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A comparison between four Genetic Programming techniques is presented
in this paper. The compared methods are Multi-Expression Program-
ming, Gene Expression Programming, Grammatical Evolution, and Lin-
ear Genetic Programming. The comparison includes all aspects of the
considered evolutionary algorithms: individual representation, fitness as-
signment, genetic operators, and evolutionary scheme. Several numerical
experiments using five benchmarking problems are carried out. Two test
problems are taken from PROBEN1 and contain real-world data. The
results reveal that Multi-Expression Programming has the best overall
behavior for the considered test problems, closely followed by Linear
Genetic Programming.

1. Introduction

Genetic Programming (GP) [1, 2] is an evolutionary technique used for
breeding a population of computer programs. GP individuals are repre-
sented and manipulated as nonlinear entities, usually trees. A particular
GP subdomain consists of evolving mathematical expressions. In that
case the evolved program is a mathematical expression, program execu-
tion means evaluating that expression, and the output of the program
is usually the value of the expression.

Several linear variants of GP have recently been proposed. Some of
them are: Multi-Expression Programming (MEP)1 [3, 4], Grammatical
Evolution (GE) [5, 6], Gene Expression Programming (GEP) [7], Linear
Genetic Programming (LGP) [8, 9], Cartesian Genetic Programming
(CGP) [10], and Genetic Algorithm for Deriving Software (GADS) [11].

All mentioned GP variants make a clear distinction between the geno-
type and the phenotype of an individual [12]. Thus, the individuals are
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represented as linear entities (strings) that are decoded and expressed
like nonlinear entities (trees).

In this paper, a systematic comparison of four GP techniques for
solving symbolic regression problems is provided. The compared meth-
ods are MEP, GEP, GE, and LGP. The comparison includes all aspects
of the considered evolutionary techniques: individual representation,
genetic operators, fitness assignment, exception handling, and evolu-
tionary scheme.

Several numerical experiments using MEP, GEP, GE, and LGP are car-
ried out. Five difficult test problems are used for comparing the methods.
Three test problems are artificially constructed and two test problems
contain real-world data that have been taken from PROBEN1 [13].

The relationship between the success rate and the population size and
the number of generations is analyzed for the artificially constructed
problems.

For the real-world problems the mean of the absolute differences
between the expected output value and the value obtained by the best
individual over 100 runs is reported.

The results obtained reveal that MEP has the best overall behavior
on the considered test problems, closely followed by LGP.

The paper is organized as follows. The representation of MEP, LGP,
GE, and GEP individuals is described in section 2. Advantages and
shortcomings of each representation are described in detail in this sec-
tion. Section 3 discusses the selection strategies used in conjunction with
the considered algorithms. Genetic operators employed by each algo-
rithm are presented in section 4. Section 5 describes the evolutionary
schemes used by each algorithm. The formulae used for computing the
fitness of each individual are presented in section 6. The mechanisms
used for handling the exceptions are presented in section 7. Several
numerical experiments are performed in section 8.

2. Individual representation

In this section, individual representations are compared. GEP, GE, and
LGP encode a single solution, while MEP encodes multiple solutions in
a chromosome.

GEP, MEP, and LGP use integer and real numbers for individual
encoding while GE uses binary strings for encoding rules of a Backus–
Naur form grammar.

A GEP chromosome consists of several genes linked by the symbols
# or !. A GEP gene has the same functionality as a MEP, LGP, or GE
chromosome.

2.1 Multi-Expression Programming

MEP representation [3, 4] is similar to the way in which C and Pascal
compilers translate mathematical expressions into machine code [14].
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MEP genes are substrings of a variable length. The chromosome length
is constant and equal to the number of genes in that chromosome.
Each gene encodes a terminal or a function symbol. A gene encoding
a function includes pointers towards the function arguments. Function
parameters always have indices of lower values than the position of that
function in the chromosome.

According to this representation scheme, the first symbol of the chro-
mosome must be a terminal symbol.

Example
An example of a CMEP chromosome is given below. Numbers to the left
stand for gene labels, or memory addresses. Labels do not belong to the
chromosome. They are provided only for explanatory purposes.

1 $ a
2 $ b
3 $ #1, 2
4 $ c
5 $ d
6 $ #4, 5

When MEP individuals are translated into computer programs (ex-
pressions) they are read top-down starting with the first position. A
terminal symbol specifies a simple expression. A function symbol spec-
ifies a complex expression (made up by linking the operands specified
by the argument positions with the current function symbol).

For instance, genes 1, 2, 4, and 5 in the previous example encode sim-
ple expressions composed of a single terminal symbol. The expressions
associated with genes 1, 2, 4, and 5 are:

E1 % a
E2 % b
E4 % c
E5 % d.

Gene 3 indicates the operation # on the operands located in positions
1 and 2 of the chromosome. Therefore gene 3 encodes the expression:

E3 % a # b.

Gene 6 indicates the operation # on the operands located in positions
4 and 5. Therefore gene 6 encodes the expression:

E6 % c # d.

There is neither practical nor theoretical evidence that one of these
expressions is better than the others. Moreover, Wolpert and Macready
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[15] proved that we cannot use the search algorithm’s behavior so far, for
a particular test function, to predict its future behavior on that function.
This is why each MEP chromosome is allowed to encode a number of
expressions equal to the chromosome length (number of genes).

The expression associated with each position is obtained by reading
the chromosome bottom-up from the current position and following the
links provided by the function pointers.

