Skip to main content

Advertisement

Log in

Lateral Load Capacity of Piles in Clay Using Genetic Programming and Multivariate Adaptive Regression Spline

  • Technical Note
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

This study presents the development of predictive models of lateral load capacity of pile in clay using artificial intelligence techniques; genetic programming and multivariate adaptive regression spline. The developed models are compared with different empirical models, artificial neural network (ANN) and support vector machine (SVM) models in terms of different statistical criteria. A ranking system is presented to evaluate present models with respect to above models. Model equations are presented and are found to be more compact compared to ANN and SVM models. A sensitivity analysis is made to identify the important inputs contributing to the lateral load capacity of pile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abu-Farsakh MY, Titi HH (2004) Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles. J Geotech Geoenviron Eng 130(9):935–944

    Article  Google Scholar 

  2. Abu-Kiefa MA (1998) General regression neural networks for driven piles in cohesionless soils. J Geotech Geoenviron Eng 124(12):1177–1185

    Article  Google Scholar 

  3. Alavi AH, Gandomi AH (2011) Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput Struct 89(23–24):2176–2194

    Article  Google Scholar 

  4. Alavi AH, Gandomi AH (2011) A robust data mining approach for formulation of geotechnical engineering systems. Eng Comput 28(3):242–274

    Article  MATH  Google Scholar 

  5. Bartlett PL (1998) The sample complexity of pattern classification with neural networks; the size of the weights is more important than the size of network. IEEE Trans Inf Theory 44(2):525–536

    Article  MathSciNet  MATH  Google Scholar 

  6. Basheer IA (2001) Empirical modeling of the compaction curve of cohesive soil. Can Geotech J 38(1):29–45

    Article  Google Scholar 

  7. Briaud JL, Tucker LM (1988) Measured and predicted axial response of 98 piles. J Geotech Eng 114(9):984–1001

    Article  Google Scholar 

  8. Broms BB (1964) Lateral resistance of piles in cohesive soils. J Soil Mech Found Eng ASCE 90(SM. 2):27–63

    Google Scholar 

  9. Chan WT, Chow YK, Liu LF (1995) Neural network: an alternative to pile driving formulas. J Comput Geotech 17:135–156

    Article  Google Scholar 

  10. Das SK, Sivakugan N (2010) Discussion of intelligent computing for modeling axial capacity of pile foundations. Can Geotech J 37(8):928–930

    Article  Google Scholar 

  11. Das SK, Samui P, Sabat AK (2011) Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil. Geotech Geol J 29(3):329–342

    Article  Google Scholar 

  12. Das SK, Biswal RK, Sivakugan N, Das B (2011) Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ Earth Sci 64:201–210

    Article  Google Scholar 

  13. Das SK, Basudhar PK (2006) Undrained lateral load capacity of piles in clay using artificial neural network. Comput Geotech 33:454–459

    Article  Google Scholar 

  14. Das SK, Basudhar PK (2008) Prediction of residual friction angle of clays using artificial neural network. Eng Geol 100(3–4):142–145

    Article  Google Scholar 

  15. Das SK. Muduli PK (2011) Evaluation of liquefaction potential of soil using genetic programming. In: Proceeding of Indian geotechnical conference, 15–17 Dec, Kochi, pp 827–830

  16. Das SK, Samui P, Sabat AK, Sitharam TG (2010) Prediction of swelling pressure of soil using artificial intelligence techniques. Environ Earth Sci 61(2):393–403

    Article  Google Scholar 

  17. Demuth H, Beale M (2000) Neural network toolbox. The MathWorks Inc, Natick

    Google Scholar 

  18. Friedman J (1991) Multivariate adaptive regression splines. Ann Stat 19:1–141

    Article  MATH  Google Scholar 

  19. Gandomi AH, Alavi AH (2012) A new multi-gene genetic programming approach to nonlinear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Comput Appl 21:189–201

    Article  Google Scholar 

  20. Gandomi AH, Alavi AH (2013) Hybridizing genetic programming with orthogonal least squares for modeling of soil liquefaction. J Earthq Eng Hazard Mitig 1(1):1–8

    MathSciNet  Google Scholar 

  21. Gandomi AH, Alavi AH, Mousavi M, Tabatabaei SM (2011) A hybrid computational approach to derive new ground-motion prediction equations. Eng Appl Artif Intell 24:717–732

    Article  Google Scholar 

  22. Gandomi AH, Yun GJ, Alavi AH (2013) An evolutionary approach for modeling of shear strength of RC deep beams. Mater Struct. doi:10.1617/s11527-013-0039-z

