
Genetic Programming for Job Shop Scheduling

Su Nguyen1, Mengjie Zhang2, Mark Johnston3, and Kay Chen Tan4

1La Trobe University, Australia
2Victoria University of Wellington, New Zealand

3University of Worcester, United Kingdom
4City University of Hong Kong, Hong Kong

p.nguyen4@latrobe.edu.au,mengjie.zhang@ecs.vuw.ac.nz

m.johnston@worc.ac.uk,kaytan@cityu.edu.hk

Abstract. Designing effective scheduling rules or heuristics for a man-
ufacturing system such as job shops is not a trivial task. In the early
stage, scheduling experts rely on their experiences to develop dispatch-
ing rules and further improve them through trials-and-errors, sometimes
with the help of computer simulations. In recent years, automated de-
sign approaches have been applied to develop effective dispatching rules
for job shop scheduling (JSS). Genetic programming (GP) is currently
the most popular approach for this task. The goal of this chapter is to
summarise existing studies in this field to provide an overall picture to
interested researchers. Then, we demonstrate some recent ideas to en-
hance the effectiveness of GP for JSS and discuss interesting research
topics for future studies.

Keywords: genetic programming, job shop scheduling, heuristic

1 Introduction

Scheduling deals with assigning manufacturing resources to process tasks over
time. It has a big impact on the cost of operating a manufacturing system, as well
as on other performance measures such as on-time delivery. Good scheduling is
therefore an important factor for a company to be competitive. Because of their
complexity, many scheduling problems are considered NP-hard [49], and thus
exact methods are usually unable to solve them within a reasonable computa-
tional time. Job shop scheduling (JSS) is a good example of such problems in the
literature and many heuristics such as dispatching rules [25, 26, 49], tabu search
[45], genetic algorithm [8], ant colony optimisation [57], and particle swarm opti-
misation [54], have been proposed to find quick and acceptable solutions for JSS.
Unfortunately, these heuristics are normally problem specific while designing an
effective scheduling heuristics is a time-consuming and complicated task.

Dispatching rules is one of the most popular forms of scheduling heuristics
that have been investigated since the earliest research on JSS. Basically, dis-
patching rules aim to prioritise jobs waiting in the shop or in front of a specific
machine which then processes jobs based on their assigned priorities (usually
jobs with the highest priorities are preferred). Due to their simplicity and abil-
ity to react quickly to dynamic changes, dispatching rules have received a lot



2 Nguyen et al.

of attentions from both researchers and practitioners. However, similar to other
scheduling heuristics for JSS, designing effective dispatching rules for a partic-
ular environment is not a trivial task and involves a lot trials and errors. To
handle this issue, different automated approaches have been proposed in the last
decade to facilitate the design process. The core of these approaches is machine
learning [22, 11] and/or optimisation techniques [18, 6, 24, 37] which aim to learn
and search for effective and robust dispatching rules.

Genetic programming (GP) [29, 3] is an evolutionary computation (EC) ap-
proach usually used to evolve computer programs for solving a specific task. In
recent years, GP has been successfully applied to automatically generate dis-
patching rules for different scheduling problems. Many different variants of GP
such as tree-based GP [29], grammar-based GP [3], and gene expression pro-
gramming (GEP) [13] are capable of evolving rules that outperform most rules
manually designed by human experts in the literature. Some reasons that make
GP particularly suitable for these designing tasks are: (1) dispatching rules are
usually priority functions [25, 49] which can be easily represented as a mathe-
matical expression by GP trees/programs; (2) GP covers a large (heuristic or
program) search space which enables us to discover unknown and effective dis-
patching rules; (3) representations of GP individuals are generally flexible, which
allows sophisticated rules to be encoded and evolved; and (4) GP can take ad-
vantages of available EC search mechanisms to enhance the quality of obtained
dispatching rules.

Different GP methods have been proposed to deal with JSS, in both static and
dynamic environments. The research topics in previous studies are quite diverse
and focus on different aspects of GP and JSS, ranging from representations of
dispatching rules [43, 6, 37], learning/searching mechanisms [18, 48, 40], fitness
evaluations [37, 19], attributes/features analyses [6, 37, 21], and interpretability
[18, 6, 37, 21]. The goals of these studies are mainly to: (1) evolve competitive and
robust dispatching rules, (2) improve the efficiency of GP for evolving dispatching
rules, and (3) satisfy practical requirements in complex environments. Many
promising results have been reported in these studies which make GP for JSS an
interesting research topic for both operations research and automated heuristic
design (hyper-heuristic [7]) communities.

In this chapter, we provide an overview of the current research on GP and
JSS in order to help the readers who are interested in this field understand
the key aspects, related applications, challenges and opportunities for future
studies. The next section will give a brief description of JSS. Section 3 reviews
the literature on GP and JSS. In Section 4, we revisit some useful ideas that
have been proposed to enhance the quality of evolved dispatching rules. Further
discussions and conclusions are provided in Section 5.

2 Background

The general JSS problem could be simply defined as the scheduling of different
jobs to be processed on different machines to satisfy certain objectives. In this



Genetic Programming for Job Shop Scheduling 3

Machine 1

Machine 2

Machine 3

Job Arrival

Assign 

Due-date

Delivery

Job/Operation 

Queue

Machine # Machine

Route

Complete

Sequencing/

Scheduling

Fig. 1. Job Shop Scheduling (shop with 3 machines).

case, a job is a sequence of operations, each of which is to be performed on a
particular machine. In JSS, the routes of jobs are fixed, but not necessarily the
same for each job [49]. An example of a job shop production system is shown
in Fig 1. For the static JSS problem, the shop (or the working/manufacturing
environment) includes a set of m machines and n jobs that need to be scheduled.
Each job has its own pre-determined route through a sequence of machines to
follow and its own processing time at each machine it visits. In static JSS,
processing information of all jobs is available. In the dynamic JSS problem, jobs
arrive randomly over time and the processing information of jobs is unknown
before their arrival.

Over the last few decades, a large number of methods have been developed
and applied to JSS, ranging from simple heuristics to artificial intelligence and
mathematical optimisation methods. Dispatching rules are perhaps the most
straightforward method to deal with both static and dynamic JSS problems [53,
25]. Meanwhile, optimisation is the main research stream to deal with the static
JSS problems [49]. A review of these methods is presented in this section. For
a broader review of scheduling methods, the readers are encouraged to read
Ouelhadj and Petrovic [46] and Potts and Strusevich [52].

2.1 Dispatching rules

Although there have been many breakthroughs in the developments of exact
and approximate methods for JSS; these methods are mainly focused on static
problems and simplified job shop environments. General methods like genetic al-
gorithm (GA) can be extended to solve problems with realistic constraints, but
the major drawback is its weak computational efficiency. Moreover, as pointed
out in [34], the conventional operations research and artificial intelligence meth-
ods are often not applicable to the dynamic characteristics of the actual situation
because these methods are fundamentally based on static assumptions. For that
reason, simple dispatching rules have been used consistently in practice because
of their ability to cope with the dynamic changes of the shop.