The maximum number of symbols in a MEP chromosome is given
by the formula:

Number of Symbols % (N # 1)Number of Genes &N,

where N is the number of arguments of the function symbol with the
greatest number of arguments.

2.1.1 Multi-Expression Programming strengths
A GP chromosome generally encodes a single expression (computer
program). By contrast, a MEP chromosome encodes several expressions
(it allows representing multiple solutions). The best of the encoded
expressions is chosen to represent the chromosome (by supplying the
fitness of the individual). When more than one gene shares the best
fitness, the first detected is chosen to represent the chromosome.

When solving symbolic regression problems, the MEP chromosome
decoding process has the same complexity as other techniques such as
GE and GEP (see [3] and section 6.5 this paper).

The Multi-Expression chromosome has some advantages over the
Single-Expression chromosome especially when the complexity of the
target expression is not known (see the numerical experiments). This
feature also acts as a provider of variable-length expressions. Other
techniques (such as GE or LGP) employ special genetic operators (which
insert or remove chromosome parts) to achieve such a complex func-
tionality.

The expression encoded in a MEP chromosome may have exponential
length when the chromosome has polynomial length. For instance the
expression:

E % a ! a !! ! a"###########$###########%
2n

,

can be encoded by the following chromosome (it is assumed that the
terminal set is T % 'a( and the function set is F % '#,&, !, /():

1 $ a
2 $ !1, 1
3 $ !2, 2
!
n $ !n & 1, n & 1.
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Thus, an expression of exponential length (2n symbols) is encoded in
a chromosome of polynomial length (3n & 2 symbols). This is possible
by repeatedly using the same subexpression in a larger (sub)expression
(code-reuse).

The code-reuse ability is not employed by the GEP technique but it is
used by LGP. The code-reuse ability is similar to Automatically Defined
Functions (ADFs) [1, 2], a mechanism of GP.

2.1.2 Multi-Expression Programming weaknesses
If code-reuse ability is not utilized, the number of symbols in a MEP
chromosome is usually three times greater than the number of symbols
in a GEP or GE chromosome encoding the same expression.

There are problems where the complexity of the MEP decoding pro-
cess is higher than the complexity of the GE, GEP, and LGP decoding
processes. This situation usually arises when the set of training data is
not a priori known (e.g., when game strategies are evolved).

2.2 Gene Expression Programming

GEP [7] uses linear chromosomes that store expressions in breadth-
first form. A GEP gene is a string of terminal and function symbols.
GEP genes are composed of a head and a tail. The head contains both
function and terminal symbols. The tail may contain terminal symbols
only.

For each problem the head length (denoted h) is chosen by the user.
The tail length (denoted by t) is evaluated by:

t % (n & 1)h # 1,

where n is the number of arguments of the function with more argu-
ments.

Let us consider a gene made up of symbols in the sets F and T:

F % '!, /,#,&(.
T % 'a, b(.

In this case n % 2. If we choose h % 10, then we get t % 11, and the
length of the gene is 10 # 11 % 21. Such a gene is given below:

CGEP % # ! ab & #aab # ababbbababb.

The expression encoded by the gene CGEP is:

E % a # b ! ((a # b) & a).

GEP genes may be linked by a function symbol in order to obtain a
fully functional chromosome. In the current version of GEP the linking
functions for algebraic expressions are addition and multiplication. A
single type of function is used for linking multiple genes.

Complex Systems, 14 (2003) 285–313



290 M. Oltean and C. Groşan

2.2.1 Gene Expression Programming strengths
The separation of the GEP chromosome in two parts (head and tail),
each of them containing specific symbols, provides an original and very
efficient way of encoding syntactically correct computer programs.

2.2.2 Gene Expression Programming weaknesses
There are some problems regarding multigenic chromosomes. Gener-
ally, it is not a good idea to assume that the genes may be linked either
by addition or by multiplication. Providing a particular linking op-
erator means providing partial information to the expression which is
discovered. But, if all the operators '#,&, !, /( are used as linking opera-
tors, then the complexity of the problem substantially grows (since the
problem of determining how to mix these operators with the genes is as
difficult as the initial problem).

Furthermore, the number of genes in the GEP multigenic chromo-
some raises a problem. As can be seen in [7], the success rate of GEP
increases with the number of genes in the chromosome. But, after a
certain value, the success rate decreases if the number of genes in the
chromosome is increased. This happens because we cannot force a
complex chromosome to encode a less complex expression.

A large part of the chromosome is unused if the target expression is
short and the head length is large. Note that this problem arises usually
in systems that employ chromosomes with a fixed length.

2.3 Grammatical Evolution

GE [5, 6] uses the Backus–Naur form (BNF) to express computer pro-
grams. BNF is a notation that allows a computer program to be ex-
pressed as a grammar.

A BNF grammar consists of terminal and nonterminal symbols.
Grammar symbols may be rewritten in other terminal and nontermi-
nal symbols.

Each GE individual is a variable-length binary string that contains
the necessary information for selecting a production rule from a BNF
grammar in its codons (groups of eight bits).

An example from a BNF grammar is given by the following produc-
tion rules:

S $$% expr) (0)
if-stmt) (1)
loop. (2)

These production rules state that the start symbol S can be replaced (re-
written) either by one of the nonterminals (expr or if-stmt), or by loop.

The grammar is used in a generative process to construct a program
by applying production rules, selected by the genome, beginning with
the start symbol of the grammar.
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In order to select a GE production rule, the next codon value on the
genome is generated and placed in the following formula:

Rule % Codon Value MOD Num Rules.

