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Abstract

This paper analyses the effect of using different random number gener-
ators (RNG) in a hardware implementation of Genetic Programming using
Field Programmable Gate Arrays. Hardware systems have typically used
RNGs based on Logical Feedback Shift Registers or Cellular Automata. Dif-
ferent configurations of these generators are evaluated as well as using a
source of true random numbers and a standard multiply/add generator. We
show that using a more sophisticated generator than a simple LFSR slightly
improves the performance of the hardware GP system.
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1 Introduction

Previous work [9] described an implementation of Genetic Programming using
Field Programmable Arrays and a high level language to hardware compilation
system called Handel-C. Subsequent work [10] described a pipelined implementa-
tion that improved the performance and demonstrated that the technique could be
used to solve the artificial ant problem. In both cases the work concentrated on the
implementation issues and increasing the clock speed of the implementation, but
put to one side the performance of the system with respect to its ability to solve
GP problems. Now that the raw throughput issues have been addressed it is time
to look at how good the hardware implementation performs with respect to GP, in
particular the effectiveness of the Random Number Generator (RNG) used.

A comment often made about Genetic Programming and other stochastic search
methods is that a good random number generator is needed. The evidence pre-
sented by others to date is that the quality of the RNG is probably not as important
as often stated. Nevertheless, it is important to consider the effect of design deci-
sions and to investigate alternatives where practicable.

In the hardware implementation of GP, the random number generator is imple-
mented using a Logical Feedback Shift Register (LFSR) which has a number of
known weaknesses. This suggests that other random number generators should be
investigated. This paper begins with a brief description of the Handel-C language
and the design of a hardware GP system. This is followed by a review of previ-
ous work on random number generation that has been implemented in hardware.
We then present an analysis of the pseudo random number generator used in the
original design, and investigate other random number generators. We finish with a
discussion of the results and draw some conclusions.

2 A Hardware Implementation of GP using FPGAs

A detailed review of previous work using FPGAs in Evolutionary Computing can
be found in [9].

2.1 Description of Handel-C

Handel-C is a high level language that is at the heart of a hardware compilation
system known as Celoxica DK1 [3] which is designed to compile programs writ-
ten in a C-like high level language into synchronous hardware. The output from
Handel-C is a file that is used to create the configuration data for the FPGA. A de-
scription of the process used by Handel-C to transform a high level language into
hardware and examples of the hardware generated can be found in [16]. Handel-C
has its roots in CSP and Occam.

The C-like syntax makes the tool appealing to software engineers with little or
no experience of hardware. They can quickly translate a software algorithm into
hardware, without having to learn about VHDL or FPGAs in detail. Examples
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of how Handel-C may be exploited can be found in work by Page [17] where a
number of video algorithms were implemented using just an FPGA, and in work
by Sulik et al [22] that describes how a Reduced Instruction Set Computer core
was designed in 48 hours.

One of the advantages of using hardware is the ability to exploit parallelism
directly. Because standard C is a sequential language Handel-C has additional
constructs to support the parallelization of code, and to allow fine control over
what hardware is generated.

Since Handel-C targets hardware, there are some programming restrictions
when compared to using ISO-C, and these need to be considered when design-
ing code that can be compiled by Handel-C. Some of these restrictions particularly
affect the building of a GP system. Firstly, there is no stack available, so recursive
functions cannot be directly supported by the language. Secondly, there is a se-
vere limit to the size of memory that can be implemented using standard logic cells
on an FPGA because implementing memory is expensive in terms of silicon real
estate. However, some FPGAs have internal RAM that can be used by Handel-C.

Handel-C supports two targets. The first is a simulator that allows develop-
ment and testing of code without the need to use any hardware. This is supported
by a debugger and other tools. The second target is the synthesis of a netlist for
input to FPGA place and route tools. This allows the design to be translated into
configuration data for particular chips. Analysis of cycle counts is available from
the simulator, and an estimate of the final gate count is generated by the Handel-C
compiler.

2.2 Target Hardware

The target hardware for this work is a Celoxica RC1000 FPGA development board
fitted with a Xilinx XCV2000E Virtex-E FPGA having 43,200 logic cells and
655,360 bits of block ram, a PCI bridge that communicates between the RC1000
board and the host computer’s PCI bus, and four banks of Static Random Access
Memory (SRAM). Logic circuits isolate the FPGA from the SRAM, allowing both
the host CPU and the FPGA to access the SRAM, though not concurrently.

