
Self-Improvement for the ADATE Automatic Programming System

Roland Olsson

Computer Science Dept.
�stfold College

1750 HALDEN, Norway
Roland.Olsson@hiof.no

+47 69215369
http://www-ia.hiof.no/�rolando

Brock Wilcox

Northern Arizona University
NAU Box 8087

Flagsta�, AZ 86011, USA
rbw3@cet.nau.edu
928 - 523 - 4903

Automatic Design of Algorithms Through Evolution
(ADATE) [2] is a system for automatic programming
based on the neutral theory of evolution [1] . This
theory states that the majority of molecular changes
in evolution are due to neutral or almost neutral mu-
tations. A consequence is that most of the variabil-
ity and polymorphism within a species comes from
mutation-driven drift of alleles that are selectively neu-
tral or nearly neutral. In ADATE, as well as in natural
evolution, neutral walks in genotype space are essential
for avoiding combinatorial explosions due to complex
mutations.

The compound transformations in ADATE were de-
signed according to this model of transition from one
species to the next. In ADATE, the �rst part of a com-
pound program transformation is the neutral walk and
the typically small second part is the brutal mutation.

We have taken aim at using ADATE to improve it-
self by evolving better transition (neutral transforms
and mutations) operators. There are many di�erent
paths to self-improvement of these transition opera-
tors. We explore two such methods which we've called
SIG-reshaping and SIG-rewriting.

SIG-rewriting is the automatic synthesis of semantics-
preserving rewriting rules that are employed for neu-
tral random walks. Such rules increase the number of
connections in a neutral network and thereby also the
number of genotypes reachable through a neutral walk
without �tness computation.

Since ADATE is optimized to exploit neutrality, it is
more diÆcult to improve ADATE using SIG-rewriting.
An advantage of automatically synthesized rewrite
rules, however, is that they can be optimized to the
speci�c problem in a way that could not be anticipated
when we designed ADATE. Employing several synthe-
sized rewriting rules in ADATE showed no signi�cant
performance increase.

The primary goal of SIG-reshaping is to alter the
distribution of synthesized (mutated) expressions so
that they cover as many equivalence classes as possi-
ble. For example synthesizing and using both E and
not(not(E)) or both or(E1,E2) and or(E2,E1) for
arbitrary boolean expressions E, E1 and E2 may be a
waste of time. SIG-reshaping synthesizes an accep-
tance predicate that determines if a given synthesized
expression is used.

The �tness function used in our experiments requires
that a synthesized acceptance predicate accepts at
least one minimum size expression in each equivalence
class and rejects as many other expressions as possi-
ble. Given this �tness function ADATE generated an
acceptance predicate that rejects 999 out of the 1055
expressions of size �ve or less consisting of not, and,
or, false, true and three variables X1, X2, X3 { while
still accepting at least one minimum size member of
each class.

SIG-reshaping has demonstrated some self-
improvement. After generating an acceptance
predicate for boolean expressions, limiting the use of
equivalent expressions, the predicate was tested on
four, �ve, and six bit xor problems. Comparing the
results with and without the predicate indicate that
self-improvement has occurred.

Our web site contains an ADATE speci�cation �le for
SIG-reshaping as well as the source code of ADATE
itself, which should make it easy to reproduce our re-
sults.

References

[1] J.L. King and T. H. Jukes (1969). Non-Darwinian
evolution. Science 164 : 788{798.

[2] J. R. Olsson (1995). Inductive functional pro-
gramming using incremental program transforma-
tion. Arti�cial Intelligence. Vol. 74, No. 1, 55{83.