If the next Codon integer value is four, knowing that we have three
rules to select from, as in the example above, we get 4 MOD 3 % 1.

Therefore, S will be replaced with the nonterminal if-stmt, corre-
sponding to the second production rule.

Beginning from the left side of the genome codon, integer values are
generated and used for selecting rules from the BNF grammar, until one
of the following situations arises.

1. A complete program is generated. This occurs when all the nonterminals
in the expression being mapped are turned into elements from the terminal
set of the BNF grammar.

2. The end of the genome is reached, in which case the wrapping operator
is invoked. This results in the return of the genome reading frame to the
left side of the genome once again. The reading of the codons will then
continue unless a higher threshold representing the maximum number of
wrapping events has occurred during this individual mapping process.

In the case that a threshold on the number of wrapping events is
exceeded and the individual is still incompletely mapped, the mapping
process is halted, and the individual is assigned the lowest possible
fitness value.

Example
Consider the grammar:

G % 'N, T, S, P(,

where the terminal set is:

T % '#,&, !, /, sin, exp, (, )(,

and the nonterminal symbols are:

N % 'expr, op, pre op(.

The start symbol is:

S % <expr>.

The production rules P are:

<expr> $$% <expr><op><expr>) (0)
(<expr><op><expr>)) (1)
<pre op>(<expr>)) (2)
<var>. (3)
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<op> $$% #) (0)
&) (1)
!) (2)
/. (3)

<pre op> $$% sin ) (0)
exp . (1)

Here is an example of a GE chromosome:

CGE % 000000000000001000000001000000110000001000000011.

Translated into GE codons, the chromosome is:

CGE % 0, 2, 1, 3, 2, 3.

This chromosome is translated into the expression:

E % exp(x) ! x.

2.3.1 Grammatical Evolution strengths
Using the BNF grammars for specifying a chromosome provides a natu-
ral way of evolving programs written in programming languages whose
instructions may be expressed as BNF rules.

The wrapping operator provides a very original way of translating
short chromosomes into very long expressions. Wrapping also provides
an efficient way of avoiding invalid expressions.

2.3.2 Grammatical Evolution weaknesses
The GE mapping process also has some disadvantages. Wrapping may
never end in some situations. For instance, consider the GGE grammar
defined earlier. In these conditions the chromosome

C*GE % 0, 0, 0, 0, 0

cannot be translated into a valid expression because it does not contain
operands. To prevent infinite cycling, a fixed number of wrapping
occurrences is allowed. If this threshold is exceeded the expression
obtained is incorrect and the corresponding individual is considered to
be invalid.

Since the debate regarding the supremacy of binary encoding over
integer encoding has not finished yet, we cannot say which one is better.
However, as the translation from binary representations to integer/real
representations takes some time we suspect that the GE system is a little
slower than other GP techniques that use integer representation.

2.4 Linear Genetic Programming

LGP [8, 9] uses a specific linear representation of computer programs.
Instead of the tree-based GP expressions of a functional programming
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language (like LISP) programs of an imperative language (like C) are
evolved.

A LGP individual is represented by a variable-length sequence of
simple C language instructions. Instructions operate on one or two
indexed variables (registers) r, or on constants c from predefined sets.
The result is assigned to a destination register, for example, ri % rj ! c.

Here is an example LGP program.

void LGP(double v[8])
{
v[0] = v[5] + 73;
v[7] = v[3] – 59;
if (v[1] > 0)
if (v[5] > 21)
v[4] = v[2] ! v[1];
v[2] = v[5] + v[4];
v[6] = v[7] ! 25;
v[6] = v[4] – 4;
v[1] = sin(v[6]);
if (v[0] > v[1])
v[3] = v[5] ! v[5];
v[7] = v[6] ! 2;
v[5] = v[7] + 115;
if (v[1] <% v[6])
v[1] = sin(v[7]);
}

A LGP can be turned into a functional representation by successive
replacements of variables starting with the last effective instruction.

The maximum number of symbols in a LGP chromosome is four
times the number of instructions.

2.4.1 Linear Genetic Programming strengths
Evolving programs in a low-level language allows us to run those pro-
grams directly on the computer processor, thus avoiding the need of
an interpreter. In this way the computer program can be evolved very
quickly.

2.4.2 Linear Genetic Programming weaknesses
An important LGP parameter is the number of registers used by a chro-
mosome. The number of registers is usually equal to the number of
attributes of the problem. If the problem has only one attribute, it is
impossible to obtain a complex expression such as the quartic polyno-
mial (see [1] and section 8 of this paper). In that case we have to use
several supplementary registers. The number of supplementary regis-
ters depends on the complexity of the expression being discovered. An
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inappropriate choice can have disastrous effects on the program being
evolved.

2.5 Discussion on individual representation

One of the most common problems that arises in a GP system is “bloat”
[16], that is, the tendency of GP individuals to grow in size without
increasing in quality [17]. Bloat slows down the evolutionary search
and takes a lot of memory, making unprotected GP systems useless after
only a few generations. Several mechanisms for preventing bloat have
been proposed. Two of them are: maximal depth restriction [1] and
parsimony pressure [17].

To avoid bloat, MEP and GEP use fixed-length chromosomes. LGP
uses variable-size chromosomes that are limited to a maximum number
of instructions (genes). Standard GE does not use any mechanism to
prevent bloat. However, in order to provide a fair comparison, in all of
the experiments performed in this paper, the size of the GE chromosomes
has been limited to the same number of symbols employed by the MEP,
GEP, and LGP techniques.