There have been a large number of rules proposed in the literature and they
can be classified into three categories: (1) simple priority rules, which are mainly



4 Nguyen et al.

based on the information related to the jobs; (2) combinations of rules that are
implemented depending on the situation that exists on the shop floor; and (3)
weighted priority indices which employ more than one piece of information about
each job to determine the schedule. Composite dispatching rules (CDR) [25, 26,
49] can also be considered a version of rules based on weighted priority indices,
where scheduling information can be combined in more sophisticated ways in-
stead of linear combinations. Pinedo [49] also showed various ways to classify
dispatching rules based on the characteristics of these rules. The dispatching
rules in this case can be classified as static and dynamic rules, where dynamic
rules are time dependent (e.g. minimum slack) and static rules are not time de-
pendent (e.g. shortest processing time). Another way to categorise these rules is
based on the information used by these rules (either local or global information)
to make sequencing decisions. A local rule only uses the information available at
the machine where the job is queued. A global rule, on the other hand, may use
the information from other machines.

The comparisons of different dispatching rules have been continuously done
in many studies [53, 20, 18]. The comparison was usually performed under differ-
ent characteristics of the shop because it is well-known that the characteristics
of the shop can significantly influence the performance of the dispatching rules.
Different objective measures were also considered in these studies because they
are the natural requirements in real world applications. Although many dispatch-
ing rules have been proposed, it is still a challenge for scheduling researchers to
develop rules that can perform well on multiple objectives.

2.2 Meta-heuristic methods

Since the static JSS is a NP-hard problem [14], finding optimal solutions by
mathematical programming methods can be very time-consuming even for rea-
sonable small instances. The research on meta-heuristics for scheduling has been
very active in the last two decades, mostly with makespan as the objective.
Local search based methods such as simulated annealing [32], large step op-
timisation [33], tabu search [45], and guided local search [2] have shown very
promising results. The focus of these methods is on the development of efficient
neighbourhood structures (mainly based on the concept of critical paths and
critical blocks) and diversifying strategies to escape from local optima. Since the
neighbourhood structures play an important role in these methods, they and
their related operators have to be redesigned in order to incorporate real world
constraints; even then it is still questionable whether they produce good results.

A more general alternative for solving JSS problems is the use of evolutionary
computation methods. GA is one of the most popular methods in this line of
research (refer to [8] for a review of GA methods for JSS). More recently, many
hybrid algorithms have been proposed to combine the advantages of GA and
local search heuristics. Yamada and Nakano [58] presented a GA with multi-
step crossover (MSX) for JSS. In this method, MSX was used in combination
with a local search heuristic. The preliminary experiments using benchmark
instances showed promising performance of the proposed approach. Goncalves



Genetic Programming for Job Shop Scheduling 5

et al. [17] proposed a hybrid GA method for JSS to minimise makespan. In this
method, the chromosome representation is based on random keys and represents
the priorities of operations. An active/non-delay parameter is also applied to
restrict the delay time of operations. During the GA search, the schedule is
further improved by the neighbourhood local search procedure from [45].

Swarm intelligence methods [4, 5] have also been applied to JSS problems and
show very promising results. Sha and Hsu [54] developed a hybrid PSO algorithm
(HPSO) that modified the particle position based on preference list-based repre-
sentation and employed Giffler and Thompson algorithm [16] to decode particle
positions into schedules. Moreover, tabu search is also applied to further improve
the solution quality. The experimental results showed that HPSO is competitive
compared to other meta-heuristics proposed in the literature. Xing et al. [57]
proposed a sophisticated ant colony optimisation method in which a knowledge
model is used to learn some available knowledge from the optimisation of ACO.
The existing knowledge will be used to guide the current heuristic searching.
The proposed knowledge-based ant colony optimisation (KBACO) algorithm
outperformed some current approaches.

Research on other objectives have also been considered in the literature,
especially due date related objectives due to the need to improve the delivery
performance in modern manufacturing systems. Pinedo and Singer [50] presented
a heuristic to minimise the total weighted tardiness in JSS, which was based on
the shifting bottleneck procedure [49] that schedules one machine at a time and
used a branching tree to find a good order to schedule the machines. Every node
of the tree represents a partial order in which the machines are scheduled. From
the experiments, this method yielded solutions that were near optimum on some
problems with 10 jobs and 10 machines. Asano and Ohta [1] introduced another
heuristic for the minimisation of the total weighted tardiness in JSS that is
based on the tree search procedure, also with very promising results. Kreipl [30]
proposed an efficient large step random walk (LSRW) method for minimising
total weighted tardiness. This method employed different neighbourhood sizes
to perform a small step or a large step. The small step consists of iterative
improvement while the large step consists of a Metropolis algorithm (similar to
the simulated annealing algorithm but with a constant temperature). Essafi et
al. [12] proposed a hybrid genetic algorithm which employed an iterative local
search and a hybrid scheduling construction procedure to solve this problem.
The results showed that the proposed method is very competitive as compared
to LSRW [30]. Dispatching rules based meta-heuristics [9, 47, 51] have also been
investigated in the literature in order to utilise effective dispatching rules to
narrow down the solution search space.

3 Genetic programming for job shop scheduling

Recently, GP based hyper-heuristics (GPHHs) [7] has become increasingly pop-
ular because of their ability to evolve a wide range of program structures cor-
responding to different types of scheduling rules and heuristics. Another reason



6 Nguyen et al.

Start

Generate the initial 

population

Evaluate 

Individual/

Heuristic

Calculate 

Fitness Function

All individuals 

are evaluated ?

Start new 

generation

Stopping 

condition met?

Yes

End Yes

Generate new 

population via 

genetic operations

No

Go to the next 

individual

No

Training 

Datasets/

Simulation 

Models

Prepare 

training data

Fig. 2. Evolving dispatching rules with genetic programming.

that makes GPHHs suitable for this task is that the rules or heuristics evolved by
GP can be (partially) interpretable. This is an important characteristic in order
to apply obtained heuristics into practical applications. Fig. 2 presents the basic
framework for evolving dispatching rules with GP. The procedure in this figure
starts by preparing training data (datasets or simulation models) for the consid-
ered scheduling problems. The initial population of heuristics is then randomly
generated (e.g., ramp-half-and-half [3]). In each generation of the evolutionary
process, each heuristic is used to provide scheduling decisions for different in-
stances/scenarios in the training datasets or simulation models. The obtained
scheduling performance is used to calculate the fitness of each evolved rule. The
fitness values obtained by rules in the population decide the chance of each rule
to survive and reproduce (with genetic operations) in the next generation. The
same routine is applied until the termination condition is met. In the rest of this
section, we will review related studies on GP and JSS, which are categorised
based on their representations and evolutionary search mechanisms.



Genetic Programming for Job Shop Scheduling 7

Machine is idle and

there are jobs in the

queue

Assign Priority

Go to the next

unassigned job

Process the job with the

highest priority
Yes

First job in

the queue

No

ˆ

d,

s

d,

%

- RT

DD t

Each job has been assigned a

priority ?

Fig. 3. Tree-based representation of the critical ratio rule (DD−t)
RT

.

3.1 Representations of dispatching rules

Representations in GP are very important because they not only decide how
evolved rules look like but they also determine how GP can evolve those rules.
It is safe to say that most key aspects in GP are governed by the choice of
representations. In this section, we will review popular representations employed
in the literature and their corresponding genetic operators.

