Skip to main content

Estimation of Design Shear Strength of Concrete Using Genetic Programming

  • Conference paper
  • First Online:
Book cover Advances in Civil Engineering and Infrastructural Development

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 87))

  • 594 Accesses

Abstract

Many codes provide empirical formulation for design shear strength of concrete which greatly vary from code to code. Moreover, many investigations into the shear problem that have been carried out have led to numerous empirical or semi-empirical formulae. These formulae usually agree quite well with the corresponding test result but not applicable for general use. The researchers have made use of experimental data set or analytical data set obtained from nonlinear finite element analysis. The equations are derived using nonlinear regression technique in which the form of the equation is required to be initially assumed. The present study investigates the application genetic programming (GP) in predicting the design shear strength of concrete. It is concluded that the values obtained by the equations derived from GP models estimate the design shear strength of concrete fairly close to the actual values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kani GNJ (1967) How safe are our large reinforced concrete beams? ACI J 64(3):128–141

    Google Scholar 

  2. Bazant ZP, Kim JK (1984) Size effect in shear failure of longitudinally reinforced beams. Proc ACI Struct J 81(5):456–468

    Google Scholar 

  3. Bazant ZP, Sun HH (1987) Size effect in diagonal shear failure: influence of aggregate size and stirrups. ACI Mater J 84(4):259–272

    Google Scholar 

  4. Appa Rao G, Injaganeri SS (2011) Evaluation of size dependant design shear strength of reinforced concrete beams without web reinforcement. Sadhana 36(Part 3):393–410 (Indian Academy of Sciences)

    Article  Google Scholar 

  5. Kim JK, Park YD (1996) Prediction of shear strength of reinforced concrete beams without web reinforcement. ACI Mater J Title no. 93-M24, 213–222

    Google Scholar 

  6. Goh ATC (1995) Prediction of ultimate shear strength of deep beams using neural networks. ACI Struct J 92:28–32

    Google Scholar 

  7. Sanad A, Saka MP (2001) Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks. J Struct Eng 127:818–828

    Article  Google Scholar 

  8. Seleemah AA (2005) A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement. Can J Civ Eng 32:644–657

    Article  Google Scholar 

  9. Kim KS, Jung S, Han SE (2005) Prediction of shear strength using artificial neural networks for reinforced concrete members without shear reinforcement. J Comput Struct Eng Inst Korea 18:201–211

    Google Scholar 

  10. Nehdi M, El-Chabib H, Said A (2006) Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks. Smart Struct Syst 2006(2):81–100

    Article  Google Scholar 

  11. Jung S, Kim KS (2007) Knowledge based prediction of shear strength of concrete beams without shear reinforcement. Eng Struct 30:1515–1525

    Article  Google Scholar 

  12. Amani J, Moeini R (2012) Prediction of shear strength of reinforced concrete beams using adaptive, neuro fuzzy inference system and artificial neural networks. Sci Iran A 19(2):242–248

    Article  Google Scholar 

  13. Cladera A, Marı AR (2007) Shear strength in the new Eurocode 2. A step forward? Struct Concr 8(2):58–66

    Article  Google Scholar 

  14. Gaur S, Deo MC (2008) Real-time wave forecasting using genetic programming. Ocean Eng 35(11–12):1166–1172

    Google Scholar 

  15. Shaw D, Miles J, Gray A (2004) Genetic programming within civil engineering. In: Organization of the Adaptive Computing in Design and Manufacture 2004 Conference, Engineers House, Clifton, Bristol, UK, April 20–22

    Google Scholar 

  16. Koza JR (1992) Genetic programming on the programming of computers by means of natural selection. A Bradford Book, MIT Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shardul Joshi .