2.3 Program Representation

The lack of a stack in Handel-C means that a standard tree based representation is
difficult to implement because recursion cannot be handled by the language. An
alternative to a tree representation is a linear representation which has been used
by others to solve some hard GP problems [15]. Using a linear representation, a
program consists of a sequence of words which are decoded by the problem specific
fitness function.
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3 Previous Work on Pseudo Random Numbers for Ge-
netic Programming and Hardware

This section reviews the types of random number generators that have been used
by hardware implementations of GA, GP and other applications of hardware to
probabilistic algorithms.

Linear Feedback Shift Register (LFSR) or Tauseworth generators have been
used by Maruyama et al [11]. In their paper they referred to the generator as a
m-sequence, or maximal sequence. This means that the generator of length n gen-
erates 2n � 1 numbers. Graham [4] implemented a single cycle LFSR.

An interesting hybrid was used Tommiska and Vuori [23] where three coupled
LFSRs were used to provide a random sequence. An interesting feature of this
work is that the RNG was combined with a source of noise. The amplified noise
from a diode was fed into an analogue to digital converter, and the resulting digital
values were used to seed the RNG, and also added to the LFSR at intervals.

The manufacturers of FPGAs provide example designs of LFSRs to be used
as random sequence generators. For example Xilinx [25], and Altera [1] provide
HDL code for LFSRs.

Aporntewan [2] used a one dimensional 2-state Cellular Automata (CA). Shack-
leford et al [20] implemented a CA based on the work by Wolfram [24].

In the field of GP, the behavior of GP and GAs has been investigated using
different RNGs. Meysenburg and Foster considered the effect of different RNGs
on GAs [13] and GP [12]. Their conclusions were that there were no statistically
significant differences in the performance of GA or GP when different RNGs were
used.

4 Analysis of Random Number Generators for a Hard-
ware GP System

4.1 Performance measurements

The performance of the various RNGs in this paper was tested using three methods.
Firstly, the Diehard test suite maintained by Marsaglia [7] was used to gauge the
general performance of the RNG. This suite consists of up to 15 tests that are
modeled on applications of random numbers. All the RNGs considered in this
paper were implemented in ISO-C and were submitted to all 15 tests. The test
method for Diehard is similar to that described in Meysenburg and Foster [12].
Each RNG was used to generate a binary file of about 10 MiB1. Each Diehard test
produces one or more p-values. A p-value can be considered good, bad, or suspect.
Meysenburg used a scheme by Johnson [5] which assigns a score to a p-value as
follows. If p

�
0 � 998 then it is classified as bad. If 0 � 95 � p � 0 � 998 then it is

1The notation MiB indicates 220 (1048576) bytes. This paper uses the binary prefixes from the
NIST.[14]
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classified as suspect. All other p-values are classified as good. Every bad p-value
scores 4, every suspect p-value scores 2 and good p-values score zero. For each
RNG, the scores for each test were summed, and the total for each RNG is the sum
of all the test scores for that RNG. Using this scheme, high scores indicate a poor
RNG and low scores indicate a good RNG. The results for each test are given in
Appendix A.

Each RNG was then implemented using Handel-C and used in the artificial ant
problem with the Santa Fe trail. The problem was run 500 times, and the number
of correct programs that appeared was recorded. This is used as a measure of how
well the RNG performs. In all cases, the population size is 1024, the maximum
program length is 31 and all experiments were run for 32 generations.

Each RNG was also implemented as a stand alone application for an FPGA
using Handel-C, and the number of slices used and the maximum attainable clock
frequency was recorded. This gives a measure of the hardware resources needed to
implement the RNG, and also an indication of the logic depth required.

5 Random Number Generator Implementations

5.1 LFSR RNG

Figure 1 shows a schematic of the LFSR used in this work.

bit32 bit3bit4bit5bit6bit 8 .. bit30bit31 bit1bit2

Direction of shift

bit7

Figure 1: Logical Feedback Shift Register Random Number Generator

The random number is read from the highest bits as required. The obvious
weakness of this type of RNG is that sequential values fail the serial test described
by Knuth [6]. At any time step t there is a 50% probability that the value at time
t � 1 can be predicted. If for an LFSR of length n at time t the value is v, then at
time t � 1 the value will be v � 2 or v � 2 � 2n � 1. This is shown in Figure 2 where
pairs of values vt and vt � 1 are plotted.