3. Selection

Several selection strategies (e.g., binary tournament or roulette wheel)
have been tested with the considered techniques. GEP has been tested
[7] with a special selection strategy that reduces the selection range as
the search process advances.

However, in order to provide a fair comparison, in all experiments
performed in this paper MEP, GE, LGP, and GEP use the same binary
tournament selection strategy.

4. Genetic operators

In this section, genetic operators used with MEP, GEP, GE, and LGP
are described. By applying specific genetic operators MEP, GEP, and
LGP offspring are always syntactically correct expressions (computer
programs). GE offspring may sometimes encode invalid individuals
that are generated by an incomplete mapping process.

4.1 Multi-Expression Programming

The search operators used within the MEP algorithm are recombina-
tion and mutation. These search operators preserve the chromosome
structure. All of the offspring are syntactically correct expressions.

4.1.1 Recombination
By recombination, two parents exchange genetic materials in order to
obtain two offspring. Several variants of recombination have been
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considered and tested within our MEP implementation: one-point re-
combination, two-point recombination, and uniform recombination.
One-point recombination is used in the experiments performed in this
paper. By applying the recombination operator, one crossover point
is randomly chosen and the parents exchange the sequences after the
crossover point.

4.1.2 Mutation
Every MEP gene may be subject to mutation. The first gene of a chro-
mosome must encode a terminal symbol in order to preserve the consis-
tency of the chromosome. There is no restriction in symbols changing
for other genes.

If the current gene encodes a terminal symbol it may be changed into
another terminal symbol or into a function symbol. In the latter case,
the positions indicating the function arguments are also generated by
mutation.

If the current gene encodes a function, the former may be mutated
into a terminal symbol or into another function (function symbol and
pointers towards arguments).

4.2 Gene Expression Programming

Chromosomes are modified by mutation, transposition, root transposi-
tion, gene transposition, gene recombination, one-point recombination,
and two-point recombination. A detailed description of the GEP genetic
operators can be found in [7]. The one-point recombination and point
mutation operators are the only ones used and described in this paper.

4.2.1 Recombination
The one-point recombination operator in the GEP representation is
analogous to the corresponding binary representation operator. Two
parents and one cut-point are chosen. Two offspring are obtained from
the parents, by exchanging genetic material according to the cut-point.

4.2.2 Mutation
Any symbol may be changed with any other symbol in the head of
the chromosome. Terminal symbols may only be changed into other
terminal symbols in the chromosome’s tail.

4.3 Grammatical Evolution

Standard binary genetic operators (point mutation and two-point cross-
over) are used with GE [5]. GE also makes use of a duplication operator
that duplicates a random number of codons and inserts them into the
penultimate codon position on the genome.
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4.4 Linear Genetic Programming

The variation operators are crossover and mutation.

4.4.1 Recombination
LGP uses two-point string crossover [8]. A segment of random position
and random length is selected in both parents and exchanged between
them. If one of the resulting offspring would exceed the maximum
length, crossover is abandoned and restarted by exchanging equally-
sized segments.

4.4.2 Mutation
An operand or an operator of an instruction is changed by mutation
into another symbol over the same set.

LGP also employs a special kind of mutation (called macro mutation)
which deletes or inserts an entire instruction.

5. Evolutionary scheme

In this section, the evolutionary algorithms employed by MEP, GEP,
GE, and LGP are described. All the considered algorithms start with
a randomly chosen population of individuals. Each individual in the
current population is evaluated by using a fitness function that depends
on the problem being solved.

5.1 Multi-Expression Programming

MEP uses a steady-state [18] evolutionary scheme. The initial popu-
lation is randomly generated. The following steps are repeated until a
termination criterion is reached: two parents are selected (out of four
individuals) using binary tournament and are recombined in order to
obtain two offspring. The offspring are considered for mutation. The
best offspring replaces the worst individual in the current population if
the offspring is better than the latter.

5.2 Gene Expression Programming

GEP uses a generational algorithm. The initial population is randomly
generated. The following steps are repeated until a termination criterion
is reached: A fixed number of the best individuals enter the next gen-
eration (elitism). The mating pool is filled by using binary tournament
selection. The individuals from the mating pool are randomly paired
and recombined. Two offspring are obtained by recombining two par-
ents. The offspring are mutated and they enter the next generation.

5.3 Grammatical Evolution

GE uses a steady-state [18] algorithm (similar to the MEP algorithm).
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5.4 Linear Genetic Programming

LGP uses a modified steady-state algorithm. The initial population
is randomly generated. The following steps are repeated until a ter-
mination criterion is reached: Four individuals are randomly selected
from the current population. The best two of them are considered the
winners of the tournament and will act as parents. The parents are
recombined and the offspring are mutated and then replace the losers
of the tournament.

6. Fitness assignment

The fitness assignment strategies employed by MEP, GEP, GE, and LGP
are described in this section.

6.1 Multi-Expression Programming

MEP uses a special kind of fitness assignment. The value of each ex-
pression encoded in a chromosome is computed during the individual
evaluation (in concordance to the description given in section 2, a MEP
individual encodes a number of expressions equal to the number of its
genes). This evaluation is performed by reading the chromosome only
once and storing partial results by using dynamic programming [19].
The best expression is chosen to represent the chromosome (i.e., to
assign the fitness of the chromosome).

Thus, the fitness of a MEP chromosome may be computed by using
the formula:

f % min
k%1,L

+,,,-,,,
.