Tree-based representation The most popular representation of dispatching
rules is the tree-based representation which is commonly used in the conventional
GP, often referred to as tree-based GP (TGP) [29, 3]. This is easy to understand
as the tree-based GP is the most established method in the GP literature and the
tree-based representation can easily be used to represent any (existing) priority
functions with appropriate choices of functions and terminals (attributes). An
example dispatching rule in the tree structure is shown in Fig. 3. When converted
into its mathematical form, it is the same as the critical ratio rule [49] where the
terminals t, DD, RT are the decision moment (current time), the due date and
remaining processing time of the considered job, respectively. The figure also
describes how an evolved rule makes dispatching decisions. When a machine is
idle and a new job arrives at the machine, this job will be processed immediately.
In the case that a machine has just completed a job and there are still jobs
waiting in the queue to be processed at that machine, the dispatching rule will
be applied. To assign a priority to a waiting job, the information related to that
job will be extracted to be used in the corresponding terminals of the rule. Then,
the tree representing the dispatching rule will be evaluated and the output from
this evaluation will be assigned to the considered job as its priority (refer to [29]
for detailed discussion on how a tree program is evaluated). This procedure will
be applied until priorities are assigned to all waiting jobs and the job with the
highest priority will be processed next.

Due to the complexity of scheduling problems, a single tree may not be suf-
ficient to generate effective and comprehensive scheduling heuristics. Therefore,
more sophisticated tree-based representations have been developed. Geiger et
al. [15] propose a multiple tree representation to evolve different dispatching
rules (trees) for different machines or groups of machines. The goal of this ap-



8 Nguyen et al.

proach is to generate specialised rules to cope with particular requirements of
each machine.

In order to create more effective scheduling heuristics for job shops, Jakobovic
and Budin [23] present the GP-3 method in which three program trees represent
one discriminating function and two priority functions. A special terminal set
is used to build the discriminating function which is employed to determine
whether the considered machine is a bottleneck. Based on this decision, one
of the two priority functions (for bottleneck and non-bottleneck machines) is
applied to make scheduling decisions. Nguyen et al. [36] represent the scheduling
heuristics by two program trees. The first one is the priority function (the same
as previous studies) while the second one represents the look-ahead strategy
based on the Giffler and Thompson algorithm [16] to decide how much time
idle machines can delay before jobs can be processed. The experiments show
that these extended representations can help GPHHs evolve significantly better
scheduling heuristics as compared to GPHHs with the single tree representation.

For the tree-based representation, there are many genetic operators available
in the GP literature [3]. Subtree crossover and subtree mutation are probably
the most commonly used genetic operators in GP to explore new dispatching
rules. The subtree crossover creates new individuals for the next generation
by randomly recombining subtrees from two selected parents. Meanwhile, the
subtree mutation is performed by selecting a node of a chosen individual and
replacing the subtree rooted at that node with a newly randomly-generated
subtree. Depending on the considered scheduling problems and the structures
of the evolved rules, some specialised genetic operators are also applied. For
example, Geiger et al. [15] employ restricted crossover and mutation operators
to generate dispatching rules for parallel machine scheduling problems. In their
approach, only rules from the same machine are allowed to exchange genetic
materials. Similarly, Yin et al. [59] also restrict their subtree crossover to be
carried out only between the subtrees of similar functions (priority functions
and idle-time estimation function).

GEP representation The linear representation of GEP has been applied to
construct priority functions [42, 44, 43, 27], similar to those evolved by GP with
the tree-based representation. GEP genes are also constructed based on the
function set and the terminal set. In GEP, the priority function is represented
as a chromosome of one or more genes. Each gene in the chromosome represents
a fixed length symbolic string which represents a mathematical function. A gene
can be divided into two parts: head and tail. While the head can contain both
functions and terminals, the tail can only contain terminals. An example GEP
chromosome with a single gene is shown in Fig. 4. The gene can be translated
into an expression tree by using K-expression. In this example, the first element
in the gene + is the root of the tree whose arguments can be obtained from
the next elements in the gene. It is noted that the first five elements in the gene
have already formed a valid K-expression and the rest of the gene will be ignored
in this case. In order to ensure that a valid K-expression can be obtained, the



Genetic Programming for Job Shop Scheduling 9

+ x DD RT P P SL r NPT

K-expression

Non-coding region P

+

RTDD

x

Fig. 4. GEP representation of the rule DD × RT + P .

length of the gene will be set such that t = h(n− 1) + 1, where h, t, and n are
respectively the length of the head, the length of the tail, and the maximum
number arguments of a function. In their experiments with the dynamic single
machine scheduling problems, Nie et al. [43] show that GEP was very competitive
with TGP (better than GP in some cases) and the rules obtained by TGP and
GEP were better than all the benchmark heuristics.

Similar to the tree-based representation, the GEP representation can also
be extended to cope with multiple scheduling decisions. Nie et al. [44, 42] de-
velop GEP methods to deal with flexible job shop scheduling problems. In their
methods, each GEP individual contains two chromosomes for making sequencing
and routing decisions or a chromosome will contain two genes representing the
two scheduling rules. The results show that the new GEP methods can evolve
scheduling heuristics that outperform heuristics in the literature and the GEP
method that deals with a single scheduling decision.

In order to evolve more sophisticated rules, multiple genes can also be used
to represent multiple functions which can be combined by using a simple sum-
mation of these functions [43] or explicitly using a control gene to combine the
outputs from these functions [44]. In the latter approach, the control gene is a
dedicated gene which is used to characterise the relationship between outputs
obtained from other genes. The control gene used the same function set as other
genes and the terminal set consisting of outputs from other genes. While this
representation can help GEP evolve more sophisticated rules, it will also increase
the computational time as well as the search space of GEP.

The genetic operators in GEP can be considered as hybrids between those of
genetic algorithm (GA) and TGP. The subtree crossover and subtree mutation
from TGP can also be applied to GEP. However, because of the difference in data
structure (linear vs tree), GEP needs to explicitly transverse through elements
in a gene to identify the subtree. Because the length of a GEP gene is fixed, the
same genetic operators such as the point mutation and the one-point/two-point
crossover in GA can also be applied [44, 42]. Special transposition operators are
also employed in GEP to randomly select a fragment of the chromosome and
insert it into the head.

Grammar-based representation Different from the tree-based representa-
tions which mainly focus on evolving priority functions (dispatching rules),



10 Nguyen et al.

grammar-based representations are usually used to construct high-level heuris-
tics composed of several low-level heuristics and solution attributes. Although
grammar-based GP has been developed to evolve heuristics for many hard com-
binatorial problems , their applications in manufacturing scheduling are still very
limited. Nguyen et al. [37] develop a grammar-based representation for GP to
evolve adaptive dispatching rules for job shop scheduling. The heuristics evolved
with this representation is quite similar to decisions trees which try to find out
which (available) candidate dispatching rule should be applied and what non-
delay factor should be used given some specific machine/system status. The
advantage of this representation is that the obtained rules can be interpreted
easier as compared to evolved priority functions previously discussed. Also, by
using a set of candidate rules which have been readily coded, the evaluations of
these rules are faster than those of rules with the tree-based representation. On
the other hand, the disadvantage of this representation is that it depends a lot on
the available problem-domain knowledge to choose appropriate machine/system
attributes and candidate rules. If the candidate rules cannot cover all situations,
the evolved adaptive rules may not provide satisfactory results.

3.2 Search mechanisms

The traditional search mechanism in Fig. 2 is currently the most common tech-
nique to deal with scheduling problems. Regardless of its simplicity, this frame-
work is able to discover very effective scheduling heuristics. However, in order to
deal with more complicated design issues such as multiple scheduling decisions
and multiple objectives, specialised search mechanisms will be needed.

