
Genetic Programming Controlling
a Miniature Robot

Peter Nordin* Wolfgang Banzhaft

Fachbereich Informatik
Universitgt Dortmund

44221 Dortmund, Germany

August 14, 1995

Abstract 1 Introduction

We have evaluated the use of Genetic Pro-
gramming to directly control a miniature ro-
bot. The goal of the GP-system was to
evolve real-time obstacle avoiding behaviour
from sensorial data. The evolved programs
are used in a sense-think-act context. We em-
ployed a novel technique to enable real time
learning with a real robot. The technique uses
a probabilistic sampling of the environment
where each individual is tested on a new real-
time fitness case in a tournament selection pro-
cedure. The fitness has a pain and a pleasure
part. The negative part of fitness, the pain,
is simply the sum of the proximity sensor val-
ues. In order to keep the robot from stand-
ing still or gyrating, it has a pleasure com-
ponentton fitness. It gets pleasure from go-
ing straight and fast. The evolved algorithm
shows robust performance even if the robot is
lifted and placed in a completely different en-
vironment or if obstacles are moved around.

*email:nordin@lsl 1 .informatik.uni- dor tmund.de
temail: banzhaf@ls 11.informatik.uni-dor tmund.de

We have evaluated the use of Genetic Pro-
gramming to control a miniature robot. To
use a genetic process as the architecture for
mental activities could, at first, be considered
awkward. As far as we know today, genetic in-
formation processing is not directly involved in
information processing in brains, but the idea
of genetics as a model of mental processes is
not new. Just 15 years after Darwin published
The origin of Species, in 1874, the American
psychologist William James argued that men-
tal processes operate in a Darwinian manner.
tie suggested that ideas might somehow "com-
pete" with one another in the brain leaving
only the best or fittest. Just as Darwinian
evolution shaped a better brain in a couple
of million years, a similar Darwinian process
operating within the brain might shape intelli-
gent solutions to problems on the time scale of
thought and action. This allows "our thoughts
to die instead of ourselves". More recently,
selectionist approaches to learning have been
studied in detail by Gerald Edelman and his
collaborators (see [1] and refernces therein).
The use of an evolutionary method to evolve
controller architectures has been reported pre-

61

From: AAAI Technical Report FS-95-01. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

dynamic recurrent neural nets [2], [3]. Several
experiments have also been performed were a
controller program has been evolved directly
through genetic programming [4], [5], [6].
Previous experiments, however, with genetic
programming and robotic control have been
performed with a simulated robot and a sim-
ulated environment. In such a set-up, the en-
vironment and the robot can be easily reset
to an initial state in order to ensure that each
individual in the population is judged starting
from the same state. Apart from being prac-
tically infeasible for a real robot, this method
could result in over-specialization and failure
to evolve a behaviour that can generalize to
unseen environments and tasks. To overcome
this last problem noise is sometimes artificially
added to the simulated environment.
In our experiments we use a real robot trained
in real time with actual sensors. In such an
environment, the system has to evolve robust
controllers because noise is present everywhere
and the number of real-life training situations
is infinite. In addition, it is highly impractical
to reset the robot to a predefined state be-
fore evaluating a fitness case. Consequently,
we had to devise a new method which ensures
learning of behaviour while the environment is
probabilistically sampled with new real-time
fitness cases for each individual evaluation.

2 The Khepera Robot

Our experiments were performed with a stand-
ard autonomous miniature robot, the Swiss
mobile robot platform Khepera. It is equipped
with eight infrared proximity sensors. The mo-
bile robot has a circular shape, a diameter of
6 cm and a height of 5 cm. It possesses two
motors and on-board power supply. The mo-
tors can be independently controlled by a PID
controller. The eight infrared sensors are dis-

tributed around the robot in a circular pat-
tern. They emit infrared light, receive the re-
flected light and measure distances in a short
range: 2-5 cm. The robot is also equipped
with a Motorola 68331 micro-controller which
can be connected to a SUN workstation via
serial cable.
It is possible to control the robot in two ways.
The controlling algorithm could be run on
the workstation, with data and commands
communicated through the serial line. Al-
ternatively, the controlling algorithm is cross-
compiled on the workstation and down-loaded
to the robot which then runs the complete sys-
tem in a stand-alone fashion. At present, the
GP-system is run on the workstation, but we
plan to port it and down-load it to the robot.
The micro controller has 256 KB of RAM and
a large ROM containing a small operating sys-
tem. The operating system has simple multi-
tasking capabilities and manages the commu-
nication with the host computer.
The robot has several extension ports where
peripherals such as grippers and TV cameras
might be attached.

