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Abstract
Background: The identification and characterization of genes that influence the risk of common,
complex multifactorial disease primarily through interactions with other genes and environmental
factors remains a statistical and computational challenge in genetic epidemiology. We have
previously introduced a genetic programming optimized neural network (GPNN) as a method for
optimizing the architecture of a neural network to improve the identification of gene combinations
associated with disease risk. The goal of this study was to evaluate the power of GPNN for
identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real
data analysis in Parkinson's disease.

Results: We show that GPNN has high power to detect even relatively small genetic effects (2–
3% heritability) in simulated data models involving two and three locus interactions. The limits of
detection were reached under conditions with very small heritability (<1%) or when interactions
involved more than three loci. We tested GPNN on a real dataset comprised of Parkinson's disease
cases and controls and found a two locus interaction between the DLST gene and sex.

Conclusion: These results indicate that GPNN may be a useful pattern recognition approach for
detecting gene-gene and gene-environment interactions.

Background
One goal of genetic epidemiology is to identify polymor-
phisms associated with common, complex multifactorial
diseases. Success in achieving this goal will depend on a
research strategy that recognizes and addresses the impor-
tance of interactions among multiple genetic and environ-
mental factors in the etiology of diseases such as essential
hypertension [1-3]. One traditional approach to mode-
ling the relationship between discrete predictors such as

genotypes and discrete clinical outcomes is logistic regres-
sion [4]. Logistic regression is a parametric statistical
approach for relating one or more independent or explan-
atory variables (e.g. polymorphisms) to a dependent or
outcome variable (e.g. disease status) that follows a bino-
mial distribution. However, as reviewed by Moore and
Williams [2], the number of possible interaction terms
grows exponentially as each additional main effect is
included in the logistic regression model. Thus, logistic
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regression is limited in its ability to deal with interactions
involving many factors. Having too many independent
variables in relation to the number of observed outcome
events is a well-recognized problem [5,6] and is an exam-
ple of the curse of dimensionality [7]. In response to this
limitation, Ritchie et al. [8] developed a genetic program-
ming optimized neural network (GPNN). Neural net-
works are a class of pattern recognition methods
developed in the 1940's to model the neuron, the basic
functional unit of the brain [9]. A major advantage of neu-
ral networks in comparison to traditional analysis
approaches is their ability to take what is learned on a
given dataset about the relationship between independent
variables and an outcome variable and make predictions
on data where the outcome variable is unknown [10].
One disadvantage of neural networks is that the network
architecture must be pre-specified and there is no rule of
thumb for generating this architecture. Thus, trial and
error processes often take place [11]. GPNN was devel-
oped in an attempt to improve upon the trial-and-error
process of choosing an optimal architecture for a pure
feed-forward back propagation neural network. The
GPNN optimizes the inputs from a larger pool of varia-
bles, the weights, and the connectivity of the network
including the number of hidden layers and the number of
nodes in the hidden layer. Thus, the algorithm attempts to
generate optimal neural network architecture for a given
data set. This is an advantage over the traditional back
propagation NN in which the inputs and architecture are
pre-specified and only the weights are optimized.

Parkinson's disease (PD) is a debilitating neurodegenera-
tive disorder characterized clinically by progressive rigid-
ity, tremor, bradykinesia (slowness of movement), and
postural instability [12]. PD affects approximately 2% of
the population over the age of 65, increasing to approxi-
mately 5% of the population by the age of 85 [13]. PD is
characterized pathologically by widespread neurodegen-
eration, especially of the dopaminergic cells of the sub-
stantia nigra pars compacta. The cause of this
neurodegeneration is unknown, but is hypothesized to

result from complex interactions between genetic and
environmental factors affecting energy metabolism and
protein turnover. Mellick and colleagues previously inves-
tigated single nucleotide polymorphisms (SNPs) in the
mitochondrial complex I as potential genetic susceptibil-
ity factors for PD. They investigated 70 SNPs in 31 nuclear
complex I genes in 306 PD patients and 321 controls. No
evidence for a single locus association was identified [12],
but a two-factor gene-environment interaction between
the DLST gene and sex was detected using Multifactor
Dimensionality Reduction (MDR) [14], another method-
ology for detecting epistatic interactions.