Evolutionary multi-objective optimisation Multiple conflicting objectives
are a natural characteristic in real world applications and the design of new
scheduling heuristics also need to consider this issue. One advantage of using
GPHHs for designing heuristics is that their search mechanisms are very flexi-
ble and many advanced techniques have been developed to cope with multiple
objectives.

Tay and Ho [55] aim to tackle three objectives (makespan, mean tardiness,
and mean flowtime) when using GP to evolve dispatching rules for a flexible job
shop. In order to simplify the design problem, the three objectives are aggregated
by using the weighted sum approach with the same weight for each objective.
However, because the scale of each objective as well as the knowledge about the
objective search space is unknown, this approach can lead to unsatisfactory re-
sults. For that reason, the rules evolved by their GP method are sometimes worse
than simple rules such as FIFO [55]. When these evolved rules are examined in
a long simulation [18], they are only slightly better than the earliest release date
(ERD) rule and worse than the shortest processing time (SPT) rule with respect
to mean tardiness. This suggests that using the weighted aggregated objective
to deal with multi-objective design problem is not a good approach if the prior
knowledge about the objective functions is not available.



Genetic Programming for Job Shop Scheduling 11

Nguyen et al. [38] develop a multi-objective genetic programming based
hyper-heuristic (MO-GPHH) for dynamic job shop scheduling. In this work, they
aim to evolve a set of non-dominated dispatching rules for five common objective
functions in the literature. By relying on the Pareto dominance rather than any
specific objective, the proposed MO-GPHH was able to evolve very competitive
rules as compared to existing benchmark rules in the literature. Their results
show that it is very easy for MO-GPHH to find rules that totally dominate sim-
ple rules such as FIFO and SPT regarding all five considered objectives. The
proposed MO-GPHH can also find rules that dominate more sophisticated rules
such as apparent tardiness cost (ATC), RR, 2PT+WINQ+NPT, and cost over
time (COVERT) [25, 26, 53] in most of its runs. The analyses show that evolv-
ing the Pareto front is more beneficial as compared to evolving a single rule as
many unknown and helpful trade-offs are be discovered. Similar methods have
been applied to evolve comprehensive scheduling policies for dynamic job shop
scheduling [40] and order acceptance and scheduling [39] and showed promising
results.

Coevolution The advantages of automatic design of scheduling heuristics have
been demonstrated in the previous study. However, the drawback of this ap-
proach is the high computational time. Even though the obtained heuristics
are very fast, training hundreds or thousands of these heuristics under different
training examples can be very time consuming. To cope with this issue, GP can
evolve heuristics in parallel to reduce the computational times and hopefully the
complexity of the problem.

Miyashita [35] proposes three multi-agent learning structures based on GP
to evolve dispatching rules for JSS. The first one is a homogeneous agent model
which is basically the same as other GP methods which evolves a single dispatch-
ing rule for all machines. The second model treated each machine (resource) as
a unique agent which requires distinct heuristics to prioritise jobs in the queue.
In this case, each agent has its own population to evolve heuristics with GP. Fi-
nally, this research proposed a mixed agent model in which resources are grouped
based on their status. Two types of agents in this model are bottleneck agent
and non-bottleneck agent. Because of the strong interactions between agents,
credit assignment is difficult. Therefore, the performance of each agent is di-
rectly measured by the quality of the entire schedule. The experimental results
show that the distinct model has better training performance compared to the
homogeneous model. However, the distinct model has overfitting issues because
of the too specialised rules (for single/local machines). The mixed agent model
shows the best performance among the three when tested under two different
shop conditions. The drawback of this model is that it depends on some prior-
knowledge (i.e. bottleneck machines) of the job shop environment, which can be
changed in dynamic situations.

To deal with multiple scheduling decisions (sequencing and due date assign-
ment) in job shops, Nguyen et al. [40] develop a GP based cooperative coevo-
lution approach in which scheduling rules for a scheduling decision are evolved



12 Nguyen et al.

in their own subpopulation. Similar to [35], the fitness of each rule is measured
by the overall performance obtained through cooperation. Specialised crossover,
archiving and representation strategies are also developed in this study to evolve
the Pareto front of non-dominated scheduling heuristics. The results show that
the cooperative coevolution approach is very competitive with some other evo-
lutionary multi-objective optimisation approaches. The analysis also indicates
that the proposed cooperative coevolution approach can generate more diverse
sets of non-dominated scheduling heuristics.

Multi-stage learning/optimising In order to further utilise the outputs of
GPHHs for enhancing scheduling performance, some multi-stage learning/optimising
approaches have been proposed. Kuczapski et al. [31] develop two hyper-heuristics
to generate initial populations of GA for JSS. The first hyper-heuristic uses GP
to evolve composite dispatching rules similar to previous studies [55, 18, 10]. The
second one tries to find composite rules through simple weighted sum of priorities
generated by some existing dispatching rules. Another GA is used in this GPHH
to search for the weight of each existing dispatching rule. The comparison showed
that rules generated by GA is better than those generated by GP. A reason for
the poor performance of GP in this case may be that the population size (20) is
too small and does not provide GP with enough genetic materials to synthesise
effective rules. The experimental results showed that the two hyper-heuristics
can find rules to generate good initial solutions for JSS and significantly en-
hance the performance of GA, particularly improving the quality of solutions up
to 10% and reducing the computational time up 50% [31]. One drawback of this
approach is that the proposed GPHHs have to be applied for each instance and
reusability of evolved dispatching rules has not been investigated.

The multi-stage approach is not only applied to static scheduling problems
but also to dynamic scheduling problems. Pickardt et al. [48] propose a two-stage
approach to evolving dispatching rule sets for semiconductor manufacturing. In
the first stage, GP is used to evolve general dispatching rules. The best ob-
tained dispatching rule is combined with a list of benchmark dispatching rules
to generate a set of candidate rules. In the second stage, a µ + λ evolutionary
algorithm (EA) [48] is used to select the most suitable dispatching rule in the
set of candidate rules for each work centre in the shop. The experiments in this
paper compare the performance of the two-stage hyper-heuristics with the pure
GP and EA hyper-heuristics. The results show that the three hyper-heuristics
outperformed benchmark dispatching rules and the two-stage hyper-heuristics
produced significantly better performance than the other two hyper-heuristics.

4 Performance enhancement revisited

The previous section has shown some successful applications of GP for JSS.
Several clever ideas have been introduced in previous studies that can be used
to enhance the performance of GP for JSS. Although many ideas are proposed for
specific scheduling problems (e.g., flexible job shops with routing and sequencing



Genetic Programming for Job Shop Scheduling 13

decisions), some ideas are quite generic and can be easily applied to enhance the
quality of GP for JSS. In this section, we will revisit these generic ideas to
demonstrate how they can be applied and their usefulness. All experiments are
conducted using the same GP system and simulation environments. Different
performance measures of JSS are examined to verify the general effectiveness of
the considered ideas.

4.1 Experimental settings

All experiments in this section are based on the simulation model of a symmet-
rical job shop which has been used in previous studies on dispatching rules [25,
38, 6]. Here are the simulation configuration:

– 10 machines
– Each job has 2 to 14 operations (re-entry is allowed)
– Processing time follows discrete uniform distribution U [1, 99]
– Job arrivals follow Poisson process
– Due date = current time + allowance factor × total processing time (al-

lowance factor of 4 is used in our experiments)
– Utilisation of the shop is 95%
– No machine break-down; preemption is not allowed
– Weights of jobs are assigned based on the 4 : 2 : 1 rule [30, 50].

