Evolving real-time behavioral modules for a robot with GP

Markus Olmer Peter Nordin Wolfgang Banzhaf
Fachbereich Informatik
Universitat Dortmund

44221 Dortmund, GERMANY

email: olmer,nordin,banzhaf@lsl11.informatik.uni-dortmund.de

Abstract

In this paper we demonstrate an efficient method which divides a control
task into smaller sub—tasks. We use a Genetic Programming system that
first learns the sub-tasks and then evolves a higher—level action selection
strategy for deciding which of the evolved lower—level algorithms should be in
control. The Swiss miniature robot Khepera is employed as the experimental
platform. Results are presented which show that the robot is indeed able to
evolve both the control algorithms for the different lower—level tasks and the
strategy for the selection of tasks. The evolved solutions also show robust
performance even if the robot is lifted and placed in a completely different
environment or if obstacles are moved around.

INTRODUCTION

Robotics plays an increasingly important role in our society and its potential for the
future is tremendous. Especially autonomous robots have a large potential in, for
instance, medical applications, hostile environments, exploration tasks, or in the aiding
of disabled people. An autonomous robot needs to be flexible enough to cope with an
environment that is incompletely known and imperfectly modeled, when using sensors
which might be noisy or even defective. Plainly, the number of possible errors in a
real-life task is nearly infinite.

A useful strategy to create robust behavior is to divide complex actions into ac-
tion primitives which only perform specialized tasks like avoiding obstacles or moving
ahead, and then combine them again for the creation of higher levels of competence
(Brooks [1]). Our approach uses a learning robot. The goal here is to have a robot
that:

e can learn certain action primitives and a control structure and combine these to
create complex behavior.

e is able to do this learning in real time, on—line.

e is fault-tolerant recovering after recognizing an error, always being able to act in
a robust way in an otherwise unknown or only partially known environment.

e operates with an extendable system which adapts to changes, such as new action
primitives.

Figure 1: The Swiss robot system KHEPERA. The diameter is 6 ¢cm and
its height is 4 ¢cm, depending on how many expansion turrets are
installed (none in this Figure).

For this purpose we implemented a variant of a genetic programming system called
a compiling genetic programming system (CGPS) which uses different fitness functions
for all its tasks. It creates binary machine code programs that fulfill the respective
fitness criteria.

COMPILING GENETIC PROGRAMMING

The Compiling Genetic Programming System [5, 7, 8] is based on the Genetic Pro-
gramming paradigm of John Koza [4]. The system generates machine code for SUN
workstations by directly manipulating binary code with genetic operators. It has
been shown to have several advantages when compared to another adaptive technique,
neural networks. It is frequently faster, requires less memory and has good gener-
alization capabilities [6]. It also produces output in a more symbolic form which is
beneficial when trying to analyse why the robot behaves in a certain way. The system
already previously proved to work for the complex task of a robot evolving obstacle
avoiding behavior [9].

The method uses a stochastic sampling of the environment [9, 10] where randomly
selected individuals compete against each other in a tournament selection procedure
in different situations which could result in an “unfair“ competition. However, in the
long term the better performing individuals survive.

More precisely, the GP system randomly takes four individuals of the same popu-
lation ! and performs the following steps on every individual:

e Feed sensory values to one of the individuals in the tournament.
o Execute the individual and store the resulting value.

e Compute fitness.

After all steps the system computes the winners of the matches of individual 1
against individual 2 and of individual 3 against individual 4. Mutated and recombined
versions of the winners then replace the losers as new individuals. This execution
cycle is identical for all the action primitives and for the action selection mechanism.
However, the action selection mechanism operates on a ten times slower time scale.

1We use separate populations of individuals with different fitness criteria for each of the tasks

Sensor readings
!

Action selection

: TN Fitness
% apl| | ap2| | ap3| | ap4
Nl o
motor O | | motor 1

Figure 2: Data flow and architecture of the robot operating system.
THE ROBOT EXPERIMENT

The experimental environment consists of a black floor with moveable white walls so it
can be changed easily to test the features and capabilities of the system. Walls can be
rearranged and fixed with velcro fly. The walls provide good reflection for the robot’s
sensors. The GP system runs fully on the Khepera robot (see Figure 1, [3]) which has
a simple multitasking operating system onboard.

