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   Abstract— Genetic programming (GP) is a soft computing search technique, which was used to develop a tree-structured program with 
the purpose of minimizing the fitness value of it. It is also a powerful and flexible evolutionary technique with some special features that are 
suitable for building a tree representation which is always the best solution for the problem we encounter. In this paper, GP has been used 
to describe a function that calculates charged and negative pions multiplicity distribution for Hadron-nucleus interactions at 200 GeV/c and 
also compared with the parton two fireball model (PTFM). GP calculations are in accordance with the available experimental data in 
comparison with the conventional ones (PTFM). Finally, the calculation results showed that the GP model is superior to the traditional 
techniques that we have ever seen so far. 

Index Terms— Genetic programming (GP), machine learning (ML),  pion production, multiplicity distribution. 

——————————      —————————— 

1 INTRODUCTION                                                                     

igh energies experimental data on hadron-nucleus (h-A) 
interactions are required for understanding high energy 
interactions. These data provide a useful link between 

hadron-hadron (h-h) interactions and the complex phenomena 
of nucleus-nucleus (A-A) interactions. These types of interac-
tions investigate space time picture and highlight on phenome-
non which doesn't exist in (h-h) such as gray particles, cascade, 
multi-collisions, etc. There are various models for (h-A) interac-
tion like diffractive excitation model[1], collective tube model 
[2], quark model [3], energy flux cascade model [4], interanu-
clear cascade model [5], hydrodynamical model [6], multiple 
scattering model [7] and many others .  

  Conventional models like parton two fireball model (PTFM), 
treate nucleons as composite objects of loosely bound states of 
the spatially separated constituents (quarks) which in turn are 
composed of point-like particles (partons) [8]. This may allow 
one to consider the nucleons as consisting of a fixed number of 
partons. This nucleon structure has been used in different mod-
els [8-10] along with other assumptions to describe h-A interac-
tions. PTFM, which is proposed by Hagedorn [11] has been 
used to explain the high energy interactions of hadrons and 
nuclei [12-18]. All these studies showed qualitative predictions 
of the measured parameters [19-23]. Extremely high energy 
collisions are required to get the fundamental particles close 
enough to study and understand the interactions between 
them [24–29].  

Artificial intelligence techniques (or the machine learning) 
such as genetic programming (GP) are applicable for solving 

some problems in high energy physics [30–34]. The effort to 
understand the interactions of fundamental particles requires 
complex data analysis for which machine learning (ML) algo-
rithms are vital. Machine learning (ML) algorithms are becom-
ing useful as alternate approaches to conventional techniques 
[35]. The complex behavior of the h-A interactions due to the 
nonlinear relationship between the interaction parameters and 
the output often becomes complicated. In this sense, ML tech-
niques such as artificial neural network [36], genetic algorithm 
[37], PYTHIA [38] and PHOJET [39] Monte Carlo models. The 
PHOJET model combines the ideas based on a dual parton 
model [40] on soft process of particle production and uses low-
est-order perturbative QCD for hard process. PYTHIA on the 
other hand uses string fragmentation as a process of hadroniza-
tion and tends to use the perturbative parton-parton scattering 

for low to high 
TP  particle production, and genetic program-

ming [41] can be used as alternative tool for the simulation of 
these interactions [30–34, 42–47]. 
      The motivation of using a GP approach is its ability to de-
velop a model based entirely on prior data without the need of 
making underlying assumptions. Another motivation for ap-
plying such machine learning approach (e.g. GP) is simply the 
lack of knowledge (in most cases) about the mathematical de-
pendence of the quantity of interest on the relevant measured 
variables [48]. 

 In the present work, we illustrate the GP technique to 
model the multiplicity distribution of charged and negative 
pions for different beams at 200 GeV/c in hadron-nucleus col-

H 
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lisions. The rest of the paper is organized as follows; Sec. 2 
presents parton two fireball model PTFM at high energies for 
the multiparticle production in hadron-nucleus collisions Sec-
tion 3 gives a review to the basics of the GP technique. Finally, 
the results and conclusion are provided. 

2 CHARGED AND NEGATIVE PION PRODUCTION IN   

HADRON-NUCLEUS COLLISION USING PTFM 

           According to references [13, 15-18], the charged multi-
plicity distribution will be given by,                                            
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3 GENETIC PROGRMMING OVERVIEW    

Genetic programming is an extension to Genetic Algo-
rithms (GA). GA is an optimization and search technique 
based on the principles of genetics and natural selection. A GA 
allows a population composed of many individuals (chromo-
some) to evolve under specified selection rules to a state that 
maximizes the ―fitness‖ (i.e. minimizes the cost function). The 
GP is similar to genetic algorithms but unlike the latter its so-
lution is a computer program or an equation as against a set of 
numbers in the GA. A good explanation of various concepts 
related to GP can be found in Koza (1992) [41, 49].  