N!
j%1

)Ej &Ok
j )
/,,,0,,,
1

,

where N is the number of fitness cases, Ok
j is the value returned (for

the jth fitness case) by the kth expression encoded in the current chro-
mosome, L is the number of chromosome genes, and Ej is the expected
value for the fitness case j.

6.2 Gene Expression Programming

In [7] the fitness of a GEP chromosome was expressed by the equation:

f %
N!

j%1

(M & )Oj & Ej)),

where M is the selection range (see [7] for more information), Oj is the
value returned by a chromosome for the fitness case j, and Ej is the
expected value for the fitness case j.
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6.3 Grammatical Evolution

The fitness of a GE individual may be computed using the equation:

f %
N!

j%1

()Oj & Ej)),

with the same parameters as above.

6.4 Linear Genetic Programming

The fitness of a LGP individual may be computed by using the equation:

f %
N!

j%1

()Oj & Ej)),

with the same parameters as above.

6.5 The complexity of the fitness assignment process

The complexity of the MEP, GEP, GE, and LGP fitness assignment pro-
cess for solving symbolic regression problems is O(NG), where NG is
the number of genes in a chromosome.

When solving symbolic regression problems, the MEP algorigthm
does not have a higher complexity than the other GP techniques that
encode a single expression in each chromosome [3]. This is due to its
special mechanism used for expression evaluation.

7. Exceptions handling

Exceptions are conditions that require special handling. They can in-
clude errors such as division by zero, overflow and underflow (that arise
when variable storage capacity is exceeded), invalid arguments, and so
on. Exception handling is a mechanism that recognizes and fixes errors.

The exception handling techniques employed by the compared evo-
lutionary algorithms are described in this section.

7.1 Multi-Expression Programming

When a gene generates an exception, that gene is automatically changed
(mutated) into a randomly chosen terminal symbol. In this way no
infertile individual may enter the next generation. This exception han-
dling mechanism allows changing the chromosome structure during the
evaluation process. In this way the value of the currently evaluated gene
is the only one which needs to be recomputed.

When the training examples are divided into three subsets (training,
validation, and test sets [13]) the described exception handling mecha-
nism is used only for the training stage. When applied for the validation
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and test sets the expression may not be changed. If an exception oc-
curs during the evaluation of these subsets it is recommended as the
corresponding gene to return a predefined value (e.g., 1.0).

7.2 Gene Expression Programming

If an instruction contained in a chromosome generates an exception,
that chromosome will be considered invalid and it will receive the lowest
fitness possible.

7.3 Grammatical Evolution

GE uses a protected exception handling mechanism [1]; that is, if a
subexpression generates an exception, the result of that subexpression
will be a predefined (symbolic) value (e.g., for division by zero the
predefined result may be 1.0).

7.4 Linear Genetic Programming

LGP uses a protected exception handling mechanism like that used
by GE.

8. Numerical experiments

Several numerical experiments with MEP, GEP, GE, and LGP are carried
out in this section. Five test problems are chosen for these experiments.
Three of them are artificially constructed. The other two problems con-
tain real-world data and have been taken from PROBEN1 [13] (which
have been adapted from UCI Machine Learning Repository [20]).

Each problem taken from PROBEN1 has three versions. The first one
reflects the task formulation as it was provided by the collectors, and
the other two are random permutations of the examples, simplifying the
problem to one of interpolation.

8.1 Test problems

In this section, five test problems used in the numerical experiments are
described.

T1. Find a function that best satisfies a set of fitness cases generated
by the quartic polynomial [1] function

f1(x) % x4 # x3 # x2 # x.

T2. Find a function that best satisfies a set of fitness cases generated
by the function

f2(x) % sin(x4 # x2).
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T3. Find a function that best satisfies a set of fitness cases generated
by the function

f3(x) % sin(exp(sin(exp(sin(x))))).

The set of fitness cases for these problems was generated using (for
the variable x) 20 randomly chosen values in the interval [0, 10].

T4. Building. The purpose of this problem is to predict the electric
power consumption in a building. The problem was originally designed
for predicting the hourly consumption of hot and cold water and electri-
cal energy based on the date, time of day, outdoor temperature, outdoor
air, humidity, solar radiation, and wind speed. In this paper, the original
problem was split into three subproblems (predicting the consumption
of electrical power, hot water, and cold water) because not all GP tech-
niques are designed for handling multiple outputs of a problem. The
prediction of cold water consumption is the only one considered here.
The other two problems (the prediction of hot water and power con-
sumption) may be handled in a similar manner.

The “Building” problem has 14 inputs restricted to the interval [0, 1].
The data set contains 4208 examples [13].

In PROBEN1 three different variants of each dataset are given con-
cerning the order of the examples. This increases the confidence that
results do not depend on a certain distribution of the data into training,
validation, and test sets. The original problem is called Building1 and
the other two versions are called Building2 and Building3.

T5. Heartac. The purpose of this problem is to predict heart disease.
More specifically we have to compute how many vessels (out of four)
are reduced in diameter by more than 50%. The decision is made based
on personal data such as age, sex, smoking or nonsmoking habits, the
subjective pain descriptions provided by the patient, and the results of
various medical examinations such as blood pressure and electrocardio-
gram results.

The dataset has 35 inputs and contains 303 examples. The data were
provided by the V. A. Medical Center, Long Beach and Cleveland Clinic
Foundation: Robert Detrano, M.D., Ph.D.

The original problem is called Heartac1 and the other two versions
are called Heartac2 and Heartac3.