It can be seen that for any value vt there are only two possible values of vt � 1.
Though the random number generator runs in parallel with the main GP machine,
it is possible to access sequential values when creating an initial program, or when
choosing crossover points. There is then a possibility of a potentially degrading
bias by using such an RNG.
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Figure 2: Serial test of a simple LFSR RNG

5.2 Multiple LFSRs

One method of obtaining better serial test results for the LFSR of length n is to
allow the LFSR to run for n cycles before reading another number. Since this
would limit the rate at which random numbers could be generated in the present
design it is not explored any further. However, an equivalent result can be obtained
by implementing n LFSRs of length m and using a single bit from each LFSR at
each time step. This can also be done using a single long LFSR of n 	 m bits, [21]
effectively implementing n parallel LFSRs. However, implementing a long shift
register in a Xilinx Virtex FPGA is not efficient because the look up tables can
implement a 16 bit shift register very easily, but longer shift registers require more
extensive routing resources.

The effect of using a better RNG was investigated by implementing 32 16 bit
LFSR machines that run in parallel, and initializing each LFSR to a different value.
Bit32 from each LFSR is used to construct a 32 bit random number. The serial test
result is shown in Figure 3, which shows the serial test result for 32 LFSRs is better
than the single LFSR. This generator is referred to as the 32LFSR.
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Figure 3: Serial test for an RNG using 16 parallel LFSRs
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5.3 Cellular Automata RNG

Another popular RNG for hardware implementations is based on Cellular Au-
tomata (CA). A one-dimensional (1D) CA consists of a string of cells. Each cell
has two neighbors - left and right, or in some literature west and east respectively.
At each time step, the value of any cell c is given by a rule. For this implementation,
rule 30 is used, which states that for any cell c at time t, ct � 1 
��
� westt +ct ��� eastt � ,
where � denotes the exclusive OR function. In practice the CA is implemented us-
ing a single 32 bit word, and for cell 0, its right-hand neighbor is cell 31, and
similarly for cell 31 its left hand neighbor is cell 0. Figure 4 shows the result of
running this RNG using the serial test. As in the simple LFSR RNG there is a
distinct pattern to the numbers, but for most values of vt there are several possible
values for vt � 1. This generator is referred to as 1DCA.
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Figure 4: Serial test for a 1DCA RNG

5.4 Multiple CA generators

As in the case of the LFSR RNG, if several CAs are combined, the results should
be much better. For this test, 32 CAs were implemented, and by taking one bit from
each CA, a 32 bit random number can be generated. The serial test appears to be
much more random, as shown in Figure 5. Each CA is initialized with a different
pattern. This generator is referred to as the 32CA
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Figure 5: Serial test for a 32CA
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5.5 Standard C RNGs

Another frequently used RNG is the linear congruential (LC) generator that is often
found in implementations of the standard C library. The general equation for these
is I j � 1 
�� aI j � c � mod m, where a � c and m are constants chosen to produce a
maximal length RNG. However, as pointed out by many authors (eg:[18]) these
generators are not good. Another factor against implementing such a generator
in hardware is that it requires one addition, one multiplication, and one modulus
operator, which in Handel-C would consume a large amount of silicon and because
of the deep logic produced, would be slow. An alternative given by [18] avoids the
modulus operator, and is called the Even Quicker Generator (EQG). It is claimed
that this is about as good as any 32 bit linear congruential generator. Its equation
is I j � 1 
 aI j � c, and values for a 
 1664525 and c 
 1013904223 are suggested.

As a sanity check that the experimental method of ranking the RNGs using
Diehard was the same as that used by Meysenburg, the generator known as “the
mother of all generators” was also implemented and run against the Diehard suite.
This is a multiply with carry generator and is described by Marsaglia [8]. It was
not implemented in the hardware GP system.

5.6 Non random sequences

Until now we have considered pseudo random sequences. These are sequences
where it is hard to guess the next number in a sequence. As an experiment, a
further set of runs were performed with an obviously non-number generator. For
this a sequential generator that output the sequence n � n � 1 � n � 2 �
�
�
� was used.
Rather surprisingly this also worked to produce 100% correct programs, though
substantially fewer than the other generators achieved.

5.7 Truly Random Sequences

All the RNGs considered so far are not true random sequences, relying on the
manipulation of objects of finite size, and so fail one or more of the Diehard battery
of tests. So a set of random numbers was obtained from a source generated by using
the atmospheric noise captured by a radio receiver[19]. Each GP run for the ant
problem needs about half a million random numbers, so a block of 10 MiB was
downloaded from www.random.org, and a randomly selected 2 MiB block was
transferred to one of the SRAM on the FPGA system using DMA. The FPGA read
this block sequentially to get its random numbers.

As reported by [23], RNGs based on sampling a source of noise are often slow,
so they are not always applicable to high speed systems.
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6 Experimental Results

The results from running the Diehard tests are given in Appendix A and are sum-
marized in Table 1. This shows the total results for each test and ranks them.