In each simulation replication, we start with an empty shop and the interval
from the beginning of the simulation until the arrival of the 500th job is consid-
ered as the warm-up time and the statistics from the next completed 2000 jobs
[20] will be used to calculate performance measures. Three scheduling perfor-
mance measures examined in our experiments are: (1) mean flowtime, (2) mean
tardiness, (3) total weighted tardiness. Although this simulation model are rel-
atively simple, it still reflects key issues of real manufacturing systems such as
dynamic changes and complex job flows. This section only considers the shop
with high utilisation (95%) and tight due date (allowance factor of 4) because
scheduling in this scenario is more challenging, which is easier to demonstrate
the usefulness of GP. Table 1 shows the terminal set and function set used in our
experiments. The parameters used in GP are presented in Table 2. The results
for each GP method in this section are based on 30 independent runs.

4.2 Training simulation replications

Using discrete event simulation is a conventional and suitable approach to assess
the performance of dispatching rules. In order to reliably measure the effective-
ness of evolved rules, a large number of simulation replications are needed (e.g.,
30 to 50 simulation replications are usually needed to accurately estimate the
performance of rules in the scenario described in Section 4.1). However, using
simulation to evaluate fitness of evolved rules is also the most time-consuming



14 Nguyen et al.

Table 1. Terminal and function sets of GP

Symbol Description

rJ job release time (arrival time)
RJ operation ready time
RO number of remaining operation within the job.
RT work remaining of the job
PR operation processing time
DD due date of the job
RM machine ready time
SL slack of the job = DD − (t + RT)
WT is the current waiting time of the job = max(0, t − RJ)
# Random number from 0 to 1

NPR processing time of the next operation
WINQ work in the next queue
APR average operation processing time of jobs in the queue

Function set +,−,×, %, min, max

∗t is the time when the sequencing decision is made.

Table 2. Parameter settings

Parameter Description

Initialisation ramped-half-and-half
Crossover rate 80%
Mutation rate 15%
Reproduction rate 5%
Maximum depth 8
Number of generations 100
Population size 500
Selection tournament selection (size = 5)

part in GP for JSS. Therefore, only a small number of replications are usually
used for fitness evaluations during the evolution (training) process.

How to effectively use the computational budget, i.e. total number of simula-
tion replications, is an interesting and important research question. Hildebrandt
et al. [18] has investigated different trade-offs between numbers of training repli-
cations and maximum numbers of generations when trying to evolve dispatching
rules for a semiconductor manufacturing systems. From their analyses, the best
setting is to use only one replication to evaluate fitness of rule; however, different
replications (different random seeds for the simulator) should be used in differ-
ent generations. In their method, the best rule obtained from each generation
is fully evaluated to validate its real performance. The experimental results of
fixed simulation replication and changing simulation replication strategies for



Genetic Programming for Job Shop Scheduling 15

our scenario are shown in Fig. 5 (for presentation purpose, the total weighted
tardiness is normalised by dividing it by the number of jobs). The values in these
boxplots are the average performance measures over 50 simulation replications.

GP−FixRep GP_ChangeRep

1
9

5
0

2
0

0
0

2
0

5
0

2
1

0
0

M
e

a
n

 F
lo

w
ti
m

e
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

GP−FixRep GP_ChangeRep

6
0

0
6

5
0

7
0

0
7

5
0

8
0

0
8

5
0

M
e

a
n

 T
a

rd
in

e
s
s
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

GP−FixRep GP_ChangeRep

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

T
o

ta
l 
W

e
ig

h
te

d
 T

a
rd

in
e

s
s
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

Fig. 5. Fixed simulation replications vs. changing simulation replications.

In this experiment, GP-FixRep uses only two fixed simulation replications
during the evolution (thus, only 50 generations are performed for a fair com-
parison) and GP-ChangeRep changes the simulation replication when moving
to the next generation). From the experiments, it is quite clear that changing
simulation replications can help GP evolve more effective dispatching rules re-
gardless of performance measures. As changing simulation replications can be
easily implemented, using this strategy is a good way to enhance the quality
of evolved rules when dealing with a single objective (i.e., performance mea-
sure), especially when the computational times are restricted or the simulation
is computationally too expensive.

4.3 Smooth and nonsmooth evolved dispatching rules

Selecting an appropriate function set is important in GP as it decides the search
space of evolved rules. Since most popular rules in the literature are relatively
simple and can be easily constructed by using basic arithmetic operators (+,−,×,
%), it is unclear if using more sophisticated functions such as if,max,min is
necessary. In this section, we examine GP with two different function sets (1) GP-
Smooth where only basic arithmetic operators are used and (2) GP-Nonsmooth
where arithmetic operators and max,min are used. The comparison of the two
settings are shown in Fig. 6.

In the case with mean flowtime as the performance measure, there is no
significant difference between the two settings and GP-Smooth is even slightly
better than GP-Nonsmooth. It is understandable because most effective existing
rules in the literature for minimising flowtime are usually simple (usually linear
combinations of different attributes) such as shortest processing time (SPT), or



16 Nguyen et al.

GP−Smooth GP−Nonsmooth

1
9

2
0

1
9

4
0

1
9

6
0

1
9

8
0

2
0

0
0

2
0

2
0

2
0

4
0

2
0

6
0

M
e

a
n

 F
lo

w
ti
m

e
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

GP−Smooth GP−Nonsmooth

6
0

0
6

5
0

7
0

0
7

5
0

8
0

0

M
e

a
n

 T
a

rd
in

e
s
s
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

GP−Smooth GP−Nonsmooth

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

T
o

ta
l 
W

e
ig

h
te

d
 T

a
rd

in
e

s
s
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

Fig. 6. Smooth vs. nonsmooth evolved dispatching rules.

2PT+WINQ+NPT [20]. Therefore, min,max seems to be redundant here and
may deteriorate the performance of GP.

For minimising mean tardiness and total weighted tardiness, GP-Nonsmooth
convincingly outperform GP-Smooth. These results suggest that basic arithmetic
operators are not sufficient to construct rules to deal with complex schedul-
ing problems (e.g., complex performance measures). The smooth evolved rules
generated by GP-Smooth cannot possess complex behaviours to cope with dif-
ferent situations in the simulation. As we examine the best evolved rules from
GP-Nonsmooth, it is easy to see that max,min functions create a complex
behaviour for evolved rules which cannot be easily created using arithmetic op-
erators. However, it is noted that we also try to avoid too complex functions
such if or max,min with multiple arguments as they can significantly increase
the search space without making any real contributions. From our past experi-
ments, max,min along with basic arithmetic operators are reasonably sufficient
to generate very complex (nonsmooth) rules. These issues also need to be taken
into account when developing new representations for dispatching rules.

4.4 Surrogate model

Surrogate models have been employed in many EC applications, especially when
the fitness evaluations are expensive. However, compared to traditional EC meth-
ods, using surrogate models in GP is a lot more complicated. Approximating the
fitness of GP individuals is challenging because it is difficult to capture the be-
haviours of evolved programs, or dispatching rules in our applications.

Hildebrandt and Branke [19] investigated two surrogate models for evolving
dispatching rules to minimise mean flowtime. In their approach, the fitness of an
evolved rule is approximated by using the fitness of the most similar rules gener-
ated in the previous generations. Based on this idea, two similarity measures are
proposed. The first measure is based on the genotype similarity of evolved rules,
i.e. the similarity in their structure. The second measure is calculated based on
the similarity of evolved rules, i.e the similarity in the way they prioritise jobs.