3 Objectives

The goal of the controlling GP system is to
evolve obstacle avoiding behaviour in a sense-
think-act context. The system operates real-
time and aims at obstacle avoiding behaviour
from real noisy sensorial data. For a more gen-
eral description, definition and discussion of
the problem domain see, [7], [8], [9], [10].
The controlling algorithm has a small popu-
lation size, typically less than 50 individuals.
The individuals use six values from the sensors
as input and produce two output values that
are transmitted to the robot as motor speeds.
Each individual program does this manipula-
tion independent of the others and thus stands

62

for an indivudual behaviour of the robot if in-
voked to control the motors. The resulting
variety of behaviours does not have to be gen-
erated artificially, e.g. for explorative beha-
viour, it is always there, since a population of
those individuals is processed by the GP sys-
tem.

3.1 Training Environment

The robot was trained in two different envir-
onments. The first environment was a simple
rectangular box. The dimensions of the box
were 30 cm x 40 cm. The surface transmitted
high friction to the wheels of the robot. This
caused problems in the initial stages of train-
ing. Before the robot learned a good strategy
it kept banging into the walls trying to "go
through the walls". The high friction with the
surface consequently stressed the motors.
We also designed a second, more complex en-
vironment. This larger environment is about
70 cm x 90 cm. It has an irregular boarder
with different angles and four deceptive dead-
ends in each corner. In the larger open area in
the middle, loose obstacles can be placed. The
friction between wheels and surface is consid-
erably lower, enabling the robot to slip with
its wheels during a collision with an obstacle.
There is an increase in friction with the walls
making it hard for the circular robot to turn
while in contact with a wall.

4 The Evolutionary
Algorithm

The GP-system is a steady state tournament
selection algorithm [5], [11] with the following
execution cycle:

1. Select k members for tournament.

2. For all members in tournament do:

(a) Read out proximity sensors and feed
the values to one individual in the
tournament.

(b) Execute the individual and store the
resulting robot motor speeds.

(c) Send motor speeds to the robot.

(d) Sleep for 400ms to await the results
of the action.

(e) Read the proximity sensors again
and compute fitness, see below.

3. Perform tournament selection.

4. Do mutation and crossover.

5. Goto step 1.

4.1 Fitness calculation

The fitness has a pain and a pleasure part. The
negative contribution to fitness, called pain, is
simply the sum of all proximity sensor values.
The closer the robot’s sensors are to an object,
the more pain. In order to keep the robot from
standing still or gyrating, it has a positive con-
tribution to fitness, called pleasure, as well. It
receives pleasure from going straight and fast.
Both motor speed values minus the absolute
value of their difference is thus added to the
fitness.
Let Pi be the values of the proximity sensors
ranging from 0- 1023 where a higher value
means closer to an object. Let ml and m2
be the left and right motor speeds resulting
from an execution of an individual. The fitness
value can then be expressed more formally as:

f : Piq- [15--ml I-}" [15-m2 I q- I ml-m2 I
(1)

