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Abstract

New technique, Genetic Programming, is presented for modeling
total cross section of both pp and pp collisions from low to high energy
regions. Recent total cross section data are taken from Particle Data
Group and LHC collaboration. The model seems to fit the experimental
data well.
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1 Introduction

It is a well known fact that high energy total hadronic cross sections grow
with rising center of mass energy. Increase of the pp total cross section with
energy has been discovered since the first results of the Intersecting Storage
Ring (ISR) at CERN in the 70s [1, 2]. The CERN SppS Collider found this
rising valid for the pp total cross section as well [9], and this was also confirmed
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at Fermilab accelerator [10].

From different hadronic processes, the pp and pp are of special interest. This
is because they accumulate the most precise and energy broader set of data.
Besides, the pp set is the only one including the cosmic ray informations on
total cross section.

Recently, TOTEM collaboration at LHC announced that they could use a
luminosity-independent method to measure the pp total collision cross-section
at /s = 8 TeV. A total pp cross-section of (101.7 £ 2.9) mb has been
determined|3]. They were also announced in a previous work that they could
determine the total pp cross-section at /s = 7 TeV as (98.3 &+ 3.0) mb[4, 5].
On the other hand, data on pp total scattering cross section extends up to ~
1.8 TeV. At higher energy intervals, data for pp collisions , up toy/s ~ 40 T'eV,
may be inferred from Cosmic Ray experiments. However, some disagreements
exist among different experiments. These discrepancies are mainly a result of
the strong model-dependence of the relation between the basic hadron-hadron
cross section and the hadronic cross section in air. The latter determines the
attenuation length of hadrons in the atmosphere, which is usually measured in
different ways, and depends strongly on the rate of energy dissipation of the
primary proton into the electromagnetic shower observed in the experiment;
such a cascade is simulated by different Monte Carlo techniques implying ad-
ditional discrepancies between different experiments, [8, 12, 14, 15].

However, the actual energy dependence of the total hadronic cross section is
still an open question of intense theoretical interest. Variety of models, theo-
retical, empirical and semi-empirical has been established to study the subject.
Recently, Genetic programming (GP) has been one of researchers interests in
modeling of high energy physics as well as in different fields ( see for example
[6]-[13] ). Genetic programming is one of a number of machine learning tech-
niques in which a computer program is given the elements of possible solutions
to the problem. This technique, through a feedback mechanism, attempts to
discover the best solution, a function, to the problem at hand, based on the
programmers definition of success. The Genetic programming framework cre-
ates a program which consists of a series of linked nodes. Each node takes
a number of arguments and supplies a single return value. There are two
general types of nodes: functions (or operators) and terminals (variables and
constants) [18]. The series of linked nodes can be represented as a tree where
the leaves of the tree represent terminals and operators reside at the forks of
the tree. The tree elements are called nodes. The functions (F) have one or
more inputs and produce a single output value. These provide the internal
nodes in expression trees. The terminals (T) represent external inputs, con-
stants and zero argument functions.

The aim of this work is to use the Genatic Programming (GP) technique, to
discover the functions that describe and interpolate accelerator pp and pp total
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cross section data and to extrapolate to cosmic ray available data. The data
base analyzed and compiled by the Particle Data Group (PDG) has become
a standard reference and a corresponding readable files are available [7]. In
section II modeling with GP is discussed, while the proposed GP is given in
section III. Results are given in section IV and conclusions are presented in
section V.

2 Modeling Using Genetic Programming

GP, evolves a population of computer programs, which are possible solution to
a given optimization problem , using the Darwinian principle of survival of the
fittest. It uses biologically inspired operations like reproduction, crossover and
mutation. Each program or individual on the population is generally repre-
sented as a tree composed of functions (x, +) and terminals (x,y) appropriate
to the problem domain. For example, Fig. 1 shows the representation of the
function +(x(z,y), *(z, *(z,y)))i.e.((z* (xxy)) + (xxy)). To read trees in this
fashion, one resolves the sub-trees in a bottom-up fashion, where F' = (x, +)
and 7' = (x,y). The set of functions and set of terminals/inputs must sat-
isfy the closure and sufficiency properties. The closure property demands that
the function set is well defined and closed for any combination of arguments
that it may encounter. On the other hand, the sufficiency property requires
that the set of functions and the set of terminals be able to express a solu-
tion of problem. The function set may contain standard arithmetic operators,
mathematical functions, logical operators, and domain-specific functions. The
terminal set usually consists of feature variables and constants. Each indi-
vidual in the population is assigned a fitness value, which quantifies how well
it performs in the problem environment. The fitness value is computed by a
problem dependent fitness function

A typical implementation of GP ( i.e. the process of determining the best
(or nearly best) solution to a problem in GP) involves the following steps:

1) GP begins with a randomly generated initial population of solutions.

2) A fitness value is assigned to each solution of the populations.

3) A genetic operator is selected probabilistically:

Case i) If it is the reproduction operator, then an individual is selected (we use
fitness proportion-based selection) from the current population and it is copied
into the new population. Reproduction replicates the principle of natural
selection and survival of the fittest.

Case ii) If it is the crossover operator, then two individuals are selected. We
use tournament selection where number of individuals is taken randomly from
the current population, and out of these, the best two individuals (in terms of
fitness value) are chosen for the crossover operation. Then, we randomly select
a sub tree from each of the selected individuals and interchange these two sub-
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Figure 1: Tree representation of the equation + (* yx(zyx(z,y))ie.((xx (zxy)) + (zx*

Y)).

trees. These two offspring are included in the new population. Crossover plays
a vital role in the evolutionary process.