The goal of the controlling GP system is to evolve several simple behaviors in
a sense—think—act context. The controlling algorithm has a small population size,
typically less than 40 individuals. The individuals of every species use selected values
from the robot’s sensors (8 ambient light, 8 reflected light, two measured motor speed,
two distance traveled) as input and produce two motor speeds as output. The action
selection population also uses the fitness values of the action primitives last computed.

The robot’s GP system possesses five populations for the action primitives and the
control structure:

GO AHEAD : the robot learns to move straight ahead at maximum speed.
AVOID OBSTACLE : the robot avoids obstacles at a learned maximum speed.
SEEK OBSTACLE : the inverse of AVOID OBSTACLE, usetul to create wall fol-

lowing behavior. Wall following would be an oscillating task switching between
obstacle avoidance and obstacle seeking.

FIND DARK : the robot searches for a dark gradient to head towards.
SELECT ACTION : this population contains functions which select one of the

above action primitives.

The parameters for the GP system are shown in Table 1.

When the robot starts learning, the system feeds the required data and sensor read-
ings into the input register space of the action selection mechanism population. Four
individuals are selected for the action selection tournament. Every chosen individual
selects one of the four action primitives. Again required values are copied into the GP
register space and the tournament for an action primitive starts. The winners replace
the losers and the genetic operators are used. This is done for all selected individuals
from the action selection population. The genetic operators ensure that the offspring

| Parameters | Values |

Objective: Evolve action primitives

Constants (Terminal set): Integers form 0 to 8191

Instructions (Function set): ADD, SUB, MUL, SHL, SHR, XOR, OR, AND
Input registers: 3to6

Output registers: 1 (sometimes interpreted as a vector)
Maximum population size: 36

Crossover probability: 100 percent

Mutation probability: 5 percent

Selection: Tournament selection, size 4
Termination criterion: None

Maximum number of generations: |infinite

Maximum number of instructions: | 256

Table 1: Control parameters of the robot experiments with the CGPS sys-
tem

Figure 3: The experimental setup for the robot. The round spot is the
starting point for the robot and the marked areas are dark places
for the robot to hide in.

is syntactically correct and do not contain any unwanted machine code instructions or
constants. Afterwards the GP system updates the selection population. The overall
architecture is depicted in Figure 2. This mechanism continues forever to allow the
robot to adapt continuously to new situations.

PERFORMANCE OF THE SYSTEM

Performance of the system has been measured in different experiments with the robot.
The tasks were: collision avoidance, wall following and hiding in the dark. For every
task six experiments were done, the best and the worst have not been counted. The
performance of the evolved collision avoidance behavior and the action selection mech-
anism underlying it is shown in Table 2. The robot starts to show effective collision
avoidance behavior after 800 tournament cycles. The second experiment dealt with
the robot’s capability to recognize dark areas in its environment and to stay there.
Here, the performance measurement is the time the robot spends in the dark areas of
its environment which is shown in Figure 3. Results are shown in Table 3.

The high values in the beginning of the evolution are caused by random movement of
the robot in a dark area. The robot stays in the dark for a long time when it accidently
keeps touching the wall while trying to evolve obstacle avoidance. In the end, the time
spent in the dark constantly increases due to the success of the GP system. The next
task for the robot is to follow the walls of the experimental environment. It comprises a
combination of obstacle avoiding and obstacle seeking behavior. This time, we measure
the number of times when the robot exits a narrow space (4 cm) between the robot
and the wall.

Tournament cycles | Average Collisions | Best rate | Worst rate
0 30.25 22 38
100 17.75 9 20
200 13.25 4 24
300 14.25 6 20
400 12.75 5 12
500 7.50 6 9
600 10.25 7 16
700 8.00 2 11
800 6.00 3 8
900 5.75 3 11
1000 6.75 3 10

Table 2: The number of collisions during 100 tournament cycles, phase 0
only uses random programs. In two out of eight random tests the
robot totally locked up in a corner. The learned behavior appears
to be stable after 1000 cycles.