8.2 General parameter settings

In all the experiments performed in this paper MEP, GEP, and LGP use
the same set of function symbols. The set of function symbols is:

F % '#,&, !, /, sin, exp(.

For the first three test problems the set of terminal symbols is:

T % 'x(.
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and for the real-world problems the terminal set consists of the problem
inputs.

The grammar used by GE is:

GGE % 'N, T, S, P(,

where the terminal set is:

T % '#,&, !, /, sin, exp, (, )(,

and the nonterminal symbols are:

N % 'expr, op, pre op(.

The start symbol is:

S % <expr>.

The production rules P are:

<expr> $$% <expr><op><expr>)
(<expr><op><expr>))
<pre op>(<expr>))
<var>.

<op> $$% #) & ) ! )/.
<pre op> $$% sin)exp.

Binary tournament selection is used in all of the experiments by the
compared techniques.

One-point crossover is used by GEP, MEP, and GE with a probability
of pcross % 0.9. A LGP-specific crossover operator is also applied with
a probability of pcross % 0.9. The mutation probability was set to two
mutations per chromosome. Four supplementary registers were used in
all of the LGP experiments. 100 runs were carried out for all the test
problems.

Since MEP, GEP, GE, and LGP use different chromosome representa-
tions we cannot make a direct comparison based on chromosome length.
Instead we provide a comparison based on the number of symbols in a
chromosome.

The first position of a MEP chromosome is always a terminal symbol.
Thus, the maximum number of symbols in a MEP chromosome is given
by the formula:

Number of Symbols % 3 !Number of Genes & 2.

A GEP chromosome consists of a single gene with head length h.
Thus, the overall number of symbols in a GEP chromosome is (2h # 1).

The GE chromosomes are binary strings. The groups made up of
eight consecutive bits are called codons. The number of symbols in
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Parameter Value
Population size 100
Number of symbols in
chromosome

58 (20 MEP genes, 29 GEP chromosome head
length, 58 GE codons, 15 LGP instructions).

Table 1. Parameters for Experiment 1.

the GE chromosomes is considered to be the number of codons. The
maximum number of symbols in a LGP chromosome is four times the
number of instructions.

Since the GE and LGP individuals have variable length we shall start
with shorter individuals whose length will increase as the search process
advances. The maximum initial number of the GE and LGP symbols
is set to be about 2/3 of the maximum permitted number of symbols
in the GE and LGP chromosomes. The length of the LGP and GE
chromosomes may increase as an effect of the crossover operator [5, 8].
The GEP selection range (see [7] and section 6 this paper) is 100%. Ten
wrappings are allowed for the GE chromosomes.

8.3 Experiment 1

In this experiment, the relationship between the success rate of MEP,
GEP, GE, and LGP algorithms and the number of generations is ana-
lyzed.

The success rate is computed as:

Success rate %
Number of successful runs

Total number of runs
.

The algorithm parameters for MEP, GEP, GE, and LGP are given in
Table 1. The success rate of the MEP, GEP, GE, and LGP algorithms
depending on the number of generations is depicted in Figure 1.

As can be seen in Figure 1, MEP and LGP have the best overall
behavior. For the test problems T1 and T2 MEP has the best success.
LGP has the best behavior for the third test problem and is followed by
MEP. GE and GEP have equally good behaviors for all considered test
problems.

8.4 Experiment 2

In this experiment the relationship between the success rate and the pop-
ulation size is analyzed. The algorithm parameters for this experiment
are given in Table 2. Experiment results are depicted in Figure 2.

MEP and LGP perform better than GE and GEP for all test problems
and for all considered population sizes. For test problem T1 the MEP
success rate is 100% (for all populations larger than 60 individuals).
MEP has the best success rate for the second test problem. GEP and
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Figure 1. The relationship between the success rate and the number of genera-
tions for the test problems T1, T2, and T3. The number of generations varies
between 50 and 500. Results are summed over 100 runs.
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Figure 2. The relationship between the success rate and the population size for
the test problems T1, T2, and T3. The population size varies between 30 and
300. Results are summed over 100 runs.
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Parameter Value
Number of generations 100
Number of symbols in
chromosome

58 symbols (20 MEP genes, 29 GEP chromo-
some head length, 58 GE codons, 15 LGP in-
structions)

Table 2. Parameters for Experiment 2.

GE are not able to solve this problem in a satisfactory manner, having a
success rate of less than 10%. For test problem T3 LGP and MEP have
similar success rates followed by GE.

8.5 Experiment 3

The test problems considered in this experiment are the problems Build-
ing and Heartac taken from PROBEN1 [13]. Each dataset is divided
into three subsets (training set, 50%; validation set, 25%; and test set,
25%) [13].

A method called early stopping is used to avoid overfitting of the
population individuals to the particular training examples used [13].
This method consists of computing the test set performance for that
chromosome having the smallest validation error during the search pro-
cess. The generalization performance will be increased by using early
stopping.

The error function reported in this experiment is:

E % 100
1
N

N!
i%1

""""ei & oi
"""",

where ei is the expected output value (the value that must be predicted),
oi is the obtained value (the value obtained by the best individual) for
the ith example, and N is the number of examples.

The standard deviation of the obtained values (over 100 runs) is also
computed in conjunction with the error. Minimal and maximal error
values of the best individual over all runs are also reported.

Each algorithm uses a population of 100 individuals with 100 sym-
bols (100 GE codons, 34 MEP genes, 49 GEP chromosome head length,
and 25 LGP instructions). 100 runs of 100 generations were carried out
for each algorithm and for each test problem.