Case iii) if the selected operator is mutation, then a solution is (randomly)
selected. Now, a sub-tree of the selected individual is randomly selected and
replaced by a new randomly generated sub-tree. This mutated solution is al-
lowed to survive in the new population. Mutation maintains diversity.

4) Continue step 3), until the new population gets solutions. This completes
one generation.

5)Unlike genetic algorithm [16], GP will not converge.

So, steps 2)-4) are repeated till a desired solution (may be 100% correct so-
lution) is achieved. Otherwise, terminate the GP operation after a predefined
number of generations.

3 The Proposed Genetic Programming

Our approach is to use the experimental data pp and pp total cross sections
to produce calculated total cross sections for each of them. The center of
mass energy is used as input variable to find the suitable function o;(+/s),
that describes the experimental data. Our representation, the fitness function,
is calculated as a negative value of the total absolute performance error of
the discovered function on the experimental data set, i.e. a lower error must
correspond to a higher fitness. The total performance error can be defined for
all the experimental data (i = 1,...,n) set as:

E=%Y7,X; Y (1)
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Where X represent the experimental data for element j and Y; represent
the calculated data for element j. The running process stops when the error
E is reduced to an acceptable level (0.00001).

To find oy(+/s) for pp and pp GP was run for 800 generations with a maxi-
mum population size of 1000. The operators (and selection probability) were:
crossover with probability 0.9 and mutation with probability 0.01. The func-
tion set is (4, —, %, /,In), and the terminal set is random constant from 0 to
10, the incident center of mass energy. the "full”. initialization method was
used with an initial maximum depth of 27, and tournament selection with a
tournament size of 8. The GP was run until the fitness function is reduced to
an acceptable level (0.00001). The discovered function has been tested to asso-
ciate the input patterns to the target output patterns using the error function.

4 Results and Discussion

The final discovered function o; for describing the pp total cross section at low
and high energies is

bp _ Z \/5 *
) = 001200 T 2252018 (fs d e ) L (I0(0) + 3801376)] (2)

where ©v = 6.6758 and

Z:ln(\/g)—m

10 0.79057 10
1 —Inl0.76524 + ——F—— + — + 10 3
* “<s—10—1n(o.66758) “( e s )) (3)

while

fi=In(In(Vs) - 052427) — f;/i (4)

f=1n (In (Vs) * (0.20971 — V/5)) (5)

J7 /s

f3= In(v/3) — /5/fs — fo + 21.3679 x In (/s)

fa=1In(u) —In (1.06528) (7)

0.9938
fo=— [1.309879 x (S 082576 = ﬁ))] — 10 (8)
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Figure 2: A comparison between the experimental data and the model for pp total cross
section. TOTEM recent measures are shown in red.

fo=1n(v/s) * (0.20971 — /5) (9)
- fio
fr=Tn (092544) —10.235 (10)
—9.53557
T = o) (020071 = /) )
Jo— — 22 94909 (12)

In (1/s) % 21.3679

fio = (\/5 — 0.23495) % (%) (13)

Fig.(2) shows a comparison between the model and the experimental data.
The function of pp is

P sy = OF sx1In(y/s) d
V)= i =) 14

where
a=34055 ,0=0.3975 ,c=—-04659 ,d=48.4646 ,e = 0.2872
Fig.(3) shows how much the calculated data match the experimental one.
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Figure 3: The experimental data compared to the model for pp total collision cross section.

In order to measure the goodness of fit of our model we use a combina-
tion of the Pearson correlation coefficient[20, 22] 72, and the Mean Absolute
Deviation[11], MAD. the Pearson correlation coefficient 7 is used to measure
to what extent the model predicts data obey the trend of the experimental
one, and is given by

7"2 -1 Zz ((ymodi - yobsi> /67"7’)2 (15)

55 ((Yobs, — Tovs) Jerr)’

The Mean Absolute Deviation, MAD, is a conceptually easier understand
measure of the deviation of the model predictions from exact data location.
It is the mean of the absolute value of the deviation between each model
prediction and its corresponding data point.

Zi |ymodi - yobsi|
N

Table(1) shows a summary for the values of these variables.

MAD = (16)

Table 1: Statistical Calculations.
Collision  r?> MAD
pp 0915 24
pp 0.993 5.69

We can see from the table that the the GP approach gives results which can
match the experimental data to a good extent from low to ultra high values of
energy, and this occurs for the trained and untrained observations of the total
cross sections of both pp and pp.
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5 Conclusions

Genetic programming (GP) method is one of a number of machine learning
techniques in which a computer program is given the elements of possible solu-
tion to the problem (in our case center of mass energy) and attempts, through
a feedback mechanism, to discover the best function (in our case the total
cross section) to the problem at hand, based on the programmers definition of
success. The program consists of a series of linked nodes which can be repre-
sented as a tree. Each node takes a number of arguments and supplies a single
returned value. There are two general types of nodes (or tree elements): func-
tions(or operators) such as (x,+, —, /, exp,log, In, sin, cos, sqr) and terminals
(constants and variables) such as random constant from 0 to 10, the energy .
The GP model seeks to imitate the biological processes of evolution, treating
a tree or program as an organism. Through natural selection and reproduc-
tion over a number of generations, the fitness of a population of organisms is
improved.

Finally, the present work presents a new technique for modeling the total
cross sections of pp and pp based on GP technique.The discovered functions
show a good match to the experimental data. Moreover, the discovered func-
tions are capable of predicting experimental data for the total cross sections
that are not used in the training session.
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