Skip to main content

Development and Application of Genetic Programming for Advanced Metamaterial Designs

  • Chapter
  • First Online:
The Advancing World of Applied Electromagnetics

Abstract

This chapter encompasses the journey over the past several years of the group’s efforts to design metamaterials for advanced electromagnetic applications utilizing genetic programming (GP). Starting with the initial work in designing, validating, and characterizing metamaterials for use in ultra-wideband ground plane applications based on human expertise, the need for an optimized design methodology is identified. Next, the rationale to investigate the use of GP for metamaterial design because of its potential to lead to novel and ill-logical structures is explained. Then, the development of the GP software and its resulting metamaterial designs are presented detailing the evolution of the developed GP software over time as different applications were explored. Finally, the results of the experimental validation of the GP-generated designs along with a procedure to characterize their novel, non-intuitive design structures through the use of Prony’s method and equivalent circuit models are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.R. Koza, F.H. Bennet, D. Andre, M.A. Keane, Genetic Programming III: Darwinian Invention and Problem Solving (Morgan Kaufmann Publishers, San Francisco, CA, 1999)

    Google Scholar 

  2. M. Brameier, W. Banzhaf, Linear Genetic Programming (Springer Science +Business Media, LLC, New York, NY, USA, 2007)

    Google Scholar 

  3. W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer Science +Business Media, LLC, New York, NY, USA, 2002)

    Book  Google Scholar 

  4. P.G. Espejo, S. Venture, F. Herrera, A survey on the application of genetic programming to classification. IEEE Trans. Syst. Man Cybern. 40, 121–144 (2010)

    Article  Google Scholar 

  5. M. Brameier, W. Banzhaf, A comparison of linear genetic programming and neural networks in medical data mining. IEEE Trans. Evol. Comput. 5, 17–26 (2001)

    Article  Google Scholar 

  6. J. Kobashigawa, H.S. Youn, M. Iskander, Z. Yun, Comparative study of genetic programming vs. neural networks for the classification of buried objects, in IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, North Charleston, SC, USA, pp 1–4, 1–5 June 2009. https://doi.org/10.1109/APS.2009.5172386

  7. P.J. Williams, T.C.A. Molteno, A comparison of genetic programming with genetic algorithms for wire antenna design. Int. J. Antennas Propag 2008, 197849 (2008)

    Article  Google Scholar 

  8. W. Comisky, J. Yu, J.R. Koza, Automatic synthesis of a wire antenna using genetic programming, in Genetic and evolutionary computation conference, Las Vegas, NV, USA, July 8–12, 2000

    Google Scholar 

  9. HFSS-Matlab-Scripting-API Toolbox – accessible from https://www.cresis.ku.edu/~rvc/projects/hfssapi/doc/hfss-matlab-ap

  10. S. Silva, GPLAB- a genetic programming toolbox for MATLAB, ECOS - Evolutionary and Complex Systems Group, University of Coimbra, Portugal, 2009 – accessible from http://gplab.sourceforge.net

  11. J.S.K. Nakatsu, Genetic programming applications in electromagnetics. Masters Thesis, University of Hawaii, 2012

    Google Scholar 

  12. P. Prusinkiewicz, A. Lindenmayer, The Algorithmic Beauty of Plants (Springer-Verlag, New York, NY, USA, 1990)

    Book  Google Scholar 

  13. D.J. Kern, Advancements in artificial magnetic conductor design for improved performance and antenna applications. Ph.D. Dissertation, The Pennsylvania State University, 2009

    Google Scholar 

  14. J.M. Bell, M.F. Iskander, J.J. Lee, Ultrawideband hybrid EBG/ferrite ground plane for low-profile array antennas. IEEE Trans. Antennas Propag. 55(1), 4–12 (2007)

    Article  Google Scholar 

  15. J.M. Bell, M.F. Iskander, Experimental analysis of an ultrawide-band hybrid EBG/ferrite ground plane. IEEE Trans. Instrum. Meas. 58(8), 2899–2905 (2009)

    Article  Google Scholar 

  16. J.M. Bell, M.F. Iskander, Equivalent circuit model of an ultrawideband hybrid EBG/ferrite structure. IEEE Antennas Wirel. Propag. Lett 7, 573–576 (2008)

    Article  Google Scholar 

  17. D. Sievenpiper, High-impedance electromagnetic surfaces. Ph.D. Dissertation, University of California, Los Angeles, 1999

    Google Scholar 

  18. J.J. Lee, S. Livingston, R. Koenig, Wide band long slot array antennas, in IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Columbus, Ohio, pp. 452–455, 22–27 June 2003