The results obtained by MEP, GEP, GE, and LGP are presented in
Tables 3 (for the training set), 4 (for the validation set), and 5 (for the
test set).

MEP and LGP have the best mean values for the training, validation,
and test sets. However, MEP has the best mean error for the test set
thus providing the best generalization ability. The lowest maximal and
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Algorithm
Training set
Mean StdDev Min Max

Building 1 - cold water consumption
MEP 3.81 0.70 3.19 5.62
GEP 12.59 3.39 6.98 17.98
GE 9.00 3.88 3.57 17.98
LGP 4.53 1.86 2.79 15.24
Building 2 - cold water consumption
MEP 4.00 0.96 3.06 7.56
GEP 13.34 3.14 6.01 16.32
GE 9.26 3.41 3.65 16.32
LGP 4.77 1.70 3.54 7.56
Building 3 - cold water consumption
MEP 4.18 1.28 3.11 7.74
GEP 13.06 3.28 5.91 16.20
GE 8.31 3.02 3.61 16.20
LGP 4.77 1.92 3.57 12.97
Heartac 1
MEP 19.31 1.91 15.47 23.14
GEP 25.12 0.68 22.15 25.30
GE 23.87 2.60 17.51 26.83
LGP 21.50 3.05 16.02 28.22
Heartac 2
MEP 20.01 2.30 15.66 23.57
GEP 23.94 0.19 23.18 24.03
GE 23.21 2.05 18.10 26.30
LGP 22.32 2.83 15.28 26.30
Heartac 3
MEP 18.97 2.42 14.15 23.14
GEP 23.97 0.83 20.90 24.28
GE 22.56 2.74 15.80 28.01
LGP 20.15 3.89 12.96 28.01

Table 3. Results obtained by GEP, MEP, GE, and LGP for the training set. Mean
and StdDev are the mean and the standard deviation of the error for the best
individual error over 100 runs. Min and Max are the minimal and maximal
error values for the best individual over 100 runs. The best values for each
problem have been highlighted.
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Algorithm
Validation set
Mean StdDev Min Max

Building 1 - cold water consumption
MEP 5.12 2.53 2.72 12.16
GEP 10.51 5.56 5.40 22.29
GE 8.19 4.01 3.92 22.29
LGP 4.99 2.20 3.47 18.42
Building 2 - cold water consumption
MEP 4.01 0.93 3.07 7.38
GEP 13.49 3.23 5.80 16.62
GE 9.28 3.55 3.70 16.62
LGP 4.76 1.62 3.45 7.38
Building 3 - cold water consumption
MEP 4.22 1.40 3.03 7.92
GEP 13.12 3.27 5.99 16.28
GE 8.46 2.99 3.59 16.28
LGP 4.86 2.02 3.59 12.90
Heartac 1
MEP 21.97 2.59 17.97 28.53
GEP 26.66 0.07 26.22 26.67
GE 27.25 3.51 19.60 31.89
LGP 23.68 3.10 16.97 28.4
Heartac 2
MEP 19.62 2.19 15.39 24.61
GEP 26.48 1.29 21.30 27.06
GE 23.98 3.91 16.83 32.61
LGP 23.95 4.44 15.24 32.61
Heartac 3
MEP 21.38 1.98 17.66 24.88
GEP 26.32 1.33 22.8 26.86
GE 23.66 2.88 16.25 29.81
LGP 22.91 3.14 16.63 29.81

Table 4. The results obtained by GEP, MEP, GE, and LGP for the validation
set. Mean and StdDev are the mean and the standard deviation of the error
for the best individual error over 100 runs. Min and Max are the minimal and
maximal error values for the best individual over 100 runs. The best values for
each problem have been highlighted.
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Algorithm
Test set
Mean StdDev Min Max

Building 1 - cold water consumption
MEP 4.20 1.17 2.96 10.15
GEP 10.81 5.46 4.00 22.07
GE 7.98 3.79 3.08 22.07
LGP 5.11 2.36 3.09 16.55
Building 2 - cold water consumption
MEP 3.96 0.96 3.25 7.47
GEP 12.97 3.04 5.97 15.88
GE 9.08 3.30 3.60 15.88
LGP 4.73 1.71 3.53 7.47
Building 3 - cold water consumption
MEP 4.42 1.39 3.08 8.03
GEP 13.25 3.29 5.98 16.46
GE 8.62 3.01 3.80 16.46
LGP 5.08 2.03 3.77 12.83
Heartac 1
MEP 16.69 2.63 10.72 22.89
GEP 22.12 0.92 17.88 22.36
GE 22.35 4.74 13.67 28.03
LGP 19.50 3.83 13.19 29.36
Heartac 2
MEP 21.00 2.47 14.04 24.71
GEP 26.60 1.23 23.49 27.36
GE 23.93 2.91 17.89 29.78
LGP 23.69 3.57 13.99 29.78
Heartac 3
MEP 20.80 2.53 17.22 26.46
GEP 23.97 0.22 23.76 25.26
GE 24.78 2.79 17.52 29.86
LGP 22.65 3.03 17.23 29.86

Table 5. The results obtained by GEP, MEP, GE, and LGP for the test set. Mean
and StdDev are the mean and the standard deviation of the error for the best
individual error over 100 runs. Min and Max are the minimal and maximal
error values for the best individual over 100 runs. The best values for each
problem have been highlighted.
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Problem I II III IV
Building 1 MEP LGP(21.66%) GE(90.00%) GEP(157.38%)
Building 2 MEP LGP(19.44%) GE(129.29%) GEP(227.52%)
Building 3 MEP LGP(14.93%) GE(95.02%) GEP(199.77%)
Heartac 1 MEP LGP(16.83%) GEP(32.53%) GE(33.91%)
Heartac 2 MEP LGP(12.80%) GE(13.95%) GEP(26.66%)
Heartac 3 MEP LGP(8.89%) GEP(15.24%) GE(19.13%)

Table 6. A hierarchy of the compared algorithms for the considered test prob-
lems.