    Google Scholar 

  23. Giustolisi O, Doglioni A, Savic DA, Webb BW (2007) A multi-model approach to analysis of environmental phenomena. Environ Model Softw 22(5):674–682

    Article  Google Scholar 

  24. Goh ATC, Kulhawy FH, Chua CG (2005) Bayesian neural network analysis of undrained side resistance of drilled shafts. J Geotech Geoenviron Eng ASCE 131(1):84–93

    Article  Google Scholar 

  25. Goh ATC (1995) Empirical design in geotechnics using neural networks. Geotechnique 45(4):709–714

    Article  MathSciNet  Google Scholar 

  26. Goh ATC (1996) Pile driving records reanalyzed using neural networks. J Geotech Eng ASCE 122(6):492–495

    Article  Google Scholar 

  27. Hansen B (1961) The ultimate resistance of rigid piles against transversal force”, Bulletin No. 12, Danish Geotechnical Institute, Copenhagen, pp 5–9

  28. Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural network. Neural Process Lett 17:93–105

    Article  Google Scholar 

  29. Javadi AA, Rezania M, Nezhad MM (2006) Evaluation of liquefaction induced lateral displacements using genetic programming. J Comput Geotech 33:222–233

    Article  Google Scholar 

  30. Koza JR (1992) Genetic programming: on the programming of computers by natural selection. The MIT Press, Cambridge

    MATH  Google Scholar 

  31. Lee IM, Lee JH (1996) Prediction of pile bearing capacity using artificial neural networks. Comput Geotech 18(3):189–200

    Article  Google Scholar 

  32. MathWork Inc. (2005) Matlab User’s manual, Version 6.5. Natick (MA)

  33. Matlock H, Reese LC (1962) Generalized solutions for laterally loaded piles. Trans ASCE 127:1220–1248

    Google Scholar 

  34. Meyerhof GG (1976) Bearing capacity and settlement of pile foundations. J Geotech Eng ASCE 102(3):196–228

    Google Scholar 

  35. Morshed J, Kaluarachchi JJ (1998) Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery. Water Resour Res AGU 34(5):1101–1113

    Article  Google Scholar 

  36. Pal M, Deswal S (2010) Modelling pile capacity using Gaussian process regression. Comput Geotech 37:942–947

    Article  Google Scholar 

  37. Portugal JC, Seco e Pinto PS (1993) Analysis and design of pile under lateral loads. In: Proceedings of the 11th international geotechnical seminar on deep foundation on bored and auger piles, Belgium, pp 309–313

  38. Poulos HG, Davis EH (1980) Pile foundation analysis and design. Wiley, New York

    Google Scholar 

  39. Rao, K.M. and Suresh Kumar, V., 1996. Measured and predicted response of laterally loaded piles. In: Proceedings of the sixth international conference and exhibition on piling and deep foundations, Mumbai, pp 161–167

  40. Rezania M, Javadi AA (2007) A new genetic programming model for predicting settlement of shallow foundations. Can Geotech J 44:1462–1473

    Article  Google Scholar 

  41. Samui P (2008) Prediction of friction capacity of driven piles in clay using the support vector machine. Can Geotech J 45(2):288–295

    Article  Google Scholar 

  42. Samui P, Das S, Kim D (2011) Uplift capacity of suction caisson in clay using multivariate adaptive regression spline. Ocean Eng 38(17–18):2123–2127

    Article  Google Scholar 

  43. Samui P (2011) Multivariate adaptive regression spline applied to friction capacity of driven piles in clay. Int J Geomech Eng 3(4):1–6

    Article  Google Scholar 

  44. Searson, D.P., Leahy, D.E. and Willis, M.J., 2010. GPTIPS: an open source genetic programming toolbox from multi-gene symbolic regression. In: Proceedings of the international multi conference of engineers and computer scientists, Hong Kong

  45. Teh CI, Wong KS, Goh ATC, Jaritngam S (1997) Prediction of pile capacity using neural networks. J Comput Civil Eng ASCE 11(2):129–138

    Article  Google Scholar 

  46. Yang CX, Tham LG, Feng XT, Wang YJ, Lee PK (2004) Two stepped evolutionary algorithm and its application to stability analysis of slopes. J Comput Civil Eng ASCE 18(2):145–153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradyut Kumar Muduli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muduli, P.K., Das, M.R., Das, S.K. et al. Lateral Load Capacity of Piles in Clay Using Genetic Programming and Multivariate Adaptive Regression Spline. Indian Geotech J 45, 349–359 (2015). https://doi.org/10.1007/s40098-014-0142-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-014-0142-2

Keywords

Navigation