Genetic Programming for Job Shop Scheduling 17

Their (simplified) proposed surrogate-assisted GP (SGP) can be summarised as
follows:

i. Initialise the population with N rules
ii. Evaluate and determine (real) fitness for all evolved rules

iii. Apply genetic operator to generate m×N new rules
iv. Approximate the fitness of newly generated rules
v. Put rules with the best fitness into the population of the next generation
vi. Stop if the termination condition is met; otherwise, back to step (ii)

SGP in [19] used fixed simulation replications and utilised individuals in
the last two generations to approximate fitness of newly generated rules. For
the surrogate model, the behaviour of an evolved rule is characterised by a
decision vector based on a reference rule (2PT+WINQ+NPT) and the similarity
of two rules is measured by the distances of their corresponding decision vectors
(see [19] for a detailed description). In our experiments, we further examine the
performance of SGP with changing simulation replications and different reference
rules. Different from [19], because fitness of rules in different generations is not
compatible (as different replications are used), we only use rules in the most
recent generation for fitness approximation. The results of our experiments are
shown in Fig. 7.

GP SGP−FIFO SGP−REF

1
9

0
0

1
9

5
0

2
0

0
0

2
0

5
0

M
e

a
n

 F
lo

w
ti
m

e
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

GP SGP−FIFO SGP−REF

5
5

0
6

0
0

6
5

0
7

0
0

M
e

a
n

 T
a

rd
in

e
s
s
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

GP SGP−FIFO SGP−REF

9
5

0
1

0
0

0
1

0
5

0
1

1
0

0
1

1
5

0
1

2
0

0

T
o

ta
l 
W

e
ig

h
te

d
 T

a
rd

in
e

s
s
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

Fig. 7. Performance of surrogate-assisted GP methods for JSS.

In Fig. 7, GP represents simple GP method with changing replications and
the extended function set. SGP-FIFO and SGP-REF are our SGP versions with
FIFO and 2PT+WINQ+NPT as reference rules respectively. The results show
that surrogate approaches are more effective as compared to the simple GP ap-
proach when the same computational budget is used. It is noted that SGP-FIFO
and SGP-REF are slightly slower than GP because of fitness approximation.
However, as the complexity of scheduling environments increases, the time for
fitness approximation will be negligible as compared to the time for full fitness
evaluations. More detailed analyses of SGP are presented in Fig. 8 to Fig. 10.



18 Nguyen et al.

0 20 40 60 80 100

2
0

0
0

2
2

0
0

2
4

0
0

generation

M
e

a
n

 F
lo

w
ti
m

e

GP

SGP−FIFO

SGP−REF

0 20 40 60 80 100

0
.5

0
.6

0
.7

0
.8

0
.9

generation

b
e

s
t/

a
ve

ra
g

e
 R

a
ti
o

GP

SGP−FIFO

SGP−REF

Fig. 8. Behaviours of surrogate-assisted GP – Minimise mean flowtime.

0 20 40 60 80 100

7
0

0
9

0
0

1
1

0
0

generation

M
e

a
n

 T
a

rd
in

e
s
s

GP

SGP−FIFO

SGP−REF

0 20 40 60 80 100

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

generation
b

e
s
t/

a
ve

ra
g

e
 R

a
ti
o

GP

SGP−FIFO

SGP−REF

Fig. 9. Behaviours of surrogate-assisted GP – Minimise mean tardiness.

0 20 40 60 80 100

1
0

0
0

1
4

0
0

1
8

0
0

generation

T
o

ta
l 
W

e
ig

h
te

d
 T

a
rd

in
e

s
s

GP

SGP−FIFO

SGP−REF

0 20 40 60 80 1000
.2

0
.3

0
.4

0
.5

0
.6

0
.7

generation

b
e

s
t/

a
ve

ra
g

e
 R

a
ti
o

GP

SGP−FIFO

SGP−REF

Fig. 10. Behaviours of surrogate-assisted GP – Minimise total weighted tardiness.

In each figure, the left part shows the progress of the best performance mea-
sure (based on 50 simulation replications) across generations (averaged over 30
independent runs). The right part shows the ratio between the best fitness and
average fitness in each generation. The behaviour in the right part is not stable
because the fitness function changes across generations. For all three perfor-
mance measures, it is easy to see that SGP methods can find good rules a lot
faster than GP. In three cases, SGP methods can find the best rules evolved by
GP by using only 50 generations (two times faster than GP). Although, SGP
methods employ elitism in their selection, they did not suffer from premature
convergence. For the right parts of Fig. 8 to Fig. 10, it is obvious that SGP
can also find better rules for each training replication as compared to GP. This
helps confirm that surrogate model is still be very useful even when the simula-
tion replication changes across generations. Therefore, we can take advantages
of both changing simulation replications and surrogate models.



Genetic Programming for Job Shop Scheduling 19

4.5 Multi-objective

One big advantages of using GP or EC for automated design of dispatching rules
is that evolutionary multi-objective optimisation (EMO) has been mature over
the last decade. Many effective and efficient EMO techniques have been devel-
oped to deal with hard multi-objective problems. Therefore, there is no reason
not to utilise EMO to find the set of non-dominated rules, which help us under-
stand better about possible trade-offs before selecting appropriate dispatching
rules to apply. Fig. 11 demonstrates the usefulness of evolving non-dominated
rules. This figure presents the non-dominated rules for five performance mea-
sures found by MO-GPHH [41] for our considered scenario. The black circles
represent evolved non-dominated rules while the red crosses represent 31 rules
developed in the literature. It is not hard to see that there are many interesting
trade-offs that have been ignored in the literature. For example, we can find very
effective rules to minimise both maximum flowtime (Fmax) and percentage of
tardy jobs (%T); however, these rules have never been discovered.

One problem with evolving heuristics for multi-objective problems is overfit-
ting. The chance of creating overfitted heuristics through crossover and mutation
is actually quite high when Pareto dominance is used as the criteria for individ-
ual selection in GPHHs. A heuristic in the Pareto front accidentally generated
may not be dominated by other good non-dominated heuristics, especially when
many objectives are considered, even though the heuristic can contain many
useless components. This issue also occurs in single objective methods; however,
it is less severe because only one objective is considered and later generation can
find more compact heuristics to replace the unnecessarily lengthy heuristics. It
would be interesting to further extend the performance enhancement strategies
mentioned in previous sections to improve the quality of evolved non-dominated
rules.

4.6 Simplification

Evolving more compact dispatching rules is important in GP for JSS. More
compact rules are easier to understand, especially when rules are in the form
of priority functions. Moreover, compact rules will made the fitness evaluations
faster and will significantly reduce the computational times of GP. In this sec-
tion, we try to perform online simplification to hopefully help GP explore more
compact rules through the evolution process. Because we are dealing with math-
ematical expression, a straightforward simplification technique is to apply simple
symbolic simplification rules [56, 28].

In our experiments, we examine three methods to incorporate online simplifi-
cation into GP. GPSimFit only simplifies evolved rules for fitness evaluations and
the original rules are returned for genetic operations. GPSimALL simplifies all
generated rules in the population. Finally, GPSimHalf randomly simplifies a half
of rules in the population. The results from the three simplification strategies
and the simple GP method are shown in Fig. 12. Basically, there is no signif-
icant difference between the three methods in term of performance measures.