MEP - LGP
Problem P-values
Building 1 7E-4
Building 2 1E-4
Building 3 7E-3
Heartac 1 8E-9
Heartac 2 3E-9
Heartac 3 5E-6

Table 7. The P-values (in scientific notation) of the t-test with 99 degrees of
freedom.

minimal error values are obtained by MEP and LGP with very few
exceptions.

In addition to the error values we are also interested in establishing
a hierarchy of the compared algorithms taking into account the mean
values in the test set. Consequently, we compute the difference (in
percent) between the average errors of the best algorithm and the other
three algorithms. The results are presented in Table 6.

In all six cases MEP was ranked as the best algorithm, closely fol-
lowed by LGP. GE was ranked as the third algorithm in four cases and
GEP was ranked as the third one in two cases.

To determine if the differences between MEP and LGP are statistically
significant we use a t-test with 95% confidence. Before applying the t-
test, an f-test was used to determine if the compared data have the same
variance. The P-values of a two-tailed t-test are given in Table 7. It
can be seen that the difference between MEP and LGP is statistically
significant for all of the test problems.

8.6 Discussion of the obtained results

Numerical experiments revealed the following interesting aspects of the
considered algorithms.
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1. MEP has the best overall behavior on the considered test problems. How-
ever, MEP cannot be the best for all test problems. According to the
“no free lunch theorems for search and optimization” [15, 21], several
situations where the other algorithms are better than MEP have been
identified.

2. The systems that use chromosomes of variable length (such as LGP, GE,
and MEP) seem to perform better than the systems that use fixed-length
chromosomes (such as GEP). MEP uses fixed-length chromosomes, but
its ability to store multiple solutions in a single chromosome works as a
provider of variable-length chromosomes.

3. Test problem T2 is the most difficult. For this problem GE and GEP
yield many 0% success rates. We made another numerical experiment
with only GE and GEP. We removed the sin function from the problem
definition and also removed the operators sin and exp from the GEP
function set and from the GE productions. In this case the GEP and
GE performance improved substantially, yielding many success rates over
90%. It seems that adding the sin and exp operators greatly reshaped the
search space. The same very good results have been obtained by GE and
GEP (using the modified set of functions) for the test problem T1.

4. For the real-world problems (Building and Heartac), MEP has the best
results, in terms of mean error, seconded by LGP.

In order to provide a fair comparison several adjustments have been
made to each algorithm, which could lead to some poor behavior. How-
ever, we have to keep in mind that each minor factor (such as the
mutation and crossover probability) could affect the quality of the com-
parison presented in this paper.

There are some modifications that can be made in order to improve
the quality of the considered algorithms. For instance, GE performance
could be improved if we allow chromosomes of any length to appear in
the system. However, this feature could lead to bloat [16]. Another im-
provement to GE can be made by increasing the number of mutations per
chromosome. We increased this number to 20 mutations/chromosome
and obtained, for test problem T1 (using the parameters given in sec-
tion 8.5), a success rate of 21% using a population of 30 individuals
and a success rate of 35% using a population of 60 individuals.

GEP performance could be improved by using the multigenic system.
However, as indicated in section 2.2.2, this system has some weaknesses
and requires multiple trials to find the optimal number of genes in a
chromosome. Another improvement to GEP can be made by setting
the number of symbols in a chromosome to an optimal value. We
reduced this number to eight symbols in the GEP chromosome head and
obtained, for test problem T1 (using the parameters given in section 8.5),
a success rate of 42% using a population of 30 individuals and a success
rate of 49% using a population of 60 individuals. We could not use this
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number of symbols in a chromosome (17) because the corresponding
LGP chromosome would be too short to encode a solution for the
considered test problems.

The performance of the considered algorithms could be improved by
choosing other parameters for the numerical experiments. This could
include the fine tuning of all algorithm parameters for a given problem.
An example is GEP, which has been proved to be quite sensitive to
chromosome length [7]. Other changes could affect the function set (by
extending it with other functions or by reducing it to an optimal subset
of function symbols). As mentioned before, GEP and GE perform very
well for the test problem T1 if we remove the unary operators (sin and
exp) from the function set, respectively from the GE production rules.

Implementation of the algorithm-specific features to other algorithms
would also be of interest. For instance, the multi-expression paradigm
could be implemented and tested within other evolutionary techniques
such GEP, GE, and LGP.

Another reason that MEP and LGP perform better than GE and GEP
could be due to their code-reuse ability. Standard Genetic Program-
ming employs this feature by using the Automatically Defined Functions
(ADFs) mechanism [2].

9. Conclusions and future work

A systematic comparison of four evolutionary techniques for solving
symbolic regression problems has been presented in this paper. All as-
pects of the compared techniques have been analyzed. Several numerical
experiments have been performed using five test problems.

Further efforts will focus on comparing the considered techniques on
the basis of more optimization problems.
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