63

4.2 Implementation

The Evolutionary Algorithm we use in this pa-
per is an advanced version of the CGPS de-
scribed in [12], composed of variable length
strings of 32 bit instructions for a register ma-
chine. The system has a linear genome. Each
node in the genome is an instruction for a
register machine. The register machine per-
forms arithmetic operations on a small set of
registers. Each instruction might also include
a small integer constant of maximal 13 bits.
The 32 bits in the instruction thus represents
simple arithmetic operations such as "a=b+c"
or "c=b*5". The actual format of the 32 bits
corresponds to the machine code format of a
SUN-4 [13], which enables the genetic operat-
ors to manipulate binary code directly. For a
more thorough description of the system and
its implementation, see [14].
The set-up is motivated by fast execution,
low memory requirement and a linear gen-
ome which makes reasoning about informa-
tion content less complex. This system is also
used with the future micro-controller version
in mind.
The system is a machine code manipulating
GP system that uses two-point string cros-
sover. A node is the atomic crossover unit
in the GP structure. Crossover can occur on
either or both sides of a node but not within
a node. Because of our particular implement-
ation of GP works with 32 bit machine code
instructions , a node is a 32 bit instruction.
Mutation flips bits inside the 32-bit node. The
mutation operator ensures that only the in-
structions in the function set and the defined
ranges of registers and constants are the result
of a mutation.
The function set used in these experiments are
all low-level machine code instructions. There
are the arithmetic operations ADD, SUB and
MUL. The shift operations SLL and SLR and
finally the logic operations AND, O1~ and

XOR. All these instructions operate on 32-bit
registers.
Table 1 gives a summary of the problem ac-
cording to the conventions used in [4].

5 Results

Interestingly, the robot shows exploratory be-
haviour from the first moment. This is a result
of the diversity in behaviour residing in the
first generation of programs which has been
generated randomly. Naturally, the behaviour
is erratic at the outset of a run.
During the first minutes, the robot keeps col-
liding with different objects, but as time goes
on the collisions become more and more infre-
quent. The first intelligent behaviour usually
emerging is some kind of backing up after a
collision. Then the robot gradually learns to
steer away in an increasingly more sophistic-
ated manner.
After about 20 minutes, the robot has learned
to avoid obstacles in the rectangular environ-
ment almost completely. It has learned to as-
sociate the values from the sensors with their
respective location on the robot and to send
correct motor commands. In this way the
robot is able, for instance, to back out of a
corner or turn away from an obstacle at its
side. Tendencies toward adaption of a special
path in order to avoid as many obstacles as
possible can also be observed.
The robot’s performance is similar in the
second, more complex environment. The con-
vergence time is slower. It takes about 40-
60 minutes, or 200-300 generation equivalents,
to evolve a good obstacle avoiding behaviour.
The reason for the slower convergence time
could be: less frequent collisions in the lar-
ger environment, the slippery surface, the high
friction in collisions with walls and/or the less

Table :
Objective : Obstacle avoiding behaviour in real-time
Terminal set : Integers in the range 0-8192
Function set : ADD, SUB, MUL, StIL, SHlZ, XOR,

OR, AND
Raw and standardized fitness : Pleasure subtracted from pain value

desired value
Wrapper : None
Parameters :
Maximum population size : 3O
Crossover Prob : 9O%
Mutation Prob : 5%
Selection : Tournament Selection
Termination criteria : None
Maximum number of generations: None
Maximum number of nodes: 256 (1024)

Table 1: Summary of parameters used during training.

regular and more complex environment.

6 Future Work and Discus-
sion

We have demonstrated that a GP system can
be used to control an existing robot in a
real-time environment with noisy input. The
evolved algorithm shows robust performance
even if the robot is lifted and placed in a com-
pletely different environment or if obstacles are
moved around. We believe that the robust be-
haviour of the robot partly could be attributed
to the built in generalisation capabilities of a
genetic programming system [15].
Our next immediate goal is to cross-compile
tile GP-system and run it with the same set-
up on the micro-controller on-board the ro-
bot. This would demonstrate the applicab-
ility of Genetic Programming to control tasks
on low-end architectures. The technique could
then potentially be applied to many one-chip

control applications in, for instance, consumer
electronics devices etc.
Another further extension to the system would
be to eliminate the 400ms delay time of sleep-
ing, during which the system is waiting for the
result of its action. This could be achieved
by allowing the system to memorize previous
stimulus-response pairs and by enabling it to
self-inspect memory later on in order to learn
directly from past experiences without a need
to wait for results of its actions. We anticip-
ate the former to speed up the algorithm by
a factor of at least 1000. The latter method
would probably speed up the learning of be-
haviour by a comparably large factor.