Editor information

Editors and Affiliations

Annexure 1

Annexure 1

b: mm

d: mm

fc: MPa

Ptl: %

Ptv: %

fy: MPa

a/d

Vfail: KN

307

466

24

1.8

0.1

330

3.92

233

305

460

25

1.69

0.1

350

3.98

168

229

457

24

2.28

0.15

340

4.01

173

305

457

26

1.71

0.1

350

4.01

215

305

462

25

1.76

0.1

350

3.95

220

231

460

27

2.34

0.15

340

3.97

202

305

460

26

1.17

0.1

350

3.97

208

240

1200

25

1.26

0.15

440

3

468

152

272

34

4.16

0.21

276

3.6

117

152

272

31

4.16

0.21

276

3.6

112

76

95

29

1.97

0.16

275

3

16

76

132

28

3.95

0.12

258

3

25

76

132

26

3.95

0.34

179

3

28

76

132

28

3.95

0.12

258

4

20

152

298

22

3.36

0.12

292

3.6

76

152

298

28

3.36

0.26

269

3.6

95

152

298

47

3.36

0.26

269

3.6

121

152

298

69

3.36

0.26

269

3.6

151

152

298

82

3.36

0.26

269

3.6

116

152

298

47

3.36

0.38

271

3.6

133

152

298

83

3.36

0.38

271

3.6

150

305

539

36

2.49

0.14

525

3.1

338

305

539

36

2.49

0.07

525

3.1

222

305

539

56

2.49

0.14

525

3.1

383

406

385

29

2.31

0.39

549

2.65

460

457

871

72

1.88

0.16

445

3

788

457

762

125

2.35

0.16

483

3

749

457

762

125

2.89

0.23

464

3

1172

180

233

40

2.23

0.09

844

4

115

180

233

75

2.23

0.09

844

4

123

180

233

76

2.81

0.09

844

4

138

180

233

70

3.5

0.09

844

4

147

180

233

80

2.81

0.18

543

2.5

207

180

233

74

3.5

0.13

543

2.5

247

180

233

76

3.5

0.18

543

2.5

221

127

203

41

3.2

0.49

322

3

87

127

198

98

4.54

0.51

324

3

102

127

198

90

4.54

0.65

323

3

108

127

198

103

4.54

0.78

324

3

123

203

419

57

3.03

0.34

426

3.27

267

203

419

56

3.03

0.34

426

3.27

267

375

655

36

2.8

0.08

430

3.28

457

375

655

36

2.8

0.08

430

3.28

363

375

655

36

2.8

0.11

430

3.28

483

375

655

67

2.8

0.11

430

3.28

552

375

655

67

2.8

0.16

430

3.28

689

375

655

87

2.8

0.14

430

3.28

598

375

655

87

2.8

0.23

430

3.28

721

250

292

64

2.8

0.157

569

2.5

228

250

292

64

2.8

0.157

569

2.5

208

250

292

64

2.8

0.157

569

2.5

206

250

292

64

2.8

0.157

569

2.5

278

250

292

64

2.8

0.157

569

2.5

253

250

292

64

2.8

0.157

569

2.5

224

250

292

73

2.8

0.105

569

2.5

260

250

292

73

2.8

0.126

569

2.5

233

250

292

73

2.8

0.157

569

2.5

253

250

292

73

2.8

0.157

569

2.5

219

250

292

73

1.65

0.209

569

2.5

282

250

297

67

2.79

0.101

632

2.49

178

250

293

67

2.79

0.101

632

2.49

229

250

292

67

2.8

0.101

632

2.49

175

250

198

67

2.78

0.157

569

2.5

258

250

292

67

2.8

0.157

569

2.53

203

250

292

87

2.8

0.157

569

3.01

242

250

292

87

2.8

0.157

569

2.74

260

250

294

89

4.46

0.157

569

2.5

244

250

294

89

4.46

0.126

569

3.3

205

250

294

89

4.46

0.157

569

3.3

247

250

294

89

4.46

0.196

569

3.3

274

250

294

75

4.46

0.224

569

3.3

304

250

292

75

2.8

0.262

569

3.3

311

250

292

75

2.8

0.105

569

2.5

272

250

292

75

2.8

0.126

569

2.5

251

250

292

75

2.8

0.157

569

2.5

266

250

292

75

2.8

0.196

569

2.5

289

250

292

75

2.8

0.227

569

2.5

284

200

260

26

1.47

0.12

267

2.77

89

200

260

26

1.47

0.16

269

2.77

89

200

260

26

1.47

0.25

256

2.77

93

200

260

26

1.96

0.13

262

3.46

85

295

920

75

1.36

0.16

500

2.5

583

169

459

74

1.03

0.13

500

2.72

139

169

459

74

1.16

0.13

500

2.72

152

295

920

71

1.03

1.16

500

2.5

516

300

925

21

1.01

1.791

508

2.92

282

300

925

38

1.01

1.791

508

2.92

277

300

925

47

0.76

1.791

508

2.92

342

290

278

49

1.95

0.11

430

2.88

158

290

278

49

1.95

0.18

536

2.88

169

290

278

49

1.95

0.28

430

2.88

230

290

278

51

1.95

0.214

430

2.88

201

110

443

55

2.58

0.48

499

2.82

155

110

398

74

5.8

0.48

538

3.14

265

110

463

43

1.23

0.333

555

2.7

105

150

310

75

2.59

0.23

255

3

156

150

310

73

3.08

0.2

255

3

143

150

310

82

4.43

0.13

425

5

97

150

310

75

4.43

0.18

425

5

119

150

310

82

4.43

0.27

425

5

125

200

353

50

2.28

0.109

530

3.06

178

200

351

50

2.99

0.239

540

3.08

246

200

353

61

2.228

0.141

530

3.06

180

200

353

69

2.28

0.141

530

3.06

204

200

351

69

2.99

0.239

530

3.08

255

200

351

50

2.99

0.239

540

3.08

267

127

216

45

2.07

0.378

421

3

63

127

198

88

4.54

0.65

421

3

107

127

198

87

4.54

0.78

421

3

121

127

198

83

4.54

0.51

421

4

95

200

303

42

2.99

0.166

530

3.3

177

200

303

42

2.99

0.118

530

3.3

188

199

307

38

2.9

0.21

500

3.25

190

199

306

39

2.92

0.16

500

3.27

151

195

306

39

2.99

0.12

500

3.27

128

200

312

45

2.86

0.16

500

3.21

200

200

302

44

2.95

0.12

500

3.3

150

200

306

42

2.91

0.16

500

3.27

177

201

306

39

2.9

0.12

500

3.27

164

199

3053

41

2.93

0.21

500

3.28

202

199

305

45

2.93

0.16

500

3.28

193

199

307

43

2.91

0.12

500

3.25

147

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Namjoshi, P., Joshi, S. (2021). Estimation of Design Shear Strength of Concrete Using Genetic Programming. In: Gupta, L.M., Ray, M.R., Labhasetwar, P.K. (eds) Advances in Civil Engineering and Infrastructural Development. Lecture Notes in Civil Engineering, vol 87. Springer, Singapore. https://doi.org/10.1007/978-981-15-6463-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6463-5_66

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6462-8

  • Online ISBN: 978-981-15-6463-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics