Scholar 

  • Searson, D. P., Leahy, D. E., & Willis, M. J. (2010). GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. Proc Int Multi Conf Eng Comput Scie Hong Kong.

  • Smith, G. N. (1986). Probability and statistics in civil engineering. London: Collins.

    Google Scholar 

  • Srinivasan, D. (2008). Energy demand prediction using GMDH networks. Neurocomputing, 72(1–3), 625–629.

    Article  Google Scholar 

  • Suhartono, & Endharta, A. J. (2009). Short term electricity load demand forecasting in Indonesia by using double seasonal recurrent neural networks. International Journal of Mathematical Models and Methods in Applied Sciences, 3, 171–178.

    Google Scholar 

  • Tay, J. C., & Ho, N. B. (2008). Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Computers & Industrial Engineering, 54(3), 453–473.

    Article  Google Scholar 

  • Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54, 799–805.

    Article  MATH  Google Scholar 

  • Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204, 139–152.

    Article  MATH  Google Scholar 

  • Tien Pao, H. (2007). Forecasting electricity market pricing using artificial neural networks. Energy Conversion and Management, 48, 907–912.

    Article  Google Scholar 

  • Tsujimura, Y., Gen, M., & Ishizaki, S. (1997). Optimal routing in multiple IO data network using neural network with perturbed energy function. Computers & Industrial Engineering, 33(3–4), 477–480.

    Article  Google Scholar 

  • Weise, T. (2009). Global optimization algorithms—theory and application [online]. Germany. Available from Internet: http://www.it-weise.de. Accessed 21 October 2013.

  • Yang, X. S., Gandomi, A. H., Talatahari, S., & Alavi, A. H. (2012). Metaheuristics in water resources, geotechnical and transportation engineering. Waltham: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Sadat Mostafavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, S.M., Mostafavi, E.S. & Hosseinpour, F. Towards estimation of electricity demand utilizing a robust multi-gene genetic programming technique. Energy Efficiency 8, 1169–1180 (2015). https://doi.org/10.1007/s12053-015-9343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-015-9343-5

Keywords

Navigation