20 Nguyen et al.

F5000

6000

7000

8000

5000 7000

2000

3000

4000

5000

2000 4000

Fmax40000

50000

60000

70000
40000 60000

10000

20000

30000

40000

10000 30000

   %T
60

80

100
60 80 100

20

40

60

20 40 60

T

4000

5000

6000 4000 6000

1000

2000

3000

1000 3000

Tmax
40000

50000

60000

70000
40000 60000

10000

20000

30000

40000

10000 30000

Evolved rules Existing rules

Fig. 11. Distribution of rules on the evolved Pareto front.

Simplification also does not ensure that more compact rules will be obtained at
the end of GP runs. When examining the rules during the evolution process,
we observe that simplification only make evolved rules compact temporarily.
Over time, more complex rules are still generated with subtrees that cannot
be further simplified. Therefore, the final rules are still quite complex. The only
strategy with some potential benefit is GPSimFit where the computational times
can be significantly reduced when times for fitness evaluations are reduced due
to simplification. Since the original building blocks are preserved in this case,
simplification is still useful even at the latter stage of the evolution.



Genetic Programming for Job Shop Scheduling 21

GP GPSimFit GPSimALL GPSimHalf

5
5

0
6

0
0

6
5

0
7

0
0

7
5

0

M
e

a
n

 T
a

rd
in

e
s
s
 (

te
s
ti
n

g
 −

 a
ve

ra
g

e
)

GP GPSimFit GPSimALL GPSimHalf

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0

P
ro

g
ra

m
 L

e
n

g
th

 (
n

o
d

e
s
)

GP GPSimFit GPSimALL GPSimHalf

6
0

8
0

1
0

0

T
im

e
 (

m
in

u
te

s
)

Fig. 12. Simplfication in GP.

5 Conclusions

In this chapter, we have provided an overview of current research on GP and JSS.
Although JSS has been studied for decades, automated design of dispatching
rules is still a relatively new research direction. The use of GP for evolving
dispatching rules has made the design process a lot easier and more productive.
Instead of spending time fabricating or improving dispatching rules, scheduling
experts can focus more on investigating behaviours of obtained rules, comparing
the trade-offs between different rules, and handling real-world constraints.

In future studies, representations of dispatching rules are still a key research
topic to further enhance the effectiveness of GP for JSS. Since practical man-
ufacturing systems can be very complex, many aspects need to be considered.
Smart function and feature/attribute selection is worth investigating to make
GP search more effective. Multiple scheduling decisions and multiple objectives
are interesting research topics; however, they are still challenges for GP in order
to effectively handle these issues. Surrogate-assisted GP is promising and still has
a lot of room for further improvements. Finally, interpretability of rules needs
to receive more attentions. Evolved rules are still quite complicated and we still
have to manually simplify and transform evolved rules to an understandable
forms. Therefore, there is a need of more systematic and effective approaches
(e.g., visualisation, automatic analyses) to help us interpret evolved rules. This
is also a key issue to gain the confidence of users on GP systems.

Because there are many optimisation problems which share similar character-
istics of job shop scheduling, advances gained from this field can also be applied
to other applications, especially ones with sequencing related decisions. The com-
bination of GP with other optimisation methods should be an interesting topic
to explore in future studies.



22 Nguyen et al.

References

1. Asano, M., Ohta, H.: A heuristic for job shop scheduling to minimize total weighted
tardiness. Computers and Industrial Engineering 42, 137–147 (2002)

2. Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job
shop scheduling. Management Science 44, 262–275 (1998)

3. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming: An In-
troduction. Morgan Kaufmann (1998)

4. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Dario, P.,
Sandini, G., Aebischer, P. (eds.) Robots and Biological Systems: Towards a New
Bionics?, NATO ASI Series, vol. 102, pp. 703–712. Springer Berlin Heidelberg
(1993), http://dx.doi.org/10.1007/978-3-642-58069-7_38

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to
artificial systems. Oxford University Press, Inc., New York, NY, USA (1999), http:
//portal.acm.org/citation.cfm?id=328320

6. Branke, J., Hildebrandt, T., Scholz-Reiter, B.: Hyper-heuristic evolution of dis-
patching rules: A comparison of rule representations. Evolutionary Computation
(2014), in press (DOI:10.1162/EVCO a 00131)

7. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Ex-
ploring hyper-heuristic methodologies with genetic programming. In: Mumford, C.,
Jain, L. (eds.) Computational Intelligence, Intelligent Systems Reference Library,
vol. 1, pp. 177–201. Springer Berlin Heidelberg (2009)

8. Cheng, V.H.L., Crawford, L.S., Menon, P.K.: Air traffic control using genetic search
techniques. In: McClamroch, N.H., Sano, A., Gruebel, G. (eds.) Proceedings of the
1999 IEEE International Conference on Control Applications, vol. 1, pp. 249–254.
IEEE Press, Piscataway, NJ (1999)

9. Chiang, T.C., Shen, Y.S., Fu, L.C.: A new paradigm for rule-based scheduling
in the wafer probe centre. International Journal of Production Research 46(15),
4111–4133 (2008)

10. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming for
a classic one-machine scheduling problem. Advances in Engineering Software 32(6),
489–498 (2001)

11. El-Bouri, A., Balakrishnan, S., Popplewell, N.: Sequencing jobs on a single machine:
a neural network approach. European Journal of Operational Research 126(3), 474–
490 (2000)

12. Essafi, I., Mati, Y., Dauzère-Pérès, S.: A genetic local search algorithm for mini-
mizing total weighted tardiness in the job-shop scheduling problem. Computer &
Operations Research 35(8), 2599–2616 (2008)

13. Ferreira, C.: Gene Expression Programming: Mathematical Modeling by an Arti-
ficial Intelligence. Springer-Verlag, Germany, 2 edn. (2006)

14. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research 1(2), 117–129 (1976)

15. Geiger, C.D., Uzsoy, R., Aytuğ, H.: Rapid modeling and discovery of priority dis-
patching rules: an autonomous learning approach. Journal of Scheduling 9(1), 7–34
(2006)

16. Giffler, B., Thompson, G.L.: Algorithms for solving production-scheduling prob-
lems. Operations Research 8(4), 487–503 (1960)

17. Goncalves, J.F., de Magalhaes Mendes, J.J., Resende, M.G.C.: A hybrid genetic
algorithm for the job shop scheduling problem. European Journal of Operational
Research 167(1), 77–95 (2005)



Genetic Programming for Job Shop Scheduling 23

18. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios — a genetic programming approach. In: Pelikan,
M., Branke, J. (eds.) GECCO ’10: Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, pp. 257–264. ACM Press, New York
(2010)

19. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Tech.
rep., Warwick Business School (2014)

20. Holthaus, O., Rajendran, C.: Efficient jobshop dispatching rules: Further develop-
ments. Production Planning & Control 11(2), 171–178 (2000)

21. Hunt, R., Johnston, M., Zhang, M.: Evolving “less-myopic” scheduling rules for dy-
namic job shop scheduling with genetic programming. In: GECCO’14: Proceedings
of Genetic and Evolutionary Computation Conference (2014), (to appear)

22. Ingimundardottir, H., Runarsson, T.P.: Supervised learning linear priority dispatch
rules for job-shop scheduling. In: Coello Coello, C.A. (ed.) Learning and Intelli-
gent Optimization, LNCS, vol. 6683, pp. 263–277. Springer, Berlin and Heidelberg
(2011)

23. Jakobović, D., Budin, L.: Dynamic scheduling with genetic programming. In: Col-
let, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) Genetic Program-
ming, LNCS, vol. 3905, pp. 73–84. Springer, Berlin and Heidelberg (2006)