Table 1: Summary results of running the Diehard tests on the RNGS.
RNG Rank Score
Mother 1 20
True 2 22
32LFSR 3 162
EQG 4 288
32CA 5 640
1DCA 6 676
LFSR 7 756

The number of correct programs that were produced by each random number
generator was recorded and is shown in Table 2. The results are ranked according to
the number of correct programs produced. The table also shows the slice count for
the RNG implemented using Handel-C and the maximum frequency as reported by
the place and route tools. The slice count and frequency for the true RNG assumes
that the source of random numbers is supplied by an external device to the FPGA,
and that the FPGA simply needs to read the value from a port and write it to a
register.

Table 2: Summary of GP performance for all random number generators tested
from 500 runs

RNG Rank Correct % Correct Slice Clock rate
Fmax (MHz)

32CA 1 190 38.0% 284 105
True 2 188 37.6% 6 >200
32LFSR 3 185 37.0% 130 134
EQG 4 182 36.4% 288 42
ID CA 5 182 36.4% 22 125
LFSR 6 159 31.8% 18 188
Sequential 7 59 11.8% 21 155

7 Discussion

The score obtained by the mother RNG was close to that obtained by Meysenburg,
the difference being explained by the fact that Meysenburg used the average of 32
runs, while the work described here used only a single run. It is likely that using
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32 different seeds, that different scores would be observed. This confirms that the
experimental method used for ranking the RNGs using Diehard is comparable.

Despite the apparently serious deficiencies found in both the simple LFSR used
in the original implementation and the simple one dimensional CA random number
generator, the overall effect of implementing a more sophisticated RNG on the
overall GP performance appeared to be small. This result generally agrees with the
work by Meysenburg and Foster [12], with the exception that they did not consider
a single-cycle LFSR. The single-cycle LFSR performs the least well of the RNGs
considered in this paper.

Even more surprising was the emergence of programs when a non-random se-
quence was used. Clearly a non-random sequence does not allow GP to operate as
efficiently in terms of producing 100% correct programs, presumably because of
the failure to explore some areas of the search space.

Despite the small differences in performance, from the results we can say that
using a different RNG from the single LFSR would improve the performance of
the hardware GP implementation by a measurable and therefore useful amount, and
that an RNG based on multiple LFSRs or multiple CAs would be a better choice
for a hardware GP system. The use of a truly random number source did not appear
to improve performance over the 1DCA, 32CA and 32LFSR RNGs. This provides
more evidence countering the notion that GP needs a very high quality RNG.

When looking at the FPGA slice counts and maximum clock rates, it is clear
that the 32LFSR uses about half the FPGA resources that the 32CA does, and
exhibits a smaller delay than the 32CA. As predicted, the EQG uses the most FPGA
resources and has very deep logic, meaning that it can only run at a much slower
rate than any of the other generators. The EQG RNG could be re-implemented in
the FPGA using pipelines to achieve much higher clock rate, but since it performed
no better than the 32CA and 32LFSR, this was not investigated any further.

8 Conclusions

The conclusion from this investigation is that for the hardware GP system, the
simple LFSR used in the original design can be improved upon by using a generator
based on multiple LFSRs, multiple CAs, or if available, a high speed source of true
random numbers. However, it is also clear that the effect of different RNGs on the
performance of a hardware implementation of GP is generally small.
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Appendix A

Results of the Diehard Tests

This appendix contains the results of running the Diehard tests for all RNGs in this
paper. Max score represents the case where an RNG fails all the tests.

Table 3: Diehard test results for all RNGs considered in this paper.
Test Max

score
LFSR EQG 32LFSR IDCA 32CA True Mother

Birthday 36 36 8 2 0 8 0 0
Overlapping permutation 8 8 0 4 8 8 0 0
Binary Rank 32x32 8 8 2 8 2 6 0 0
Binary Rank 6x 104 104 40 8 140 70 4 6
Bitstream 80 80 0 0 80 80 4 0
Overlapping pairs tests 328 328 188 94 328 320 6 2
Count the ones (stream) 8 8 8 8 8 8 0 0
Count the ones (specific) 100 100 42 30 100 100 2 4
Parking Lot 44 4 0 0 4 2 0 0
Minimum Distance 4 4 0 4 4 4 0 0
3D spheres 84 4 0 2 4 2 4 4
Squeeze 4 4 0 0 4 4 0 0
Overlapping Sums 44 44 0 0 6 0 2 2
Runs 16 16 0 2 16 8 0 2
Craps 8 8 0 0 8 12 0 0
Total 876 756 288 162 676 640 22 20
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