    Google Scholar 

  19. IEEE Recommended Practice for Radio-Frequency (RF) Absorber Evaluation in the Range of 30 MHz to 5 GHz, Apr. 1998. Available: IEEE Standard 1128-1998

    Google Scholar 

  20. S.A. Tretyakov, C.R. Simovski, Dynamic model of artificial reactive impedance surfaces. J. Electromagn. Waves Appl 17, 131–145 (2003)

    Article  Google Scholar 

  21. Tomlab Optimization Inc., TOMLAB Optimization Environment – accessible from http://tomopt.com/tomlab

  22. J. Rayno, Development and application of Genetic Programming (GP) in design and optimization of Ultra-wideband (UWB) 3D metamaterials. Ph.D. Dissertation, University of Hawaii, 2016

    Google Scholar 

  23. L. Deias, G. Mazzarella, N. Sirena, EBG substrate synthesis for 2.45 GHz applications using Genetic Programming, in IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Toronto, Canada, 11–17 July 2010

    Google Scholar 

  24. F. Asole, L. Deias, G. Mazzarella, A flexible fullwave analysis of multilayered AMC using an aperture oriented approach. J. Electromagn. Waves Appl. 21(14), 2059–2072 (2007)

    Article  Google Scholar 

  25. J. Rayno, J. Nakatsu, G. Huang, N. Celik, M. Iskander, 3D metamaterial broadband ground plane designed using genetic programming for the long slot array antenna, in IEEE InternationalSymposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Orlando, Florida, pp. 400–401, 7–12 July 2013

    Google Scholar 

  26. J. Rayno, M. Iskander, N. Celik, Synthesis of broadband true-3D metamaterial artificial magnetic conductor ground planes using genetic programming. IEEE Trans. Antennas Propag. 62, 5732–5744 (2014)

    Article  MathSciNet  Google Scholar 

  27. Y. Rahmat-Samii, F. Yang, Electromagnetic Band Gap Structures in Antenna Engineering (Cambridge Univ. Press, Cambridge, UK, 2009)

    Google Scholar 

  28. A. Foroozesh, L. Shafai, Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas. IEEE Trans. Antennas Propag. 59, 4–20 (2011)

    Article  Google Scholar 

  29. D. Sievenpiper, Review of theory fabrication, applications of high-impedance ground planes, in Metamaterials: Physics and Engineering Explorations (Wiley, Hoboken, NJ, USA, 2006)

    Google Scholar 

  30. Y.E. Erdemli, K. Sertel, R.A. Gilbert, D.E. Wright, J.L. Volakis, Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays. IEEE Trans. Antennas Propag. 50, 1716–1724 (2002)

    Article  Google Scholar 

  31. J.T. Rayno, S.K. Sharma, Spirograph planar monopole antenna (SPMA) providing unidirectional invariant radiation patterns by employing a broadband ground plane. IEEE Antennas Wirel. Propag. Lett 11, 1588–1591 (2012)

    Article  Google Scholar 

  32. A. Monorchio, G. Manara, L. Lanuzza, Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces. IEEE Antennas Wirel. Propag. Lett 1, 196–199 (2002)

    Article  Google Scholar 

  33. J. Rayno, M. Iskander, M. Kobayashi, Hybrid genetic programming with accelerating genetic algorithm optimizer for 3-D metamaterial design. IEEE Antennas Wirel. Propag. Lett 15, 1743–1746 (2016)

    Article  Google Scholar 

  34. P.G. Alotto, C. Eranda, B. Brandstatter, G. Furntratt, C. Magele, G. Molinari, M. Nervi, K. Preis, M. Repetto, K.R. Richter, Stochastic algorithms in electromagnetic optimization. IEEE Trans. Magn. 34(5), 3674–3684 (1998)

    Article  Google Scholar 

  35. S. Clemens, M.F. Iskander, Z. Yun, J. Rayno, Hybrid genetic programming for the development of metamaterials designs with improved characteristics. IEEE Antennas Wirel. Propag. Lett 17, 513–516 (2018)

    Article  Google Scholar 

  36. M. Xie, Q. Guo, K. Huang, Design of a novel artificial magnetic conductor plane and its application for low-profile dipole, in International Conference Microwave Millimeter Wave Technology, Chengdu, China, pp. 2085–2087, 8–11 May 2010

    Google Scholar 

  37. M. de Cos, Y. Alvarez, F. Las-Heras, Novel broadband artificial magnetic conductor with hexagonal unit cell. IEEE Antennas Wirel. Propag. Lett 10, 615–618 (2011)

    Article  Google Scholar 

  38. E. Torabi, A. Fallahi, A. Yahaghi, Evolutionary optimization of graphene-metal metasurfaces for tunable broadband terahertz absorption. IEEE Trans. Antennas Propag. 65(3), 1464–1467 (2017)