24. Jakobović, D., Marasović, K.: Evolving priority scheduling heuristics with genetic
programming. Applied Soft Computing 12(9), 2781–2789 (2012)

25. Jayamohan, M.S., Rajendran, C.: New dispatching rules for shop scheduling: a step
forward. International Journal of Production Research 38, 563–586 (2000)

26. Jayamohan, M.S., Rajendran, C.: Development and analysis of cost-based dis-
patching rules for job shop scheduling. European Journal of Operational Research
157(2), 307–321 (2004)

27. Jedrzejowicz, P., Ratajczak-Ropel, E.: Agent-based gene expression programming
for solving the rcpsp/max problem. In: Kolehmainen, M., Toivanen, P., Beliczynski,
B. (eds.) Adaptive and Natural Computing Algorithms, Lecture Notes in Computer
Science, vol. 5495, pp. 203–212. Springer Berlin Heidelberg (2009)

28. Johnston, M., Liddle, T., Zhang, M.: A relaxed approach to simplification in genetic
programming. In: Genetic Programming, LNCS, vol. 6021, pp. 110–121. Springer
(2010)

29. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA (1992)

30. Kreipl, S.: A large step random walk for minimizing total weighted tardiness in a
job shop. Journal of Scheduling 3, 125–138 (2000)

31. Kuczapski, A.M., Micea, M.V., Maniu, L.A., Cretu, V.I.: Efficient generation of
near optimal initial populations to enhance genetic algorithms for job-shop schedul-
ing. Information Technology and Control 39(1), 32–37 (2010)

32. van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K.: Job shop scheduling by sim-
ulated annealing. Operations Research 40(1), 113–125 (1992)

33. Lourenco, H.R.: Job-shop scheduling: Computational study of local search and
large-step optimization methods. European Journal of Operational Research 83(2),
347–364 (1995)

34. McKay, K.N., Safayeni, F.R., Buzacott, J.A.: Job-shop scheduling theory: What is
relevant? Interfaces 18, 84–90 (1988)

35. Miyashita, K.: Job-shop scheduling with genetic programming. In: Whitley, D.,
Goldberg, D., Cantu-Paz, E., Spector, L., Parmee, I., Beyer, H.G. (eds.) GECCO
2000: Proceedings of the Genetic and Evolutionary Computation Conference, pp.
505–512. Morgan Kaufmann, San Francisco (2000)



24 Nguyen et al.

36. Nguyen, S., Zhang, M., Johnston, M., Tan, K.: Learning iterative dispatching rules
for job shop scheduling with genetic programming. The International Journal of
Advanced Manufacturing Technology 67(1–4), 85–100 (2013)

37. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A computational study of rep-
resentations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. IEEE Transactions on Evolutionary Computation 17(5), 621–
639 (2013)

38. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Dynamic multi-objective job
shop scheduling: a genetic programming approach. In: Etaner-Uyar, A.Ş., Özcan,
E., Urquhart, N. (eds.) Automated Scheduling and Planning, Studies in Compu-
tational Intelligence, vol. 505, pp. 251–282. Springer, Berlin and Heidelberg (2013)

39. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Learning reusable initial solu-
tions for multi-objective order acceptance and scheduling problems with genetic
programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B.
(eds.) Genetic Programming, LNCS, vol. 7831, pp. 157–168. Springer, Berlin and
Heidelberg (2013)

40. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Automatic design of scheduling
policies for dynamic multi-objective job shop scheduling via cooperative coevolu-
tion genetic programming. IEEE Transactions on Evolutionary Computation 18(2),
193–208 (2014)

41. Nguyen, S.: Automatic Design of Dispatching Rules for Job Shop Scheduling with
Genetic Programming. Ph.D. thesis, Victoria University of Wellington (2013)

42. Nie, L., Gao, L., Li, P., Li, X.: A GEP-based reactive scheduling policies construct-
ing approach for dynamic flexible job shop scheduling problem with job release
dates. Journal of Intelligent Manufacturing 24(4), 763–774 (2013)

43. Nie, L., Shao, X., Gao, L., Li, W.: Evolving scheduling rules with gene expression
programming for dynamic single-machine scheduling problems. The International
Journal of Advanced Manufacturing Technology 50(5–8), 729–747 (2010)

44. Nie, L., Bai, Y., Wang, X., Liu, K.: Discover scheduling strategies with gene ex-
pression programming for dynamic flexible job shop scheduling problem. In: Tan,
Y., Shi, Y., Ji, Z. (eds.) Advances in Swarm Intelligence, vol. 7332, pp. 383–390
(2012)

45. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem.
Management Science 42, 797–813 (1996)

46. Ouelhadj, D., Petrovic, S.: A survey of dynamic scheduling in manufacturing sys-
tems. Journal of Scheduling 12(4), 417–431 (2009)

47. Petrovic, S., Fayad, C., Petrovic, D., Burke, E., Kendall, G.: Fuzzy job shop
scheduling with lot-sizing. Annals of Operations Research 159, 275–292 (2008)

48. Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolu-
tionary generation of dispatching rule sets for complex dynamic scheduling prob-
lems. International Journal of Production Economics 145(1), 67–77 (2013)

49. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems. Springer, New York,
3rd edn. (2008)

50. Pinedo, M., Singer, M.: A shifting bottleneck heuristic for minimizing the total
weighted tardiness in a job shop. Naval Research Logistics 46(1), 1–17 (1999)

51. Ponnambalam, S.G., Ramkumar, V., Jawahar, N.: A multiobjective genetic algo-
rithm for job shop scheduling. Production Planning and Control 12(8) (2001)

52. Potts, C.N., Strusevich, V.A.: Fifty years of scheduling: a survey of mile-
stones. Journal of the Operational Research Society 60(Supplement 1),
41–68 (2009), http://www.palgrave-journals.com/jors/journal/v60/ns1/abs/
jors20092a.html



Genetic Programming for Job Shop Scheduling 25

53. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job
shop scheduling problem under different flow time- and tardiness-related objective
functions. International Journal of Production Research 50(15), 4255–4270 (2011)

54. Sha, D., Hsu, C.Y.: A hybrid particle swarm optimization for job shop scheduling
problem. Computers & Industrial Engineering 51(4), 791 – 808 (2006)

55. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems. Computers & Industrial Engi-
neering 54(3), 453–473 (2008)

56. Wong, P., Zhang, M.: Algebraic simplification of gp programs during evolution. In:
Proceedings of the 8th Annual Conference on Genetic and Evolutionary Compu-
tation. pp. 927–934. GECCO ’06 (2006)

57. Xing, L.N., Chen, Y.W., Wang, P., Zhao, Q.S., Xiong, J.: A knowledge-based
ant colony optimization for flexible job shop scheduling problems. Applied Soft
Computing 10(3), 888 – 896 (2010)

58. Yamada, T., Nakano, R.: A genetic algorithm with multi-step crossover for job-shop
scheduling problems. In: GALESIA: First International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Applications. pp. 146–151
(1995)

59. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject
to machine breakdowns with genetic programming. In: Sarker, R., Reynolds, R.,
Abbass, H., Tan, K.C., McKay, B., Essam, D., Gedeon, T. (eds.) The 2003 Congress
on Evolutionary Computation (CEC 2003), vol. 2, pp. 1050–1055. IEEE Press,
Piscataway, NJ (2003)