Although previous empirical studies suggest GPNN is a
useful method for identifying gene-gene interactions [8],
the power of GPNN for high-order gene-gene interaction
models is not known and its application to real datasets
has not been reported. The goal of the present study was
to evaluate the power of GPNN for identifying gene-gene
interactions using simulated data representing a variety of
epistasis models, and to test this methodology on an
actual dataset of SNPs in mitochondrial complex I nuclear
encoded genes in Parkinson's disease cases and controls.

Results
The results of the simulation study are shown in Tables 1,
2, and 3. Here, we list the 40 epistasis models sorted by
allele frequency and number of loci along the vertical axis
and heritability across the horizontal axis. Table 1 shows
the results for a sample size of 200 cases and 200 controls.
Table 2 shows the results for a sample size of 400 cases
and 400 controls. Table 3 shows the results for a sample
size of 800 cases and 800 controls. For the sample size of
400 total individuals, in the two locus models, GPNN had
greater than 94% power for all heritability values greater
than 1.5%, greater than 77% for heritability of 1%, and
much lower power for the very small genetic effect of
0.5%. In the three locus models the power of GPNN was
greater than 94% in the 0.2/0.8 allele frequency models
with greater than 2% heritability. However, it was much
lower in the 0.4/0.6 allele frequency models as well as all

Table 1: GPNN Power (%) Results – Sample Size 400

Heritability

Allele freq Number loci 3% 2% 1.5% 1% 0.5%

.2/.8 2 100 94 97 81 24

.4/.6 2 100 99 99 77 16

.2/.8 3 99 94 22 4 3

.4/.6 3 75 35 20 3 1

.2/.8 4 46 23 0 5 0

.4/.6 4 11 2 0 2 0

.2/.8 5 0 1 0 1 0

.4/.6 5 0 0 0 0 0
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heritability values of 1.5% and lower. In the four and five
locus models, the power of GPNN was very low for all her-
itability values. For the sample size of 800 total individu-
als, in the two locus models, GPNN had greater than 65%
power for the epistasis models evaluated at all heritability
levels. In the three, four and five locus models, the trend
is similar to the smaller sample size. In the total sample
size of 1600 individuals, GPNN has greater than 86%
power in the two locus models. Again, the three, four, and
five locus models showed similar trends. However, in gen-
eral, the larger number of individuals did increase the
power to detect the functional loci.

The results of the real data analysis are shown in Table 4.
Here, we show the GPNN model selected from each cross-
validation interval. This includes the factors included in
the final model for each interval, as well as the classifica-
tion error and prediction error of the model. As can be
seen in the distribution of factors in the model, DLST_234
and sex are the most commonly detected factors. This two-
factor model was selected and used to fit a final GPNN
model. This model correctly predicts PD status 59.66% of
the time (p < 0.001). The GPNN model that describes this
interaction is shown in Figure 1.

The results of the stepwise logistic regression (LR) analysis
of the PD data are shown in Table 5. These results are sim-
ilar to the GPNN results however, LR selected additional
loci. The final LR model included sex, DLST_234,
FA1_897, and FA10_200. Because the results included
additional loci, we implemented a forward selection LR
using only the variables identified by GPNN including the
interaction term (as described in the methods section).
The results of the forward selection logistic regression
using sex, DLST_234, and the interaction term yielded
similar results for DLST and sex, shown in Table 6. The
interaction term of sex and DLST_234 was not statistically
significant.

Discussion
Identifying disease susceptibility genes associated with
common complex, multifactorial diseases is a major chal-
lenge for genetic epidemiology. One of the dominating
factors in this challenge is the difficulty of detecting gene-
gene interactions with currently available statistical
approaches. To deal with this issue, new statistical
approaches have been developed such as GPNN. GPNN
has been shown to have higher power than a back propa-

Table 2: GPNN Power (%) Results – Sample Size 800

Heritability

Allele freq Number loci 3% 2% 1.5% 1% 0.5%

.2/.8 2 100 100 100 99 76

.4/.6 2 100 100 100 99 65

.2/.8 3 98 100 31 10 12

.4/.6 3 97 50 42 15 3

.2/.8 4 68 42 4 14 2

.4/.6 4 34 11 3 3 1

.2/.8 5 2 6 0 6 0

.4/.6 5 1 0 0 1 0

Table 3: GPNN Power (%) Results – Sample Size 1600

Heritability

Allele freq Number loci 3% 2% 1.5% 1% 0.5%

.2/.8 2 100 97 100 100 97

.4/.6 2 100 100 100 99 86

.2/.8 3 100 99 40 21 20

.4/.6 3 97 65 53 20 6

.2/.8 4 70 45 15 11 3

.4/.6 4 30 15 5 3 0

.2/.8 5 2 1 0 0 0

.4/.6 5 2 0 0 0 0
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gation NN using simulated data generated under five two-
locus epistasis models [8].

The goal of the current study was to evaluate the power of
GPNN for detecting high-order gene-gene interactions
using simulated data representing a variety of epistasis
models. Based on the results shown in Table 1, 2, and 3,
there is an obvious trend in the power to detect the gene-
gene interactions in these simulated data. With a sample
size of 400 individuals (200 cases and 200 controls),
GPNN has high power to detect interactions in two locus
models for all heritability values tested with the exception
of 0.5% (which is a very small genetic effect). As the
number of interacting loci increases or the heritability
decreases, there is a decrease in the power of GPNN. With

a sample size of 800 or 1600 individuals (400 cases, 400
controls or 800 cases, 800 controls), GPNN has high
power to detect interactions in all two locus models eval-
uated. Similar to the trend seen in the sample size of 400
individuals, there is a decrease in power as the number of
interacting loci increases. There is, however, an increase in
power in the data with the larger sample size. We explored
the limits of GPNN in terms of genetic effect (heritability),
sample size, and number of interacting loci. Using simu-
lated data models involving two and three locus interac-
tions, we show that GPNN has high power to detect gene-
gene interactions in models with very small heritability
values (2–3% heritability) that are well within the range
of most common complex diseases in simulated data
models. The limits of detection were reached under con-
ditions with very small heritability (<1%) or when inter-
actions involved more than three loci. For example,
Alzheimer's disease is estimated to have heritability
between 60–75% [15] while breast, colorectal, and pros-
tate cancers are 27%, 35%, and 42% respectively [16].
Effects as small as those simulated would be very difficult
to detect using any method.

Secondly, the sample size was held constant at either 400,
800, or 1600 individuals. These sample sizes may be too
small for detection of high-order interaction models. If
you consider a two-locus interaction model, there are nine
two-locus genotype combinations for the cases and con-
trols to be distributed. When you extend this to a three-
locus model, there are 27 genotype combinations. This
sample of individuals continues to be distributed in the
four and five locus models with 81 and 243 genotype
combinations respectively. This demonstrates that the
400, 800, or 1600 individuals are then distributed much
more sparsely across the genotype combinations. This is
an example of the curse of dimensionality [7]. Therefore,
to detect gene-gene interactions composed of greater than
three loci, the sample size may need to be substantially
larger than 400 cases and 400 controls. This is an active
area of further study to determine if there is a direct rela-
tionship between sample size and number of interacting

Table 4: GPNN Results from Parkinson's Disease Data Analysis

CV Factors in Model CE PE

1 FB4_5152 sex 0.4050 0.4127
2 DLST_234 sex 0.3978 0.5079
3 DLST_234 sex 0.3996 0.3810
4 FA6_5146 FB7_5144 FS8_5155 FV2_0182 sex 0.3936 0.4355
5 FS7_5156 sex 0.4007 0.4355
6 FA7_5148 FB9_5142 FS1_5158 FS4_5133 sex 0.3989 0.3871
7 DLST_234 FA7_5148 sex sex 0.3989 0.3871
8 DLST_234 FV2_0182 FV2_0182 sex sex 0.3828 0.5323
9 DLST_234 DLST_234 FS7_5156 FS8_5155 FV2_0182 sex sex 0.3982 0.4098
10 DLST_234 DLST_234 FA6_5146 FS4_5133 sex 0.3929 0.3934

GPNN model for Parkinson's Disease dataFigure 1
GPNN model for Parkinson's Disease data. A GPNN 
model that was evolved by GPNN on the PD data. The real 
numbers are used to create weights and fill in for the W 
nodes. The individual values of sex and DLST_234 fill into 
those nodes. The activation function is a Boolean function 
AND, thus it will take (61055.5/33038.075)*sex AND 
(96492.325*11716.425)*DLST_234.

sex

DLST_234
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loci. If a direct relationship exists, this can be used for per-
forming sample size and power calculations for real data
analyses rather than performing empirical power studies
in the future.

Our analysis has revealed an interesting mitochondrial
gene-sex interaction leading to altered risk for PD. Sub-
stantial evidence directly links mitochondrial dysfunction
to Parkinsonism. For example, mutations in the PINK1
gene (which codes for a mitochondrial kinase) lead to rare
autosomal recessive forms of PD [17]. Moreover, mito-
chondrial toxins such as MPTP and rotenone can induce
Parkinsonism in animals and humans [18]. In addition,
mtDNA polymorphisms have also been suggested to
influence risk for sporadic PD. The recent study of van der
Walt and colleagues [19] revealed an association between
a non-conservative amino acid changing mtDNA SNP in
the ND3 gene and reduced risk for PD. Interestingly, this
decreased risk appeared to be stronger in women than
men. Gender differences in the incidence of PD are well
documented with men at 1.5 times greater risk [20]. There
are many possible reasons for this, including gender spe-
cific gene-environment interactions.

Our model correctly predicts PD status 59.66% of the
time (p < 0.001). Because we can only predict ~60% of the
individuals' disease status, it is clear that many additional
etiological factors are involved. It is important to note that
the nature of the effect detected cannot be fully elucidated
from this analysis. Based on the logistic regression analy-
ses, we confirm that DLST_234 and sex are statistically sig-
nificant however, the interaction term is not. This could
indicate that the effect is not a multiplicative interaction.
It could also indicate that logistic regression is underpow-
ered for detecting an interaction of this magnitude in a
sample size of approximately 600 individuals. Biologi-
cally, it remains uncertain how the DLST_234 SNP-gender
interaction, uncovered in the current analysis, might
influence risk for PD. The dihydrolipoyl succinyl trans-

ferase (DLST) gene codes for one of three components of
the thiamine-dependent mitochondrial alpha-ketoglutar-
ate complex. The DLST_234 SNP is located in an intron at
the 3' end of the DLST gene and is unlikely to have a bio-
logical impact on the function of this gene. Because SNPs
across the DLST locus have been shown to exhibit strong
linkage disequilibrium however, it is more likely that the
DLST_234 SNP represents other genetic variability within
this locus. Further work is required to determine how
genetic variation in this locus may influence PD. As is the
case for all initial case-control associations, it is important
to consider the possibility that this finding is a result of
idiosyncrasies in one isolated data set. Interestingly, this
finding was detected despite a relatively small sample size
of approximately 300 cases and 300 controls. Moreover,
this interaction was detected using MDR, an independent
approach for detecting gene-gene interactions [14]. It will
be important to replicate this study using other datasets
with larger sample sizes or consisting of different popula-
tions. Nonetheless, our results clearly demonstrate the
application of this innovative method to probe for inter-
active effects in real data sets.

While these results demonstrate the lower limits of
GPNN's power to detect gene-gene interactions, there are
still many more questions to be addressed. First, it will be
important to extend the simulation studies to include
larger sample sizes and a larger range of higher heritability
values. Secondly, while GPNN has good power to detect
gene-gene interactions, the robustness of the method in
the presence of error has not been evaluated. Thus, a sim-
ulation study including data with genotyping error, phen-
ocopy, genetic heterogeneity, and missing data may
provide more insight into the robustness. Finally, a larger
set of epistasis models including those with a small degree
of main effect as well as a significantly higher number of
SNPs in the study would provide further evidence of the
power of GPNN.

Table 5: Stepwise Logistic Regression Results from Parkinson's Disease Analysis

Effect Point Estimate p-value OR 95% Wald CI

DLST_234 0.2501 0.0438 1.284 1.007 1.638
FA1_8197 0.3908 0.0491 1.478 1.002 2.181
FA10_200 -0.1879 0.0913 0.829 0.666 1.031
Sex_M1 -0.7997 <.0001 0.449 0.324 0.623

Table 6: Forward Logistic Regression Results from Parkinson's Disease Analysis

Effect Point Estimate p-value OR 95% Wald CI

DLST_234 0.2564 0.0374 1.292 1.015 1.645
Sex_M1 -0.7730 <.0001 0.462 0.334 0.638
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Since most common diseases have heritability greater
than 20%, and GPNN was shown to have 100% power for
heritability of 5% [8], GPNN should have high power for
detecting interactions in most common diseases. GPNN is
likely to be a powerful pattern recognition approach for
the detection of gene-gene interactions in future studies of
common human disease.

Conclusion
A genetic programming neural network (GPNN) is a
novel pattern recognition approach for detecting gene-
gene and gene-environment interactions in studies of
human disease. GPNN has high power to detect two and
three-locus interactions in moderate sample sizes. Higher
order interactions will require larger sample sizes. In addi-
tion, GPNN detected a gene-sex interaction associated
with Parkinson's disease. GPNN, and similar methods,
will be useful in dissecting the genetic architecture of com-
mon, complex disease.

Methods
A Genetic Programming Neural Network Approach
GPNN was developed to improve upon the trial-and-error
process of choosing an optimal architecture for a pure
feed-forward back propagation neural network (NN) [8].
Optimization of NN architecture using genetic program-
ming (GP) was first proposed by Koza and Rice [21]. The
goal of this approach is to use the evolutionary features of
genetic programming to evolve the architecture of a NN.
The use of binary expression trees allow for the flexibility
of the GP to evolve a tree-like structure that adheres to the
components of a NN. Figure 2 shows an example of a
binary expression tree representation of a NN generated
by GPNN. The GP is constrained such that it uses standard
GP operators but retains the typical structure of a feed-for-
ward NN. A set of rules is defined prior to network evolu-
tion to ensure that the GP tree maintains a structure that
represents a NN. The rules used for this GPNN implemen-
tation are consistent with those described by Koza and

Rice [21]. The flexibility of the GPNN allows optimal net-
work architectures to be generated that consist of the
appropriate inputs, connections, and weights for a given
data set.

The GPNN method has been described in detail [8]. The
steps of the GPNN method are shown in Figure 3 and
described in brief as follows. First, GPNN has a set of
parameters that must be initialized before beginning the
evolution of NN models including the operating parame-
ters of the GP. Second, the data are divided into 10 equal
parts for 10-fold cross-validation. Cross-validation is an
important statistical technique in model building that
allows one to develop generalizable models and prevent
over-fitting of data. The goal is to identify a model that
predicts well in an independent data set. Cross-validation
provides one with a training data set to use in model
building as well as a test data set to use for model valida-
tion. Thus, in ten-fold cross-validation, 9/10 of the data
are used for training and 1/10 of the data are used for test-
ing. Further detail regarding the implementation of cross-
validation can be found in [22]. Cross-validation was
selecting rather than a training-testing-validation
approach because cross-validation allows one to maxi-
mize the use of all data in the process. The train-test-vali-
dation sampling approach reduces the effective sample
size of each set. In addition, cross-validation provides an
unbiased estimate of the statistic being used to assess the
data [23].

Third, training of the GPNN begins by generating an ini-
tial random population of solutions. Each solution is a
binary expression tree representation of a NN, similar to
that shown in Figure 2. Fourth, each GPNN is evaluated
on the training set and its fitness recorded. Fifth, the best
solutions are selected for crossover and reproduction
using a fitness-proportionate selection technique, called
roulette wheel selection, based on the classification error
of the training data [24]. Classification error is defined as
the proportion of individuals where the disease status was
incorrectly specified. A predefined proportion of the best
solutions will be directly copied (reproduced) into the
new generation. Another proportion of the solutions will
be used for crossover with other best solutions. The new
generation, which is equal in size to the original popula-
tion, begins the cycle again. This continues until some cri-
terion is met at which point GPNN stops. Sixth, this best
GPNN model is tested on the 1/10 of the data left out to
estimate the prediction error of the model. Prediction
error is a measure of the ability to predict case or control
status in the 1/10 of the data. Steps two through six are
performed ten times with the same parameters settings,
each time using a different 9/10 of the data for training
and 1/10 of the data for testing.

A NN evolved by GPNNFigure 2
A NN evolved by GPNN. An example of a NN evolved by 
GPNN. The O is the output node, S indicates the activation 
function, W indicates a weight, and X1-X4 are the NN inputs.
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The results of a GPNN analysis include 10 GPNN models,
one for each split of the data. In addition, a classification
error and prediction error is recorded for each of the mod-
els. A cross-validation consistency can be measured to
determine those variables which have a strong signal in
the gene-gene interaction model [8,25-27]. Cross-valida-
tion consistency is the number of times a particular com-
bination of variables are present in the GPNN model out
of the ten cross-validation data splits. Thus a high cross-
validation consistency, ~10, would indicate a strong sig-
nal, whereas a low cross-validation consistency, ~1, would
indicate a weak signal and a potentially false positive
result. The loci combination with the highest cross-valida-
tion consistency is chosen as the final model.

Data simulation
The goal of the simulation study was to generate data sets
that exhibit gene-gene interactions for the purpose of eval-

uating the power of GPNN. We simulated a collection of
models with varying heritability, allele frequency, and
number of interacting polymorphisms. Additionally, we
used a constant sample size for all simulations. We
selected the sample size of 200 cases and 200 controls
because this is a typical sample that is used in many epi-
demiology studies. We also extended this to 400 cases and
400 controls as well as 800 cases and 800 controls.

As discussed by Templeton [28], epistasis, or gene-gene
interaction, occurs when the combined effect of two or
more genes on a phenotype could not have been pre-
dicted from their independent effects. It is anticipated that
epistasis is likely to be a ubiquitous component of the
genetic architecture of common human diseases [3]. Cur-
rent statistical approaches in human genetics focus prima-
rily on detecting the main effects and rarely consider the
possibility of interactions [28]. In contrast, we are inter-

Overview of GPNN MethodFigure 3
Overview of GPNN Method.
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ested in simulating data using different epistasis models
that exhibit minimal independent main effects, but pro-
duce an association with disease primarily through inter-
actions. In this study, we use penetrance functions as
genetic models. Penetrance functions model the relation-
ship between genetic variations and disease risk. Pene-
trance is defined as the probability of disease given a
particular combination of genotypes.

To evaluate the power of GPNN for detecting gene-gene
interactions, we simulated case-control data using a vari-
ety of epistasis models in which the functional loci are sin-
gle-nucleotide polymorphisms (SNPs). We selected
models that exhibit interaction effects in the absence of
any main effects. Interactions without main effects are
desirable because they provide a high degree of complex-
ity to challenge the ability of a method to identify gene-
gene interactions.

To generate a variety of epistasis models for this study, we
selected three criteria for variation. First, we selected two
different allele frequencies. An allele frequency of 0.8/0.2
was selected so that we could evaluate the ability of GPNN
in situations where there is a relatively rare allele. In addi-
tion, the frequency of 0.6/0.4 was selected to allow for the
situation where both alleles are relatively common. Sec-
ond, we selected a range of epistatic heritability values
including 3%, 2%, 1.5%, 1%, and 0.5%. These heritability
values fall into the realm of very small genetic effects. We
chose to simulate data using epistasis models with such
small heritability values to test the lower limits of GPNN.
Finally, we selected epistasis models with a varying
number of interacting loci of two, three, four, or five. We
speculate that common diseases will be comprised of
complex interactions among many loci. The number of
interacting loci simulated here may still be too few to be
biologically relevant. However, no gene-gene interaction
models exist beyond the five locus level at this time.

We generated models using software described by Moore
et al. [29]. We selected models from all possible combina-
tions of allele frequency, heritability, and number of loci.
This resulted in 40 total models. Each data set consisted of
either 200 cases and 200 controls, 400 cases and 400 con-
trols, or 800 cases and 800 controls and a gene-gene inter-
action model comprised of two, three, four, or five
functional interacting SNPs. We simulated 100 data sets
of each model consisting of the functional SNPs and
either eight non-functional SNPs for the two, three, and
four SNP models or ten non-functional SNPs for the five
SNP models. This resulted in 12,000 total datasets. We
used a dummy variable encoding for the genotypes where
n-1 dummy variables are used for n levels [30]. Based on
the dummy coding, these data would have either 20 or 24
variables for the two-four SNP models or five SNP models
respectively. All data sets are available from the authors
upon request.

PD case-control sample
Full methodological details for the case-control data have
been published previously [12]. In brief demographic
characteristics are shown in Table 7 and described as fol-
lows. PD patients (n = 305) were recruited from hospitals,
private neurological clinics, and PD support groups from

Table 8: List of mitochondrial polymorphisms

Marker dbSNP ID# Major Allele 
Frequency

DLST_234(A/G) rs1799900 A = 51.4
FA1_5157(G/C) rs1801316 G = 98.7
FA1_8196(T/C) rs1800823 T = 92.9
FA1_8197(T/G) rs1800824 T = 92.9
FA6_5146(C/T) rs1801311 C = 66.4
FA7_5148(C/T) rs1045629 C = 83.0
FA8_5147(A/G) rs4679 A = 58.8
FA8_8968(G/A) rs6822 G = 87.7
FA10_151(G/A) ss10349 G = 83.0
FA10_200(A/G) ss16204 A = 62.0
FB4_5152(C/T) rs12762 C = 89.3
FB7_5144(C/G) rs9543 C = 53.2
FB8_5127(C/A) rs1800662 C = 77.9
FB9_5142(C/T) rs1128560 C = 96.1
FS1_5158(G/T) rs1801317 G = 54.3
FS1_5159(A/G) ss2421568 A = 64.8
FS2_1886(T/A) rs12570 T = 66.9
FS4_5133(A/G) rs567 A = 50.5
FS4_5178(G/A) rs31303 G = 77.3
FS7_5156(T/C) rs1801315 T = 57.1
FS8_5155(C/T) rs1051806 C = 80.7
FV2_0182(C/T) rs906807 C = 81.3

Table 7: Demographic characteristics

Cases (n = 305) Controls (n = 321) p-value

Sex 166 males 206 males <.0001*
139 females 115 females

Average age 67 ± 9 years 65 ± 9 years 0.0131**
Average age of onset 60 ± 10 years NA

* based on Fisher's exact test
** based on Student's t-test
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throughout Queensland, Australia. Control subjects (n =
321) consisted of healthy spouses of affected PD patients
and other unaffected volunteers collected from patient
neighborhoods and communities. Seventy (70) SNPs cor-
responding to nuclear-coded mitochondrial complex I
genes were genotyped using the dynamic allele specific
hybridization (DASH) method. Twenty-two SNPs were
polymorphic in the study population and included in the
final association study. A list of these polymorphisms can
be found in Table 8.

Data analysis
We used GPNN to analyze 100 data sets for each of the
epistasis models. The GP parameters settings for GPNN
included 10 demes, migration every 25 generations, pop-
ulation size of 200 per deme, 50 generations, crossover
rate of 0.90, and a reproduction rate of 0.10. GPNN is not
required to use all the variables as inputs. Here, GPNN
performed random variable selection in the initial popu-
lation of solutions. Through evolution, GPNN selects
those variables that are most relevant. We calculated a
cross-validation consistency for each data set. This meas-
ure is defined as the number of times each SNP is in the
GPNN model across the ten cross-validation intervals.
Thus, one would expect a strong signal to be consistent
across all ten or most of the data splits, where a false pos-
itive signal may be present in only one or a few of the
cross-validation intervals. We estimated the power of
GPNN as the number of times the correct functional SNPs
had a cross-validation consistency that was higher than all
other SNPs in the dataset, divided by the total number of
datasets for each epistasis model. Either one or both of the
dummy variables could be selected to consider a locus
present in the model. We used the same GPNN parame-
ters for the real data analysis.

We also conducted a stepwise logistic regression analysis
to determine what solution a logistic regression modeling
procedure would detect. We conducted the regression
analysis in SAS v9.1. We used p < 0.20 for inclusion in the
model and p < 0.10 for remaining in the model. This
results in a list of all candidate genes with statistically sig-
nificant main effects. We also tested the model including
the variables detected by GPNN (sex and DLST_234, and
the interaction term) using forward selection. The same
inclusion criteria (p < 0.20) was implemented.
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