Tournament cycles | Average score
0 8

100 26
200 26.5
300 33.25
400 72.25
500 28.75
600 28
700 44.75
800 53.5
900 52.25
1000 68.25

Table 3: Robot scores during the finding-dark—behavior. The maximum
score is 120 points where one point is scored for every second spent
in the dark. Approximately 120 seconds is the reachable maximum
but the time the robot needs to find the dark is between 10 and 15
seconds. Phase 0 only uses random programs.

RESULTS

After a short period of approximately 4-7 minutes, the robot has learned its action
primitives and shows robust behavior in its test environment. When the robot is
placed into a different environment, it takes about two additional minutes until it has
adapted its behavior, e. g., by adjusting to new reflection properties of the walls. With
the action primitives performing better the selection mechanism improves also. This
requires, however, significantly larger amounts of time, because the fitness values of its
actions are to be fed to the selection tournament: the selection mechanism can never
get a good score without the actions receiving good fitness values in turn.

Our experiments have shown that GP can be a useful approach to robot control.
It is, however, not error—free in every situation, since the robot sometimes touches a
wall before converging again after a change in the environment. One of the advantages
of this system is its property of easily adapting to new situations. A change in the
environment does not cause the robot to need new instructions. Another advantage is
the system’s capability of generalizing what it has seen — the mechanisms emerging in
its behavior would have taken a very long time to be modelled and implemented by
a programmer. These results indicate the feasibility of GP in robotics, for reasons of
speed, hardware needs, adapability and robustness.

FURTHER WORK

Presently, the robot is trained on tasks with low complexity. Our next steps will be to
implement more action primitives in order to test the method more thoroughly. With
more action primitives, more complex behavior is expected to emerge.

In the present version, the system does not use a representation or a model of the
world, following the notion that ”...the world is its own best model. It is always up
to date. It always contains every detail there to be known. The trick is to sense it
appropriately and often enough” ([2]). Whereas this is true for simple actions, Steels
states: 7 Autonomous agents without internal models will always be severely limited”
([11]). For instance, a world model would be essential where path planning is needed.
Also, by adding memory access to our GP system, in addition to the memory provided
by the populations of programs, mapping of the world could become possible.

References

[1] Rodney A. Brooks. A robust layered control system for a mobile robot. [EEE
Journal of Robotics and Automation, 2:14-23, 1986.

[2] Rodney A. Brooks. Why elephants don’t play chess. Robotics and Autonomous
Systems, 6:3-15, 1990.

[3] K-Team. Khepera User Manual. EPFL, Lausanne, 1994.

[4] John R. Koza. Genetic Programming - On the Programming of Computers by the
Means of Natural Selection. MIT Press, Cambridge Mass., 1992.

[5] P. Nordin. Cgps - a compiling genetic programming system that directly manip-
ulates the machine-code. In Advances in Genetic Programming, pages 311-331.

MIT Press, Cambridge, Mass., 1994.

[6] P. Nordin. Comparison of a compiling genetic programming system versus a
connectionist approach. In Handbook of Fvolutionary Computation. Oxtord Uni-
versity Press, to appear, 1997.

[7] P. Nordin and W. Banzhaf. Complexity compression and evolution. In L. Eshel-
man, editor, Proceedings of the Sixth International Conference of Genetic Al-
gorithms, pages 310—317, San Mateo, CA, 1995. Morgan Kaufmann.

[8] P. Nordin and W. Banzhaf. Evolving turing-complete programs for a register
machine with self-modifying code. In L. Eshelman, editor, Proceedings of the Sizth
International Conference of Genetic Algorithms, pages 318—325, San Mateo, CA,
1995. Morgan Kaufmann.

[9] P. Nordin and W. Banzhaf. Genetic programming controlling a miniature robot
in real time. Technical Report 4/95, Department of Computer Science, University

of Dortmund, 1995.

[10] P. Nordin and W. Banzhaf. Real time evolution of behavior and a world model for
a miniature robot using genetic programming. Technical Report 5/95, Department
of Computer Science, University of Dortmund, 1995.

[11] Luc Steels. Exploiting analogical representations. Robotics and Autonomous Sys-

tems, 6:71-88, 1990.

