
Automatic Generation of Intelligent Agent
Programs∗

Lee Spector
lspector@hampshire.edu

http://hampshire.edu/lspector

An “agent,” for the sake of these comments, is any autonomous system
that perceives and acts to achieve a narrow set of goals within a specific vir-
tual or real environment. This definition, while broad, nonetheless highlights
several contrasts between agents and traditional AI systems. Traditional
AI systems have usually been designed to be operated under the control
and watchful eye of a user, while agents are sent out into the world to act
autonomously, usually on their owners’ behalf. Traditional AI systems au-
tomate a single step on the path from perception to action — for example,
vision or reasoning about action — while agents must manage the entire
path. And traditional AI technologies aspire to provide systems with general
knowledge about a domain, while agents need know only about their own
limited concerns within their own particular environments. We only demand
that an agent do one thing for us, but it should do it all by itself.

One reason for excitement about agent-oriented AI is the belief that it
is easier to write programs for many narrow, autonomous systems than it is
to write programs for fewer, broader, user-driven systems. A related reason
for excitement is the primary message of these comments: it is also easier to
automatically generate agent programs.

The artificial life, machine learning, and automatic programming litera-
tures already describe many experiments in which systems with agent-like
properties have been automatically generated (see e.g., [Cliff et al. 1994]).

∗Full citation: Spector, L. 1997. Automatic Generation of Intelligent Agent Programs.
In IEEE Expert. Jan-Feb 1997, pp. 3-4.

1



Although most of the previously generated systems have been too simple to
perform helpful tasks for actual users, recent advances suggest that useful in-
telligent agents will soon be within reach of these techniques. The remainder
of these comments will focus on one particular technology, genetic program-
ming (GP) [Koza 1992], but related points should apply to other automatic
programming technologies.

In GP, computer programs are generated by natural selection. The pro-
cess starts with a large initial population of programs that are random com-
binations of problem-specific primitives. Each program is assessed for fitness,
and the fitness values are used to control genetic operations (usually fitness-
proportionate reproduction, crossover, and mutation) that produce the next
generation. After a preestablished number of generations, or after the best
fitness improves to some preestablished level, the best-of-run program is pro-
duced as the output from the GP system.

The two key steps in the application of GP to a new problem are the
design of the fitness test and the choice of primitives. The design of the
fitness test for agents is straightforward. In traditional AI systems many
features of a system’s input and output — for example their representation
and level of abstraction — are up for grabs. But agents must manage the
entire path from percepts to actions, so it’s usually obvious what the inputs
and outputs must be, and what should count as good input/output behavior.
The fitness of a candidate agent can therefore be assessed simply by running
it in a captured fragment of the actual target environment and by collecting
statistics about its behavior (see Figure 1).

Useful agent primitives are under construction by several research groups
(e.g., [Coen 1994]). The goals of such groups are generally to provide very-
high-level language support for human programmers, but the resulting prim-
itives may provide equal benefit to automatic programming processes. In
any case the same features of the agent paradigm that make it possible to
provide high-level tools for human programmers (for example, narrow focus)
should also make it possible to provide good sets of high-level primitives to
GP processes.

In many cases it is even possible for a GP system to build its own prim-
itives, bootstrapping from low level operations such as arithmetic or basic
network functions. Existing techniques allow one to simultaneously evolve
a main program and a set of automatically defined functions (ADFs) used
by that program [Koza 1994]. For agents specifically, primitives that pro-

2



Environment

Captured Fragment

Fitness Test

Evolving Population
of Agents Best Agent

Release

Percepts ActionsA

Percepts ActionsA

A
A

A Analysis/
Verification

Figure 1: Framework for the evolution of artificial agents.

vide special-purpose control structures (for example, tasks) may be particu-
larly useful; by use of automatically defined macros (ADMs) these may also
be evolved simultaneously with the agent programs that use them [Spector
1996]. Both ADMs and ADFs have been shown to decrease the computa-
tional effort required to produce programs in certain environments.

Several other recent developments in GP technique dovetail nicely with
the requirements for the generation of intelligent agents. For example, it is
important for agents to be able to adapt to their environments as they run
[Maes 1994]. The GP technique of indexed memory [Teller 1994] allows for
the evolution of agents that record features of their environments and change
their behavior accordingly. The technique of ontogenetic programming [Spec-
tor and Stoffel 1996] allows for the evolution of programs that adapt by mod-
ifying their own code throughout their lifetimes. The technique of cultural
memory [Spector and Luke 1996] allows populations of evolving programs to
collectively build repositories of information that may support more robust,
adaptive behavior by individuals.

Some words of caution are also in order. In particular, the possibility
of automatically generated agents forces us to confront the issue of agent
trustworthiness in a serious way. After all, an agent acts on its owner’s

3



behalf, and with this autonomy comes responsibility. Although users may
initially be more prepared to trust human-coded agents, precautions must
be taken to analyze and verify agent code whatever its source (see Figure 1).
The careful use of automatic programming techniques need not exacerbate
this problem.

In sum, recent advances have significantly increased the power of au-
tomatic programming technology. Simultaneously, the development of the
intelligent agent paradigm has provided an easier target that is particularly
well-matched to the specific technological advances: autonomous systems
with narrow expertise. The future looks bright for agent-oriented AI, and if
the trends described here continue we won’t have to write agent programs
by hand — we will be able to generate them automatically.

References

Cliff, D., P. Husbands, J-A. Meyer, and S.W. Wilson, Eds. 1994. From
Animals to Animats 3. MIT Press.

Coen, M. 1994. SodaBot: A Software Agent Environment and Con-
struction System. MIT AI Lab Technical Report 1493.

Koza, J.R. 1992. Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press.

Koza, J.R. 1994. Genetic Programming II: Automatic Discovery of
Reusable Programs. MIT Press.

Maes, P. 1994. Modeling Adaptive Autonomous Agents. In Artificial
Life Journal, Vol. 1, No. 1 & 2. MIT Press.

Spector, L. 1996. Simultaneous Evolution of Programs and their Con-
trol Structures. In Advances in Genetic Programming 2, edited by P.
Angeline and K. Kinnear. MIT Press.

Spector, L., and S. Luke. 1996. Cultural Transmission of Information
in Genetic Programming. In Proceedings of the Genetic Programming
1996 Conference. MIT Press. To appear.

4



Spector, L., and K. Stoffel. 1996. Ontogenetic Programming. In Pro-
ceedings of the Genetic Programming 1996 Conference. MIT Press. To
appear.

Teller, A. 1994. “The Evolution of Mental Models.” In K.E. Kinnear
Jr., Ed., Advances in Genetic Programming, pp. 199–219. MIT Press.

5