In GP a random population of individuals (equations or 

computer programs) is created, the fitness of individuals is 
evaluated and then the ‗parents‘ are selected out of these indi-
viduals. The parents are then made to yield ‗offspring‘s‘ by 
following the process of reproduction, mutation and crosso-
ver. The creation of offspring‘s continues (in an iterative man-
ner) until a specified number of offspring‘s in a generation are 
produced and further until another specified number of gen-
erations are created. The resulting offspring at the end of all 
this process is the solution of the problem. The GP thus trans-
forms one population of individuals into another one in an 
iterative manner by following the natural genetic operations 
like reproduction, mutation and crossover. Each individual 
contributes with its own genetic information to the building of 
new ones (offspring) adapted to the environment with higher 
chances of surviving.  This is the basis of genetic algorithms 
and programming. The representation of a solution for the 
problem provided by the GP algorithm is a tree (Fig. 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 RESULTS AND DISCUSSION 

The GP is implemented using the experimental data to 
simulate multiplicity distribution of charged and negative 
pions for 40Arp  , 131Xep  , 197Aup  and 4Hep  colli-
sions at 200 GeV/c. The GP model was constructed with train-
ing sets and the accuracy was verified by the test sets. In order 
to generate the GP model we have implemented the GP steps 
(Fitness evaluation, reproduction, crossover and mutation) 
that were mentioned in Section 3. Table 1 lists the values of the 
control parameters and the set of function genes that are used 
in modeling the multiplicity distribution. The fitness function 
evaluates how accurate the mathematical model. 

 This discovered function has been used to predict the mul-
tiplicity distribution of pions for h-A interactions. 

Simulation results based on GP model, for modeling the 
multiplicity distribution of charged pions for h-A interactions 
at 200 GeV/c (the training cases) are given in Fig. 2 (b, c, d,e) 
and Fig. 3 (b, c, d, e, f) for negative pions. While Figs. 2, 3 (a) 

 

―Figure 1. Tree representation of the program 
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describe the predicted results for 
40Arp   interaction at 200 

GeV/c, we notice that the curves (for training and prediction 
cases) obtained by the trained GP model show a best fitting to 
the experimental data in all cases. Then, the GP model is able 
to exactly model the multiplicity distribution at 200 GeV/c for 
different beams in h-A collisions. If the large dataset is used in 
training, the best GP model is obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

5 CONCLUSION 

Negative and charged pions multiplicity distributions, Eq. 
(1, 3), are calculated by PTFM for 40Arp  , 131Xep  , 

197Aup  and 4Hep  assuming  is given by , bna     
, Where, a = 0.04, b= 0.35 as in references [17, 18]. The results 

TABLE 1 
 VALUES OF THE CONTROL PARAMETERS USED IN MULTIPLICI-

TY DISTRIBUTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

―Figure 2. Comparison between the experimental 
data, PTFM and simulated multiplicity distribution 
of charged pions )( chnP for h-A collisions at 200 
GeV/c: (—) GP model, (……) PTFM, ( ) experi-
mental data‖ 
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of these calculations are represented in figure 2 (a, b, c, d, e) 
and figure 3 (a, b, c, d, e, f) along with experimental data [50, 
51] which show fair agreement with the corresponding exper-
imental data. It can be seen from figs. (2, 3) that charged and 
negative pions multiplicity distributions are not in accordance 
with the experimental data for heavy nuclei although the situ-
ation becomes better for the light ones. The emission of sec-
ondary particles is assumed to follow a Poisson distribution. 
As mass number increases the multiplicity distribution is not 
broaden but its peak is shifted to high numbers. 

 
 

 
 
 
  
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Genetic programming, with its advantage of discovering 
mathematical equations (see APPENDIX), has been shown to 
be an efficient method for modeling the h-A interactions par-
ticularly above the pion production threshold. This paper pre-
sents an efficient approach for calculating the multiplicity dis-
tribution of charged and negative pions at 200 GeV/c through 

 

 

 

 

 

 

―Figure 3. Experimental Data, PTFM, trained and 
predicted simulated multiplicity distribution of pions 

)( nP for h-A collisions at 200 GeV/c: (—) GP model, 
(……) PTFM, ( ) experimental data‖ 
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the obtained discovered functions as shown in appendix.  
The discovered function shows an excellent match to the 

experimental data. Moreover, the discovered function is capa-
ble of predicting the experimental data that are not used in the 
training set. The present study has shown that the GP ap-
proach can be employed successfully to model the h-A interac-
tions at high energies. Finally, we conclude that GP has be-
come one of the important research areas in the field of had-
ron-nucleus collisions 

APPENDIX 

Our discovered function (for charged pion multiplicity dis-
tribution) is generated using the obtained control GP parame-
ters as follows, 
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The actual parameters are,

1X number of charged particles 

nnch , , 
2X , lab momentum (

LP ) and 
3X , mass number (A). 
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