Acknowledgement

One of us (P.N.) acknowledges support
by a grant from the Ministerium fiir
Wissenschaft und Forschung des Landes
Nordrhein-Westfalen under contract I-A-4-
6037-I

65

References

[1] Edelman G. (1987) Neural Darwinism,
Basic Books, New York

[2] Cliff D. (1991) Computational Neuroeth-
ology: A Provisional Manifesto, in: From
Animals To Animats: Proceedings of the
First International Conference on simu-
lation of Adaptive Behaviour, Meyer and
Wilson (eds.), MIT Press, Cambridge,
MA

[9]

[3] Harvey I., Husbands P. and CliffD.(1993)
Issues in evolutionary robotics, in: From
Animals To Animals 2: Proceedings of [10]
the Second International Conference on
simulation of Adaptive Behaviour, Meyer
and Wilson (eds.), MIT Press, Cam- [11]
bridge, MA

[4] Koza, J. (1992) Genetic Programming,
MIT Press, Cambridge, MA

[5] Reynolds C.W. (1994) Evolution
Obstacle Avoidance Behaviour, in: Ad-
vances in Genetic Programming, K. Kin-
near, Jr. (ed.), MIT Press, Cambridge,
MA

[6] Handley S. (1994) The automatic gener-
ation of Plans for a Mobile Robot via
Genetic Programing with Automatically
defined Functions, in: Advances in Ge-
netic Programming, K. Kinnear, Jr. (ed.),
MIT Press, Cambridge, MA

[7] Reynolds C.W. (1988) Not Bumping into
Things, in: Notes for the SIGGRAPH’88
course Developments in Physically-Based
Modelling, ACM-SIGGRAPH.

[8] Mataric M.J.(1993) Designing Emergent
Behaviours: From Local Interactions to
Collective Intelligence, in: From Animals
To Animals 2: Proceedings of the Second

[12]

[13]

[14]

[15]

International Conference on simulation
of Adaptive Behaviour, Meyer and Wilson
(eds.), MIT Press, Cambridge,

Zapata R., Lepinay P., Novales C. and
Deplanques P. (1993) Reactive Beha-
viours of Fast Mobile Robots in Unstruc-
tured Environments: Sensor-based Con-
trol and Neural Networks, in: From An-
imals To Animats 2: Proceedings of the
Second International Conference on sim-
ulation of Adaptive Behaviour, Meyer and
Wilson (eds.), MIT Press, Cambridge,
MA

Braitenberg V. (1984) Vehicles, MIT
Press, Cambridge, MA.

Syswerda G. (1991) A study of Repro-
duction in Generational Steady-State Ge-
netic Algortihms, in: Foundations of Ge-
netic Algorithms, Rawlings G.J.E. (ed.),
Morgan Kaufmann, San Mateo, CA

Nordin J.P. (1994) A Compiling Genetic
Programming System that Directly Ma-
nipulates the Machine-Code, in: Ad-
vances in Genetic Programming, K. Kin-
near, Jr. (ed.), MIT Press, Cambridge,
MA

The SPARC Architecture Manual,(1991),
SPARC International Inc., Menlo Park,
CA

Nordin J.P. and Banzhaf W. (1995)
Evolving Turing Complete Programs for
a Register Machine with Self-Modifying
Code, in: Proceedings of Sixth Interna-
tional Conference of Genetic Algorithms,
Pittsburgh, 1995, L. Eshelman (ed.), Mor-
gan Kaufmann, San Mateo, CA

Nordin J.P. and Banzhaf W. (1995) Com-
plexity Compression and Evolution, in

66

Proceedings of Sizth International Con-
ference of Genetic Algorithms, Pitts-
burgh, 1995, L. Eshelman (ed.), Morgan
Kaufmann, San Mateo, CA

67