    Article  MathSciNet  Google Scholar 

  39. Y. Kim, F. Yang, A. Elsherbeni, Compact artificial magnetic conductor designs using planar square spiral geometries. Prog. Electromagn. Res. 77, 43–54 (2007)

    Article  Google Scholar 

  40. S. Clemens, E. Chong, M.F. Iskander, Z. Yun, J. Brown, T. Ray. M. Nakamura, D. Nekoba, Hybrid genetic programming designed laser-induced graphene based absorber, in IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Denver, Colorado, pp. 1084–1085, 10–15 July 2022

    Google Scholar 

  41. J. Hao, J. Wang, X. Liu, W. Padilla, L. Zhou, M. Qiu, High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96(25), 251104 (2010)

    Article  Google Scholar 

  42. W. Guo, Y. Liu, T. Han, Ultra-broadband infrared metasurface absorber. Opt. Express 24(18), 20586–20592 (2016)

    Article  Google Scholar 

  43. B. Sindhu, A. Kothuru, P. Sahatiya, S. Goel, S. Nandi, Laser-induced graphene printed wearable flexible antenna-based strain sensor for wireless human motion monitoring. IEEE Trans. Electron. Dev 68(7), 3189–3194 (2021)

    Article  Google Scholar 

  44. P. Rewatkar, A. Kothuru, S. Goel, PDMS-based microfluidic glucose biofuel cell integrated with optimized laser-induced flexible graphene bioelectrodes. IEEE Tran. Electron. Dev 67(4), 1832–1838 (2020)

    Article  Google Scholar 

  45. Z. Wan, N. Nguyen, Y. Gao, Q. Li, Laser induced graphene for biosensors. Sustain. Mater. Technol. 25, e00205 (2020)

    Google Scholar 

  46. Y. Yu, P. Joshi, J. Wu, A. Hu, Laser-induced carbon-based smart flexible sensor array for multi flavors detection. ACS Appl. Mater. Interfaces 10(40), 34005–34012 (2018)

    Article  Google Scholar 

  47. Z. Easterbrook, E. Chong, S. Zhang, M. F. Iskander, Z. Yun, Broadband metamaterial design using carbon fiber and resistive sheet materials, in IEEE International Symposium on Antennas and USNC-URSI Radio Science Meeting, Portland, Oregon, 23–28 July 2023

    Google Scholar 

  48. S. Clemens, G. Huang, M. Iskander, Z. Yun, Measurement of hybrid genetic programming synthesized artificial magnetic conductors, in IEEE International Symposium on Antennas and propagation and USNC-URSI Radio Science Meeting, Atlanta, Georgia, pp. 1403–1404, 7–12 July 2019

    Google Scholar 

  49. G.C. Huang, S. Clemens, M.F. Iskander, Z. Yun, Analysis of GP-designed metamaterial using equivalent circuit model and Prony’s method. Electromagnetics 41(6), 381–339 (2021)

    Article  Google Scholar 

  50. G.C. Huang, S. Clemens, M.F. Iskander, Z. Yun, Equivalent circuit models and Prony’s analysis of electromagnetic designs using genetic programming. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, Georgia, pp. 197–198, July 7–12, 2019

    Google Scholar 

  51. F. Costa, S. Genovesi, A. Monorchio, On the bandwidth of high-impedance frequency selective surfaces. IEEE Antennas Wirel. Propag. Lett 8, 1341–1344 (2009)

    Article  Google Scholar 

  52. F. Costa, A. Monorchio, G. Manara, An equivalent-circuit modeling of high impedance surfaces employing arbitrarily shaped FSS. IEEE ICEAA, 852–855 (2009)

    Google Scholar 

  53. W.L. Ko, R. Mittra, A combination of FD-TD and Prony’s methods for analyzing microwave integrated circuits. IEEE Trans. Microw. Theory Tech 39(12), 2176–2181 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under IUCRC Award 1822213. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We would also like to recognize the work of and express our appreciation for our colleagues, Jodie Bell, Jenny Rayno, Scott Clemens, Edmond Chong, and Gui Chao Huang, without whom this chapter would not be possible.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakatsu, J.S.K., Iskander, M.F., Yun, Z. (2024). Development and Application of Genetic Programming for Advanced Metamaterial Designs. In: Lakhtakia, A., Furse, C.M., Mackay, T.G. (eds) The Advancing World of Applied Electromagnetics. Springer, Cham. https://doi.org/10.1007/978-3-031-39824-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39824-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39823-0

  • Online ISBN: 978-3-031-39824-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics