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Abstract
Background: Previous studies on bladder cancer have shown nodal involvement to be an independent indicator of
prognosis and survival. This study aimed at developing an objective method for detection of nodal metastasis from
molecular profiles of primary urothelial carcinoma tissues.

Methods: The study included primary bladder tumor tissues from 60 patients across different stages and 5 control
tissues of normal urothelium. The entire cohort was divided into training and validation sets comprised of node positive
and node negative subjects. Quantitative expression profiling was performed for a panel of 70 genes using standardized
competitive RT-PCR and the expression values of the training set samples were run through an iterative machine learning
process called genetic programming that employed an N-fold cross validation technique to generate classifier rules of
limited complexity. These were then used in a voting algorithm to classify the validation set samples into those associated
with or without nodal metastasis.

Results: The generated classifier rules using 70 genes demonstrated 81% accuracy on the validation set when compared
to the pathological nodal status. The rules showed a strong predilection for ICAM1, MAP2K6 and KDR resulting in gene
expression motifs that cumulatively suggested a pattern ICAM1>MAP2K6>KDR for node positive cases. Additionally, the
motifs showed CDK8 to be lower relative to ICAM1, and ANXA5 to be relatively high by itself in node positive tumors.
Rules generated using only ICAM1, MAP2K6 and KDR were comparably robust, with a single representative rule producing
an accuracy of 90% when used by itself on the validation set, suggesting a crucial role for these genes in nodal metastasis.

Conclusion: Our study demonstrates the use of standardized quantitative gene expression values from primary bladder
tumor tissues as inputs in a genetic programming system to generate classifier rules for determining the nodal status.
Our method also suggests the involvement of ICAM1, MAP2K6, KDR, CDK8 and ANXA5 in unique mathematical
combinations in the progression towards nodal positivity. Further studies are needed to identify more class-specific
signatures and confirm the role of these genes in the evolution of nodal metastasis in bladder cancer.
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Background
Cancer of the urinary bladder is the seventh most com-
mon cancer worldwide (3.2% of all cancers), with an esti-
mated annual incidence of 330,000 new cases and to
which 179,000 deaths are attributed each year [1,2]. In the
USA, where more than 63,000 new cases of bladder cancer
were expected in 2005, urothelial carcinoma (UC) is the
most common histology (90%), followed by squamous
cell carcinoma (6–8%), adenocarcinoma (2%), and a
variety of other rare tumor types [3]. The standard TNM
clinical stage classification system for bladder cancer rec-
ommended by the American Joint Committee on Cancer
takes into account the depth of invasion of the bladder
wall by the primary tumor (T), the presence and size of
metastatic regional lymph nodes (N), and the presence or
absence of distant metastases (M) [4]. Nodal involvement
is considered to be an independent risk factor for recur-
rence and survival after cystectomy for organ-confined
bladder cancer [5]. Consequently, extensive bilateral pel-
vic lymphadenectomy is now considered an integral part
of the surgery, having been shown to significantly
improve the prognosis of patients with muscularis pro-
pria-invasive bladder cancer [6,7]. Non-muscularis pro-
pria-invasive tumors (TNM Stages 0a, 0is, and I), confined
to the bladder mucosa or subepithelial connective tissue
(pTa, pTis, and pT1) without regional (N0) or distant
(M0) metastases, are generally treated by transurethral
resection of the tumor with fulguration, intravesical
chemotherapy, and radiotherapy. Although cures are pos-
sible, up to 80% of these presumed "localized" tumors
will eventually recur following initial resection, with up to
25% progressing to muscularis propria-invasive disease
[8]. The confirmation of the existing true nodal status in a
patient with bladder cancer thus assumes primary impor-
tance, along with the need to determine if the tumor has
the molecular potential to metastasize to the lymph nodes
later, provided undiagnosed micrometastasis has not
occurred already.

Molecular changes in bladder cancer have been shown to
precede morphologic changes that can be identified visu-
ally [9]. Further, some tumors have specific molecular pat-
terns that predispose them to be more morphologically
aggressive, with a greater propensity to metastasize and
recur, regardless of their clinical stage at diagnosis [10].
Hence, morphologic changes need to be complemented
with molecular correlates for an accurate prediction of
bladder tumor progression.

The goal of this study was to create an objective and accu-
rate tool for the identification of nodal status from pri-
mary tumor tissue. Since bladder cancer has a multi-
factorial etiology with a complex pathogenesis encom-
passing various pathways that involve more than a simple
two directional (up/down) regulation of a few genes, we

felt that it was necessary to investigate a comprehensive
panel of genes to define this complex disease. Utilizing
bladder tissue biopsies from 60 primary UC subjects and
five normal controls, our study involved the analysis of a
set of 70 candidate markers involved in crucial pathways
that have been shown to be deregulated in cancer, includ-
ing those of cell cycle regulation, apoptosis, angiogenesis,
invasion and metastasis, and anti-oxidation [Figure 1,
Additional file 1] [11,12]. Since scaling the gene expres-
sion levels to represent fold changes relative to a base
value could have biased the significance of these gene
changes, there was a concern that representing the data in
this way might obscure any correlation with the altered
gene's function. We, therefore, adopted a standardized
competitive reverse transcriptase – polymerase chain reac-
tion (StaRT-PCR™) approach to quantitatively measure
gene expression values in relation to a million molecules
of a housekeeping gene like β-actin [11]. This gave us an
expression profile and molecular signature for each tissue
sample with the lowest inter-sample and intra-sample var-
iability.

Using a machine learning technique called genetic pro-
gramming (GP) [13], the gene expression values were
then used to classify the primary tumor tissue samples
into those associated with nodal involvement (node pos-
itive, NP) and those from subjects known to have no
nodal involvement (node negative, NN). GP uses the
available data to produce a set of classifiers ("rules") that
are optimized in an iterative fashion through successive
retention of the better performing rules. One of the key
characteristics of GP is its ability to automatically select
variables and operators and assemble them into appropri-
ate structures that form predictive functions for classifying
the samples, often discovering unusual and unexpected
combinations of input variables. In this study, the sam-
ples were divided into training and validation sets, and GP
was used in a supervised learning mode on the training set
to develop a discriminant classifier solution which then
used the validation set to test the generality of the solution
produced. We, herein, report that by employing GP to
analyze quantitative gene expression profiles of primary
tumor tissue, one can accurately determine the nodal sta-
tus of bladder cancer in the same patient, thereby enhanc-
ing the ability to correctly assess the extent of disease.

Methods
Patient population and distribution
The study cohort was comprised of 60 UC subjects and
five normal controls (n = 65). UC tissue was obtained
from 50 subjects who underwent radical cystectomy for
UC of the bladder at the University of Southern Califor-
nia/Norris Comprehensive Cancer Center from 1997 to
2001 and from 10 subjects who underwent treatment for
pTa and pT1 bladder cancer at the University of Califor-
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nia, San Francisco. Nodal staging was determined by his-
topathological examination in the former group and by
imaging in the latter. Controls consisted of normal
urothelium from the bladder neck of five subjects who
underwent radical prostatectomy for prostatic adenocarci-
noma localized to the prostate with no bladder involve-
ment at the Norris Comprehensive Cancer Center. None
of these subjects had any history of bladder cancer. The 60
tumors had the following stage distribution: pTa (n = 10),
pT1 (n = 13), pT2 (n = 8), pT3 (n = 22) and pT4 (n = 7);
21 of these 60 subjects (35%) were NP, although none of

the subjects had distant metastatic disease. Subjects with
pure adenocarcinoma, squamous cell carcinoma, or small
cell carcinoma were not included in the analysis. Nodal
status of the subjects was determined during initial diag-
nosis and after pelvic lymphadenectomy during radical
cystectomy for the invasive UC cases. Pathological stage
was determined according to the tumor-node-metastasis
(TNM) system [4]. Primary tumor samples from the cys-
tectomy specimens were preserved as archival paraffin-
embedded tissue blocks and were available in all cases.
Informed consent was obtained from all subjects. The

Marker panel employed for standardized competitive RT-PCR analysisFigure 1
Marker panel employed for standardized competitive RT-PCR analysis. A total of 70 genes involved in eight broad 
pathways commonly deregulated in cancer were chosen for this study. The primary effector pathways of tumorigenesis encom-
pass apoptosis, cell cycle, gene regulation, cell growth regulation and anti-oxidation, and are comprised of 57 genes. There is a 
significant overlap of markers among the first three pathways. The secondary effector pathways include signal transduction, 
angiogenesis and invasion, and are comprised of 13 genes. All the listed genes exert stimulatory, inhibitory and/or regulatory 
effects on their respective pathway(s).
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gene expression profiling studies were approved by the
University of Southern California and the University of
California, San Francisco Institutional Review Boards.

The total study population was divided into training and
validation sets. The former was comprised of 11 NP sub-
jects and 23 NN subjects, while the latter consisted of 10
NP subjects and 21 NN subjects. The 44 NN subjects
included the 5 normal controls which were classified as
NN for the purpose of analysis in this study. The distribu-
tion of the subjects across both sets and nodal classes was
made to maintain an approximately equal proportion
across all tumor staging strata [Table 1].

RNA extraction and cDNA synthesis
RNA was extracted using the TRIzol® method (Invitrogen,
Carlsbad, CA, USA). Formalin-fixed paraffin embedded
tissue sections were lysed with a syringe in TRIzol®. 400 μL
of chloroform was then added followed by centrifugation
to separate the RNA containing aqueous phase. This was
followed by addition of linear acrylamide (Ambion, Aus-
tin, TX, USA) that served as a carrier and 1 mL of isopro-
panol to precipitate the RNA followed by incubation at -
80°C for two hours. The tubes were then thawed and cen-
trifuged at 4°C and the supernatant was removed. The
RNA pellet was washed with cold 70% ethanol followed
by centrifugation and removal of the supernatant. The
RNA pellet was dried and resuspended in DEPC-treated
water. DNase treatment was then performed using DNA-
free™ (Ambion, Austin, TX, USA) following the manufac-
turer's instructions. cDNA was prepared as described pre-
viously [14].

StaRT-PCR™, image analysis and quantitation
Quantitative gene expression profiling was done using
StaRT-PCR™ analysis as described previously [14]. The
internal standard competitive template (CT) mixtures (A-
F) over six logs of concentration were obtained from Gene

Express, Inc. (Toledo, OH, USA). While each of the six
mixtures (A-F) contained internal standard CTs for 381
target genes in addition to 600,000 β-actin CT molecules/
μL, our study targeted a list of 70 transcripts [Figure 1,
Additional file 1]. For each sample, StaRT-PCR™ analysis
was performed using five different CT mixes (B-F). Thus
each sample underwent five separate PCR analyses; each
separate reaction containing the ready-to-use master mix-
ture, cDNA sufficient for expression measurements of the
71 transcripts (including β-actin), primers for the 71 tran-
scripts and one of the five CT mixes (B-F). Following PCR,
the amplification products were electrophoresed, and
image analysis and quantitation of band fluorescence
intensities were done as described previously [14].

Genetic program analysis, voting algorithm and gene 
usage frequency
GP was used in a supervised learning mode on the train-
ing set to develop classifier programs. For this, a "genetic
pool" of candidate classification programs was created
from which future programs were created through selec-
tion and re-combination. The programs were initially cre-
ated by randomly choosing inputs and arithmetic and
Boolean operators that work with the type of inputs
selected. A small subgroup of programs was then selected
from the main population to create a "mating pool" of
programs. Each program was evaluated on input data and
the output was a prediction of the nodal status associated
with these inputs. The accuracy of a program in correctly
classifying the samples according to pre-specified labels
was used to calculate a fitness measure for the program.
Fitness was determined by calculating the area under the
curve (AUC) for the receiver operating characteristic
(ROC) of a program generated by the GP system, and evo-
lution was driven to maximize the AUC so as to yield rules
with high sensitivity and specificity. The complexity of the
rules generated was also restricted to prevent overfitting.
This was done by the strict use of mathematical operators

Table 1: Distribution of the study population on the basis of nodal positivity and tumor stage.

Tumor Stage Training Set Validation Set

Node positive Node negative Total Node positive Node negative Total

Normal controls 3 3 2 2
pTa 0 3 3 0 7 7
pT1 2 6 8 1 4 5
pT2 0 4 4 0 4 4
pT3 7 5 12 7 3 10
pT4 2 2 4 2 1 3

Grand total 11 23 34 10 21 31

The total cohort of 65 subjects included five normal controls that were classified as node negative. An approximately equal distribution of the 
subjects was attempted between both sets in all tumor stages and nodal classes to eliminate bias. Tumor and nodal stages was determined 
according to the American Joint Committee on Cancer recommended TNM system for urinary bladder cancer (2002).
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(e.g., +, -, x, /, exp), logical operators (e.g., 'and', 'not', 'or')
and comparison operators (e.g., =, >, <, ≥, ≤), and gene
usage was restricted to no more than seven genes in a solu-
tion. 'exp' is an exponent function where exp(N) is equiv-
alent to eN. While this may seem odd, it expresses the
exponential quality of response relationships between
genes, particularly within a pathway. The '?' operator was
used as a conditional phrase "IF <predicate> THEN
<expression1> ELSE <expression2>."

The two programs in the mating pool with the highest fit-
ness values were then chosen for selective combination
(i.e., mating) to produce offspring. The offspring pro-
grams then replaced the least fit programs in the main
population, potentially containing superior traits taken
from each of their parents. This was repeated and, over
many generations, progressively better programs were cre-
ated [Figure 2]. The relatively small data set also necessi-
tated the employment of a cross validation technique to
estimate the ability of the classifier to generalize to unseen
samples, giving an approximation of its robustness. This
was done using the N-Fold cross validation technique
wherein the training set was subdivided into eleven
"folds" (N = 11), as there were eleven NP cases in the
training set. Classifier rules were developed using the sam-
ples in 10 folds and each rule was then tested on the elev-

enth fold of the training set. The process was repeated 10
more times with each fold taking a turn as the test fold. 20
runs of 11 folds each were completed and the set of clas-
sifiers that had the best total performance across all the
folds was then selected. As GP is a stochastic process and
gives more than one solution with the same accuracy, this
gave a reasonable sample of the best performing classifier
sets. Classifier sets ("meta-rules") were then used in a
majority voting scheme to classify the samples in the val-
idation set. Aggregate performance of these meta-rules on
the test folds was taken as the predictor of the classifica-
tion error, and the selected meta-rule was the one with the
least test error. The 11-fold cross validation resulted in a
meta-rule for each run that was composed of eleven rules,
one for each fold. The meta-rule then "voted" for a sample
presented to it. If the majority of the rules (i.e., six or
more) voted that the sample belonged to the target class
(in this case, NP), the meta-rule was designated as predic-
tive of the target class.

Running the expression values of the training set samples
20 times over 11 folds resulted in 220 rules, each of which
had five genes on an average. Thus, the postulated fre-
quency of occurrence of each of the 70 genes in 220 rules
if all had equal probabilities of being selected was 15.71.
The actual frequencies of occurrence of all genes were
recorded by identifying the number of instances amongst
all the 220 rules, wherein a rule had the gene as one of its
constituents. Since the occurrence of each gene in a rule
was a binary event, the frequency of each gene being
selected followed a binomial distribution enabling the
calculation of binomial probabilities and their corre-
sponding p-values. Statistical calculations were performed
using SAS (release 9.1).

Results
Generation of rules
Quantitative gene expression profiling of the tissue sam-
ples for the above mentioned 70 genes was done using
StaRT-PCR™ and the expression values for the samples
grouped under the training set were run 20 times through
the GP system for 100 generations over 11 folds to yield
meta-rules. The fitness measure tried to maximize the
AUC while overfitting was avoided by using simple math-
ematical functions and restricting rule sizes as described
above. N-fold cross validation was used as the resampling
technique to test the overall generality of the classifier.
The generated rules were then subject to a majority voting
algorithm and the best performing rules were chosen and
tested on the validation set against the histopathologically
determined nodal status. The accuracy of each meta-rule
was assessed by calculating how well it classified the vali-
dation set samples based solely on their molecular charac-
teristics. The final meta-rule thus generated is shown in
Table 2 which correctly identified 6 out of 10 NP samples

The genetic programming processFigure 2
The genetic programming process. This iterative tech-
nique was employed on the training set samples to generate 
classifier rules that were tested on the validation set. Ran-
domly chosen components were initially used to create a 
population of candidate programs from which a small mating 
pool of candidate programs was generated. Inputs were 
passed into these programs and the predicted nodal statuses 
were evaluated for fitness. The two best performing pro-
grams were then mated to produce offspring that replaced 
the two least fit programs. This process was repeated over 
many generations to create better programs.
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and 19 out of 21 NN samples in the validation set, result-
ing in a positive predictive value of 75% and negative pre-
dictive value of 83% [Table 3]. All of the normal cases,
classified as NN, were correctly identified as being node
negative, yielding an overall sensitivity of 60% and a spe-
cificity of 90%.

Gene usage
Cross validation consistency is a concept that implies that
the presence of a fundamental phenomenon implicit in
the data will be reflected by a similarity between the
results for different folds [15]. The frequency of gene
usage in the best rules across many runs with different
fold compositions of the data thus allowed us the possi-
bility of identifying the most important genes as well as
gene-gene interactions used in the classifiers for target dis-
crimination. Although the stochastic nature of GP com-
bined with the fact that the fold composition is partly
determined by random selection may lead one to assume
that it might be possible to craft a rule that could classify
any limited number of samples given a random selection
of genes, this proves not to be the case. We show that
repeatedly running the system and tabulating the use of
genes across all folds in all runs reveals a strong preference
for certain genes. The genes KDR, MAP2K6 and ICAM1
(encoding the kinase insert domain receptor, mitogen-

activated protein kinase kinase 6, and intercellular adhe-
sion molecule 1, respectively) showed a strong predilec-
tion to be used among the 220 rules drawn from 20 runs
of 11 folds [Figure 3]. Since the presence or absence of a
gene in a rule is a binary event, the frequency of each gene
being selected follows a binomial distribution. The bino-
mial probabilities of the above genes were 9.69E-130,
1.13E-110, and 4.10E-78, respectively, with one-sided p-
values of <0.00001 against the null hypothesis of each of
the 70 genes having an equal probability of being selected
[Table 4]. The p-values for the next five genes were also
low enough to indicate significant selectivity towards
them. Examination of the rules presented in Table 2 show
the prevalence of the top three genes where each rule on
this list uses at least one of these genes and four of the
rules use all three genes, though in different combina-
tions.

Gene expression motifs
In addition to raw gene frequency information, the rules
developed were examined for recurring mathematical
combinations that may be called "motifs". These not only
showed the tendency to utilize certain genes more than
others but also demonstrated the relationship between
these genes. From this, it may be possible to identify path-
ways that are associated with the signature of a certain tar-

Table 3: Performance of the selected meta-rule generated from the set of 70 genes on the validation set and result metrics.

Pathologically Node Positive Pathologically Node Negative

Predicted Node Positive by GP using 70 genes 6§ 2
Predicted Node Negative by GP using 70 genes 4 19†

§ True positive subjects.
† True negative subjects.
Accuracy: 81%
Sensitivity: 60%
Specificity: 90%
Positive Predictive Value: 75%
Negative Predictive Value: 83%

Table 2: Final meta-rule for node positive patients generated from the set of 70 genes.

Rule number Classifier Rule

1 exp(exp(HSF1)) - exp(MXD1)/(KDR - MAP2K6) > 2.718
2 (MAP2K6/KDR) × (exp(TGIF) - MAP2K6/ICAM1) > .709
3 (ICAM1 - CDK8)/(exp(JUNB) × (JUNB - exp(TGFBR2))) > 1.32
4 ANXA5 × MAP2K6/(KDR × (ICAM1 - CDK8)) > 1.701
5 (ICAM1 - MAP2K6) × exp(MAP2K6 - KDR) > 3653.813
6 (ICAM1 - CDK8) × TP53/(exp(TGFBR2) × PTGS2) > 21941.453
7 (CCND3/MAP2K6) × (exp(BMP6) - (KDR/MAP2K6)) > .201
8 MAP2K6/(CDKN1A × exp(MAPK12) × (CDC25C - KDR)) > 7.703
9 (ANXA5 - exp(PDGFRL))/(CDKN1A × (KDR - exp(TGFBR2))) > .044
10 ANXA5/(CDKN1A × (exp(PTGS2) - (CDK8/ICAM1))) > 79.002
11 MAP2K6/(KDR × (ICAM1 - (TNFAIP1/exp(PDGFB)))) > 1.182
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get class, which in this study was the class of node positive
subjects.

Examination of the rules revealed a consistent relation-
ship between the expression levels of the three most fre-
quently utilized genes, i.e., KDR, MAP2K6 and ICAM1.
That is, the more highly expressed MAP2K6 and ICAM1
were when compared to KDR, the more likely it was that
a sample would be NP. These, however, are relative com-
parisons. In other words, KDR is lower when compared to
MAP2K6 and ICAM1, but a simple assumption of low
KDR expression in general cannot be construed as a
marker of nodal positivity (see Additional file 2). An
example motif that shows this relationship is the expres-
sion 'MAP2K6/KDR'. The rules developed all take the
form: "IF [mathematical expression] ≥ [threshold] THEN
NP". In this case, a lower KDR expression value translates
to a higher ratio with an increasing likelihood of the sam-
ple being classified as NP. Similarly, the higher MAP2K6
is when compared to KDR, the more likely it is that this
expression will be greater than the constant value. This
motif occurs in rules 2, 4, 7 and 11 in Table 2. A similar
motif that was often observed was 'MAP2K6 - KDR', as in
rules 5 and 1 [Table 2]. (Note that in Rule 1, the relation-

ship is reversed because it appears in the denominator of
the ratio.) Again, KDR would tend to be mathematically
lower than MAP2K6.

The motif 'MAP2K6/ICAM1' and its related motif 'ICAM1
- MAP2K6' appear quite frequently, with the former used
in a reductive way (i.e., reducing the value that is com-
pared to the constant value) and the latter in an additive
way (i.e., increasing the value that is compared to the con-
stant value). This suggests that in NP cases,
ICAM1>MAP2K6. Since we had previously identified the
relationship MAP2K6>KDR from the use of the MAP2K6
and KDR motifs described above, we can infer that in NP
cases ICAM1>MAP2K6>KDR. This might be called "gene
transitivity" in the sense that since MAP2K6 is greater than
KDR but less than ICAM1, we can infer that ICAM1 is in
general greater than KDR in NP cases. This relationship
may be seen in rules 2 and 5, respectively [Table 2].

Another motif observed was 'ICAM1 - CDK8' or the simi-
lar motif 'ICAM1/CDK8', which were featured in rules 3, 4
and 6 [Table 2]. The prevalence of these motifs shows that
a high ICAM1 value relative to CDK8 (which encodes cyc-
lin-dependent kinase 8) is likely in NP samples. Rule 10
shows the motif 'CDK8/ICAM1', but as this expression is
being subtracted from the rest of the expression, it also
leads to the same conclusion of ICAM1 levels tending to
be higher relative to CDK8. There was no obvious motif
that linked CDK8's relationship to either MAP2K6 or
KDR.

Finally, though not technically a motif, the fourth most
frequently used gene, ANXA5, that encodes for annexin
A5, appeared in a variety of combinations in rules 4, 9 and
10 [Table 2] and a relatively high expression value of the
gene was generally associated with NP cases.

Identification of a single rule
While the voting algorithm seems to work reliably, there
is a natural desire to identify the "best" rule for classifying
samples. While this may be contrary to the population-
based process used by GP, the gene usage frequency
results indicate that the top three genes are used signifi-
cantly more often than the others. This suggests that these
genes play the most important part in distinguishing NP
samples from NN samples. One hypothesis could be that
these genes are carrying the bulk of the value in the rules
presented. To investigate this idea further, rules were cre-
ated using only these three genes viz., KDR, MAP2K6 and
ICAM1, as inputs. The entire GP process was repeated in
order to clearly identify the relationship of these three
genes and to test the robustness of the rules developed
from this subset of genes. The final meta-rule obtained
after 11-fold cross validation comprised of eleven rules
(see Additional file 3).

Histogram of Gene Usage FrequenciesFigure 3
Histogram of Gene Usage Frequencies. Examination of 
the gene usage frequencies among the best of 220 rules 
drawn from 20 runs of 11 folds showed a strong preference 
for the KDR, MAP2K6 and ICAM1 genes which were also 
components of some of the major gene expression motifs. 
Rules created using only the top three genes showed a com-
paratively better performance, indicating their importance in 
the genesis of nodal metastasis.
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The performance of these rules on the validation set was
found to be comparable to the previous results generated
using the panel of 70 genes, demonstrating equal levels of
accuracy and comparable sensitivity and specificity met-
rics [Table 5], which tend to support the hypothesis that
rules created with a reduced number of genes that are
believed to be the key modulators of the target process
generate equally robust classifiers. Of note is the fact that
the first rule from the generated meta-rule (see Additional
file 3) when singularly analyzed retrospectively on the val-
idation set, produced a markedly better result with 70%
sensitivity and 100% specificity. The positive predictive
value of this rule was 100% and the negative predictive
value was 88%, though there was nothing that uniquely

stood out about this rule in comparison with the others
(see Additional file 4). However, the observation that
most of the rules show similarity in constitution with
respect to gene usage further bolsters the hypothesis that
these genes are critical in the development of nodal metas-
tasis and interact with each other in distinct effector path-
ways.

Discussion
Recent studies suggest that the significant relapse rates for
bladder tumors that do or do not invade the muscularis
propria may be related to the presence of micrometastases
in pelvic lymph nodes that are undetectable using conven-
tional computed tomography, magnetic resonance imag-

Table 5: Performance of the meta-rule generated using the three most frequently used genes, viz. KDR, MAP2K6 and ICAM1, on the 
validation set and result metrics.

Pathologically Node Positive Pathologically Node Negative

Predicted Node Positive by GP using 3 genes 7§ 3
Predicted Node Negative by GP using 3 genes 3 18†

§ True positive subjects
† True negative subjects
Accuracy: 81%
Sensitivity: 70%
Specificity:86%
Positive Predictive Value: 70%
Negative Predictive Value: 86%

Table 4: Probability of gene usage from the set of 70 genes due to random chance.

Gene Actual occurrence of gene (in 220 rules) Binomial probability p-value (one-sided)

KDR 159 9.69E-130 <0.00001
MAP2K6 146 1.13E-110 <0.00001
ICAM1 121 4.10E-78 <0.00001
ANXA5 60 7.04E-20 <0.00001
CDK8 56 3.38E-17 <0.00001

CDKN1A 55 1.49E-16 <0.00001
JUNB 49 6.56E-13 <0.00001

TGFBR2 41 1.08E-08 <0.00001
TNF 24 1.11E-02 0.01490

TNFAIP1 23 1.76E-02 0.02599
CCND3 19 6.73E-02 0.16020
PDGFRL 18 8.23E-02 0.22749
MAPK12 15 1.04E-01 0.49264
GAPDH 15 1.04E-01 0.49264
PTGS2 12 7.05E-02 0.20295
PDGFB 11 5.26E-02 0.13246

Number of genes per rule = 5 (approximately)

Arranged in decreasing order of their frequencies of occurrence in 220 rules, the genes show a general trend towards increasing probability of 
being selected in a rule by random chance. The postulated frequency of occurrence of each gene if all have equal probabilities of being selected is 
15.71. PTGS2 and PDGFB have smaller probabilities than the two genes preceding them because they were actually used less frequently than random 
chance would suggest.

Random occurrence of gene Number of rules
Number of genes = × pper rule

Total number of genes

= × =220
5

70
15 71.
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ing, positron emission tomography and routine
histopathologic examination [16,17]. Hence, considera-
tion for early cystectomy with pelvic lymphadenectomy is
now being advocated even for "localized" bladder cancers
that have not invaded the muscularis propria [18]. A more
accurate definition of the nodal status upon initial diag-
nosis and during follow-up of bladder cancer will go a
long way in minimizing the significant understaging and
overstaging that appears to currently exist and thereby bet-
ter equipping the clinician with the tools needed to deter-
mine the optimal treatment and follow-up strategies for a
particular patient.

Over the past decade, efforts have begun to identify
molecular markers that can predict the propensity of blad-
der tumors to metastasize to the lymph nodes. While sin-
gle molecular markers with significant correlations have
been identified, the predictive and prognostic potential
offered by them is still not optimal. The current situation
warrants the need to generate a panel of markers repre-
senting those crucial pathways deregulated in bladder
cancer which can assist in the prediction of nodal metas-
tasis. The present study evaluates a panel of 70 transcripts
that are known to be altered in cancers. The expression
levels of these genes were determined using StaRT-PCR™
and the data was subjected to GP analysis, which identi-
fies optimal rules using those genes that it selects as the
most significant determinants of the target clinical out-
come (in this case, nodal metastasis). StaRT-PCR™ has the
ability to measure the stoichiometric relationship
between the abundance of multiple transcripts within the
same sample [11] and can allow for comparison of data
generated independently in different experiments and dif-
ferent laboratories [19].

Considerations involved in construction of the study cohort
The total study cohort of 65 subjects was divided into
training and validation sets, and an approximately equal
distribution was attempted between them for each nodal
class within a tumor stage in an effort to eliminate bias
[Table 1]. Besides the five normal samples, the rest of the
cohort (n = 60) thus has the following distribution: 20
NN cases and 3 NP cases in the non-muscularis propria-
invasive category (pTa and pT1); and 19 NN cases and 18
NP cases in the muscularis propria-invasive category (pT2-
4). The cohort thus exhibited an equal proportion of NN
and NP cases in the muscularis propria-invasive category,
but an unequal proportion of the same in the non-muscu-
laris propria-invasive category. These proportions are
reflected in the subject distributions in the training and
validation sets, and may prompt one to surmise that the
gene selection process was biased as it recognized tumor
stage-specific features rather than those for nodal status.
However, given the approximately equitable distribution
of NN cases between the non-muscularis propria-invasive

and invasive groups, one can conclude that the features
identified by GP corresponded to the absence of nodal
metastasis rather than detrusor muscle invasion or tumor
stage. The inequitable distribution of NP cases might lead
one to believe that the features identified by GP may cor-
respond more to the presence of detrusor muscle invasion
(as the number of muscularis propria-invasive cases are
higher) rather than the presence of nodal metastasis. This
would, however, mean that GP would not be able to dis-
tinguish between NN and NP pTa and pT1 cases, as all
these cases would demonstrate common features of lack
of muscle invasion. However, the stage-wise break-up of
the results show that each time GP was run, it able to dis-
tinctly identify between NN and NP pTa and pT1 cases
with 100% accuracy (see Additional file 5). Indeed, the
paucity of NP non-muscularis propria-invasive cases is
common in clinical settings as only a small minority of
non-muscularis propria-invasive cases metastasize to the
lymph nodes at the time of diagnosis [6]. Alternatively,
NP cases are generally considered to be more aggressive
and thus usually present with a greater degree of tumor
invasion. The study cohort was so constructed to reflect
this clinical scenario, albeit using a small number of sub-
jects.

The normal subjects were clubbed with the NN cases to
confirm that the technique could recognize normal sam-
ples as NN as well. While the genetic makeup of normal
urothelium may be entirely different from NN UCs, the
common theme was the absence of nodal metastasis (and
thus, an absence of the genetic features contributing to the
same), rather than the presence or absence of carcinoma
afflicting the urothelium. Amalgamation of the two
groups was thus crucial to create a binary classification
system that distinguished the presence or absence of
nodal metastasis.

Considerations involved during generation of rules
Transcript levels were used to generate classifier rules that
were produced after evolving over 100 generations until
they reached an acceptable level of accuracy. It is necessary
to provide a suitable fitness measure, as fitness is the main
driver of the evolutionary process and thus determines the
quality of solutions achieved. One possible measure of fit-
ness is a calculation of sensitivity and specificity in a rule's
ability to predict the NP subjects. The problem in selecting
a single measure of accuracy out of sensitivity and specifi-
city is that they are both inherently complementary,
wherein increasing one is often associated with decreasing
the other. The overall objective of simultaneously maxi-
mizing both parameters was built into the ROC evalua-
tion of the test [20], and the search for the most
informative test sought to maximize the AUC [21]. The
AUC gives a direct indication of how well the samples are
being separated into different classes and is thus a more
Page 9 of 16
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robust fitness measure than any other mathematical com-
bination of sensitivity and specificity because there is no
concept of boundary or threshold that can induce discon-
tinuities into the system leading to strange behavior
around them.

A major challenge in any machine learning system is to
prevent overfitting. This occurs when the function is
biased strongly towards training examples and generalizes
poorly to new (unseen) examples. Typically, model over-
fitting occurs when there are too few samples relative to
the complexity of the problem. Most clinical problems
must deal with this issue. In our study, there were only 34
samples in the training set from which to learn, with 70
variables per sample. This could potentially have led to
solutions that could have been overly biased or overfitted
to the training data. This study tried to alleviate the over-
fitting problems by restricting the complexity of the result
and by the use of resampling techniques. By restricting the
complexity of the result, the system was forced to pick out
the most salient features in the data set which were likely
to be the most general solutions [22]. This was achieved
by the use of simple mathematical, logical and compari-
son operators, and by limiting the size and complexity of
the programs produced based on the minimum descrip-
tion length principle of risk minimization wherein the
least complex solution is called the most robust [23]. The
number of genes used in any solution was also restricted
to no more than seven, which puts a constraint on the
degrees of freedom in the expression that is loosely related
to the VC dimension, a measure of the complexity of a
classification algorithm [24].

For selecting a robust classifier, it is imperative to know
the generalization rate of the classifier, especially in the
case of small data sets where overfitting can be relatively
frequent. Cross validation is a resampling technique that
can help predict the generality of the solution in classifier
problems [25]. In cross validation, the training set is sub-
divided into N subsets or "folds" and then each of the N -
1 sets are used to learn from and the Nth fold is used to test
the resulting rules. The folds are randomly assembled
from the whole data set, maintaining the same proportion
of true positive cases and true negative cases such that
each fold will have the same representation of samples as
the whole set. To avoid selecting a particularly favorable
test subset, the system is then run again from scratch with
another fold as the test set. This is repeated until all N sub-
sets have been used as the test set. The goal is to adjust the
system so that the results for all training-test set combina-
tions (folds) are roughly the same.

While N-fold cross validation is a simple and effective
technique to evaluate how well the classifier generalizes to
unseen data, the number of folds to use in order to best

assess the general performance of the system is an open
question. Many machine learning techniques use a leave-
one-out cross validation (LOOCV) [26] approach as it has
the virtue of maximizing the use of samples by allowing
the investigator to view the overall performance of the sys-
tem across many folds, suggesting a "normal" behavior
for the rules generated. LOOCV is approximately unbi-
ased for true prediction error, but can have high variance
because all the "training sets" are similar to each other.
This study used a variation of cross validation inspired
from the N-fold cross validation scheme that selects an
optimum number of folds that can strike a reasonable bal-
ance between bias and variance. Instead of having 34
folds, which would correspond to the total number of
samples in the training set, 11 folds (i.e., the number of
NP samples in the training set) were used that lead to a
reduction in the variance of the solution. The best per-
forming classifiers across all folds were ultimately selected
and applied to a majority voting scheme to generate the
best meta-rule. The majority voting scheme increases the
performance and consistency of the classifiers. It has been
shown that for a binary classification scheme, the per-
formance of the aggregate classifier actually increases if
the individual rules are more than 50% accurate [27,28].
Resilience can be significantly improved with this
approach as estimation errors are reduced.

Clinical relevance of the frequently used genes
The panel of 70 genes was chosen based on an extensive
review of previous studies that have implicated potential
roles for various genes in the progression of cancer in gen-
eral and UC in particular. Although many of the candidate
markers that were selected for this analysis have been
implicated in one or more of the pathways involved in
bladder tumorigenesis, it is plausible that some genes may
play a relatively more significant role in the development
of nodal metastasis and the determination of prognosis if
the disease is detected early. The GP analysis in this study
clearly shows an unequivocal preference to use ICAM1,
MAP2K6, KDR, CDK8 and ANXA5 in specific relation-
ships to define NP UC specimens. The association of met-
astatic disease with the expression levels of these genes
and their corresponding proteins is not unreasonable con-
sidering their function and involvement in tumor biology.

ICAM1 is a cell surface glycoprotein in the immunoglob-
ulin superfamily and is expressed at a low basal level in
fibroblasts, leukocytes, keratinocytes, endothelial and epi-
thelial cells but is upregulated in response to a variety of
inflammatory mediators [29] Several reports indicate that
the expression levels of ICAM1 correlate with metastatic
potential, migration, and infiltration ability. Immunohis-
tochemical studies on 57 patients with bladder carcino-
mas revealed that the expression of ICAM1 was closely
associated with an infiltrative histological phenotype [30]
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and serum ICAM1 levels have been related to tumor pres-
ence, grade and size in patients with bladder cancer [31].
Furthermore, fibrinogen, which may be a determinant of
metastatic potential [32], mediates bladder cancer cell
migration through an ICAM1-dependent pathway [30].
More recently, it was shown that ICAM1 downregulation
at the mRNA and protein levels led to a strong suppres-
sion of human breast cancer cell invasion through a
matrigel matrix and that the level of ICAM1 protein
expression on the cell surface positively correlated with
the metastatic potential of five human breast cancer cell
lines [33].

Ligation of ICAM1 induces activation of MAP2K6, which
in turn activates p38 [34-36]. This pathway has been
shown to be closely associated with an invasive pheno-
type for bladder tumors [37] and p38 phosphorylation in
breast cancer patients has been associated with a poor
prognosis in node-positive tumors [38]. Other studies
have shown a direct effect of MAP2K6 activity on meta-
static potential. MAP2K6 transfection into normal
MCF10A breast epithelial cells resulted in an invasive and
migratory phenotype accompanied by upregulation of
certain matrix metalloproteinases [39,40]. Activation of
this pathway also induced in vitro invasion of normal
NIH3T3 fibroblasts [41].

KDR or vascular endothelial growth factor receptor-2
(VEGFR2/Flk-1) is a high-affinity plasma membrane
receptor for the ligands VEGF-A and -E. This protein is
expressed on endothelial cells in the vasculature and
mediates most of the endothelial growth and survival sig-
nals through these ligands [42]. Expression of KDR has
also been demonstrated in tumors of epithelial origin and
the best rules in this study imply that the expression level
of KDR is consistently lower in relation to ICAM1 and
MAP2K6 when there is nodal involvement in bladder can-
cer. Although a precise reason for why this relationship
should exist is unknown, some studies have established a
more aggressive phenotype in cancers that have lower
expression of KDR. For example, in patients with UC, high
expression of KDR was associated with increased survival
times, whereas those with lower expression values had a
worse prognosis [43]. Likewise, high-grade prostate carci-
nomas showed much less KDR expression than low or
moderate grade tumors [44]. However, it must be kept in
mind that in the present study, it is not the absolute
expression of KDR that contributes to the correlation with
nodal involvement in bladder cancer, but its relationship
to the values of the other two genes.

The identification of CDK8 as a physiological partner of
cyclin C (CycC) is relatively recent [45] and the role of the
former with respect to clinical prognosis in UC has not
been extensively investigated. The CycC/CDK8 complex is

a part of the pol II holoenzyme complex that plays a part
in transcription [46], and is also a part of MED/SRB
(Mediator/Suppressor of RNA Polymerase B) containing
complexes such as TRAP/SMCC (Thyroid hormone-asso-
ciated protein/SRB/MED cofactor complexes) and NAT
(negative regulator of activated transcription) [47-50].
TRAP/SMCC and NAT have been shown to phosphorylate
CycH of the general pol II transcription factor, TFIIH com-
plex, via their CDK8 kinase activity and inhibit TFIIH pro-
tein kinase activity [51]. The suggestion of a lower CDK8
level compared to ICAM1 in NP cases through the gene
expression motifs in this study may thus be suggestive of
a role of increased transcription activity, though more
functional studies in this direction are required.

The annexins are a large family of closely related calcium-
and membrane-binding proteins [52] that are expressed
in most eukaryotic cell types and appear to participate in
a variety of cellular functions including vesicle trafficking,
cell division, apoptosis, calcium signaling, and growth
regulation. Many of these proteins are differentially
expressed in malignant tissue and have been shown to be
upregulated or downregulated depending on tumor type
[53]. Annexin V (and in the case of our study, annexin A5,
encoded by the ANXA5 gene) has been reported to be
especially abundant in platelets where it relocates to the
cytoskeleton following stimulus-induced Ca2+ elevation
[54,55]. Annexin V is used as a marker for apoptosis [56]
and has been shown to influence susceptibility to apopto-
sis and pro-inflammatory activities of apoptotic cells [57].
Consequently, annexin V expression levels could be
affected by the apoptotic potential of a tumor cell popula-
tion, which has been shown to be greatly influenced by
the process of tumor progression and metastasis [58].

Interestingly, previous studies that have attempted to
identify prognostic classes of UC using microarrays have
limited similarity to the gene panel in this study, with
E2F4, PCNA, CCNA2 and RB1 being upregulated in high
grade pTa tumors, and ERBB2 being downregulated in
muscularis propria-invasive tumors [59]. However, one
must note that such studies generally consider tumor
grade and stage as prognostic indicators, and their molec-
ular signatures are usually filtered to reflect the same. On
the other hand, our study defined nodal metastasis as a
prognosticator and the GP system was thus trained to
identify genetic traits that best corresponded to this indi-
cator. Furthermore, the identification of a single rule
employing the three most frequently used genes proved to
be more robust in terms of predicting the nodal stage in
the validation set. While this study suggests a possible piv-
otal role of the expression of these three genes in deter-
mining nodal status, the limitation of a relatively small
sample size compared to the number of variables
involved warrants similar studies with larger sample sizes
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to validate these results. One can hypothesize that com-
parative downregulation of KDR (and perhaps, angiogen-
esis in general) in the primary tumor might impart
selection pressure for invasion leading to upregulation of
ICAM1 that reflects a tumor's potential to establish a met-
astatic lesion in a draining lymph node. This possible
mechanism can partially explain the gene transitivity
observed, whereby the gene expression signature of nodal
metastatic cases consistently conforms to a fixed motif of
ICAM1>MAP2K6>KDR, although a literature search did
not reveal any study that investigated these genes in con-
cert in the context of nodal metastasis. The above motif
also exemplifies the hypothesis-generating nature of GP,
and directed investigations into the role of these genes
and their respective pathways in promoting nodal metas-
tasis are required. Further work is necessary to show that
this approach is effective in all cases but it tends to sup-
port the theory put forth by Daida that GP has two phases:
identifying the key inputs, and then finding rules that
optimally combine them [60]. By using specific genes
shown to be more useful during pilot studies, it allows the
GP process to search for the best use of those genes. This
can enable the GP system to accurately predict prognosis
and help in making therapeutic decisions, thus having a
direct impact on the patient and the treating clinician.

Advantages of genetic programming
As can be seen from the results, GP is distinct from other
common machine learning algorithms used in bioinfor-
matics [Table 6]. This technique is gradually gaining pop-
ularity for the analysis of medical and biological data, and
for the prognostic classification of cancers [61-65].

A unique feature of GP is the final output, which consists
of easily readable rules expressed as executable classifier
programs that define tangible relationships between the
most influential genes. This allows the results to be put
into the known biological context of these genes, which
can enhance their significance or provide new working
hypotheses that could be further tested. Most other classi-
fier algorithms like Support Vector Machines (SVM), Neu-
ral Networks and K-Nearest Neighbors (KNN) clustering
approaches do not provide human readable results. Hier-
archical clustering creates visually intuitive results but the

output does not specify an exact relationship amongst the
genes. Classification and regression trees (CART) output a
binary decision tree that comes closest to GP developed
rules in terms of human readability but fail to provide
clear insights into gene co-expressions that become more
difficult to discern due to the relationships becoming less
explicit as the trees grow larger. While CART algorithms
are normally felt to be greedy, aiming to locally optimize
the decision tree during construction of the solution [66],
GP takes on a more global view of the solution space and
can thus search a larger space for solution trees that might
lead to improved performance.

By identifying those genes that are most dominant in
defining outcome, the GP process can usually limit the
complexity of the classifiers and generate robust but sim-
ple rules containing only a few genes without compromis-
ing their predictability. This is potentially useful in a
clinical setting where profiling each gene has its own cost.
The smaller the gene set needed to make a clinical diagno-
sis, the cheaper the test and potentially the more accepta-
ble it is to payors.

GP does not assume extensive prior knowledge on the
expected form of the solution or any preconceived genetic
interactions to set up the analysis. This is especially useful
given that genetic relationships are not always well
known. Hence, one can judge how it could be difficult to
use classification or clustering algorithms where one
needs to pre-specify the structure of the expected solution.
For example, SVMs involve selecting a kernel for mapping
the data to a higher dimensional space, which is non-triv-
ial and often a non-intuitive process that can affect the
accuracy of the classifiers.

GP can also select variables automatically without any
need to pre-filter or limit them based on what is known
about a system. Such filtering is usually done because of
the combinatorial problem of working with a large
number of inputs; however, such filtering can create an
incomplete and biased dataset that may not be represent-
ative of many complex biological systems. The "curse of
dimensionality" [67] affects all classification algorithms
but the problem of dimensionality reduction is more

Table 6: Advantages of genetic programming.

Method Human Readability Automatic Selection of 
Variables

Automatic Integration 
of Data Types

Non-Linear 
Relationships

Statistical Analysis Yes Limited No Limited
Cluster Analysis Yes No No No

Support Vector Machine No No No Yes
Neural Networks No No No Yes

Genetic Programming Yes Yes Yes Yes
Page 12 of 16
(page number not for citation purposes)



BMC Cancer 2006, 6:159 http://www.biomedcentral.com/1471-2407/6/159
important in classical algorithms like hierarchical, KNN,
K-means clustering and Neural Nets which do not scale
easily to larger numbers of variables. Feature selection is
then an important step before the application of these
algorithms and can lead to loss of information that might
be critical for the success of the learning algorithm.

As can be seen from the rules generated in our study, most
rules express non-linear relationships such as MAP2K6/
KDR or ICAM1/CDK8. The ability to choose variables
from a large list and then combine them in a non-linear,
readable way is a powerful feature of this approach as
many biological systems often have non-linear relation-
ships between genes or proteins. SVM is a popular algo-
rithm which outputs non-linear classifiers but is limited
by the kernel selected. CART algorithms implement non-
linearity in a pseudo sense as they split the data and tackle
each partition separately, but are not as succinct as the
rules produced by GP in capturing the effects and the rela-
tionships among gene expressions.

Lastly, GP can incorporate very diverse data sets that con-
tain markedly different types of variables and can also
handle missing values in the data. Missing data can be an
important problem as even a small amount of missing
data can lead to a large loss in performance. This is espe-
cially true in systems like Hierarchical or KNN based clus-
tering and SVMs, that necessitate the use of various tools
like imputation, replacement of the missing values with a
constant, and removal of samples with a large amount of
missing data. However, most of these approaches can
introduce bias in the system due to the assumptions made
about the missing data that could lead to loss of impor-
tant features. GP alleviates this problem by leveraging the
ability of the system to automatically select features.
Whenever a rule encounters missing data in a sample dur-
ing fitness assessment, the sample is labeled as misclassi-
fied, thus decreasing the fitness of the rule. Thus, the
system is not favorably disposed towards picking up a var-
iable (feature) that is laden with a large percentage of
missing values. This approach allows for maximum use of
the available data without making any unwarranted
assumptions about missing data.

Limitations of genetic programming
GP is a computationally intense process requiring a large
amount of machine time. The estimated machine time
increases with increasing complexity of the problem, and
increase in the dimensions and number of samples. This
can be resolved by using parallel processing and segment-
ing the problem into parts which can be performed on dif-
ferent processors simultaneously and then synchronizing
among them. GP is particularly tractable for parallel com-
puting techniques as there are several natural ways to dis-
tribute execution onto different machines [68].

As GP is a stochastic process that depends highly on the
initial control parameter settings, it does not guarantee an
optimal solution in all runs. It should therefore be run
several times with different settings to ensure that the sys-
tem has not fallen into a local optima.

While GP combines features of global and local search
algorithms, the cost is that it often performs neither of
these functions as well as more specialized algorithms.
The constant introduction of new genetic material
through mechanisms of mutation and crossover (mating)
will divert the algorithm from finding the best combina-
tion of a few highly effective components. For this reason,
this study adopted a two-phase strategy where the most
important variables were identified from the list of the
most frequently chosen variables [Figure 3] and the sys-
tem was then run again using only those high frequency
variables. The first pass allowed the GP system to globally
search a large set of possible variable combinations while
the second pass let it locally search for the best combina-
tion of those variables.

GP may also output several rules that are quite different
but perform equally well, thus suggesting the involvement
of multiple and often unrelated genes. The selection of a
single rule can be difficult, particularly when searching for
a general solution to a problem. This led us to adopt the
voting algorithm to tackle the problem of rule selection
and consistency. It would also seem logical to be relatively
sure of the biological functionality of the genes selected
unless there is sufficient data to confirm an unusual rule
or gene selection. This is not a limitation of GP per se, but
rather a limitation of any machine learning algorithm.

Conclusion
Our study uses UC as a clinical model in devising a strat-
egy to combine the medium-throughput quantitative
StaRT-PCR™ technique with supervised GP methods to
determine the nodal status of clinically diagnosed tumors
based on their molecular profiles. We demonstrate that
StaRT-PCR™ can provide a relatively standardized output
of quantitative gene expression relative to a housekeeping
gene like β-actin and can be used as an input in a GP sys-
tem to generate a classifier for nodal status with a reason-
able degree of accuracy. Moreover, the output has also
suggested a key role for specific genes involved in the tar-
get process that may lead to future studies to clarify their
precise biological role and identify new targets for thera-
peutic intervention. Of particular interest are the gene
expression motifs which have identified novel relation-
ships between specific genes and pathways. The key genes
identified by this technique from our data set also suggest
that class-specific signatures using a small number of
genes can characterize tumors as NP or NN, and more
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importantly, provide an early indication of their progres-
sion towards NP status based on molecular traits.

Our group is currently addressing several open questions
in GP including an approach for multi-class problems,
automated methods for selecting key transcripts and auto-
mated identification of significant motifs. Further studies
will be aimed at correlating molecular markers and motifs
with clinical outcome in an effort to employ markers as
reliable, reproducible and objective indicators of progno-
sis. The enhanced value of incorporating molecular mark-
ers into the existing clinical staging of bladder cancer has
already been proposed as a prudent alternative [69]. GP
will then be ultimately useful in the identification of new
avenues of molecular investigations, critical components
and signatures of prognosis, and therapeutically feasible
targets.
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