

# **Genetic Programming: Syntax & Semantics** *Michael O'Neill*







#### Overview

#### **Genetic Programming: Syntax & Semantics**

- 1. Setting the Stage
  - What is Natural Computing?
  - ▶ What is Evolutionary Computation?
  - ► An Introduction to Genetic Programming (GP)
- 2. Grammar-based GP
- 3. Semantic methods & Open Issues in GP











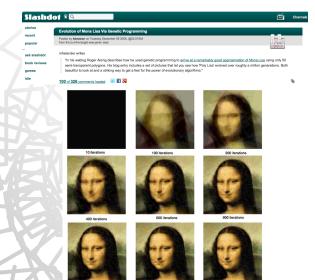
## What is Natural Computing? Simulation & Knowledge Discovery Natural Algorithms Computing

New Book: Brabazon, O'Neill, McGarraghy (2014). Natural Computing Algorithms. Springer.





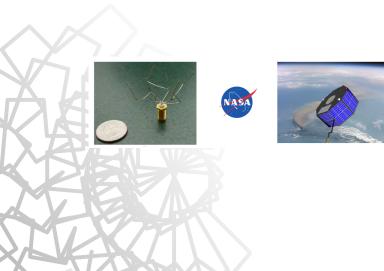
## Natural Computing Algorithms







## Natural Computing Algorithms







#### Simulation of Natural Systems



IBM describes the work in an intriguing paper [pdf] that compares various animal simulations done by its cognitive computing research group in Almaden, Calif. The group has managed to completely simulate the brain of a mouse [512 processors], rat (2,048) and cat (24,576). To rival the cortex inside your head, IBM predicts it will need to hook up 880,000 processors, which it hopes to achieve by 2019.





## Simulation of Natural Systems







## Synthesised Computing

FILED UNDER Science, Alt

#### Scientists build logic gates out of gut bacteria, then hopefully wash their hands

By Sharif Sakr Dosted Oct 24th 2011 1:42AM

where it's needed. So much for Activia

Ever thought about upgrading your PC by breeding more cores? Or planting a few GBs of extra storage out in the vard? Us neither, until we heard that scientists at Imperial College in London have succeeded in building "some of the basic components of digital devices" out of genetically modified E.Coli, We've seen these germs exploited in a similar way before, but Imperial's researchers claim they're the first to make bacterial logic gates that can be fitted together to form more complex gates and potentially whole biological processors. Aside from our strange upgrade fantasies, such processors could one day be implanted into living bodies -- to weed out cancer cells, clean arteries and deliver medication exactly



VIA PhusOra SOURCE Imperial College London DISCUSS

205 people like this. Be the first of your









TAGS AND, bacteria, biological, biological computing, Biological Computing, biology, computing, E.Coli, germ, germs, gut, Imperial college, ImperialCollege, logic, logic gates, LogicGates, NAND, NOT, organic, organic computing, organic processor, OrganicComputing, OrganicProcessor, processor, stomach





## Synthesised Computing



#### Technology Quarterly: Q1 2012 DNA computing

#### Computing with soup

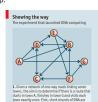
Molecular computing: DNA is sometimes called the software of life. Now it is being used to build computers that can run inside cells

Mar 3rd 2012 | from the print edition

EVER since the advent of the integrated circuit in the 1960s, computing has been synonymous with chips of solid silicon. But some researchers have been taking an alternative approach: building liquid computers using DNA and its cousin RNA, the naturally occurring nucleic-acid molecules that encode genetic information inside cells. Rather than encoding ones and zeroes into high and low voltages that switch transistors on and off, the idea is to use high and low concentrations of these molecules to propagate signals through a kind of computational soup.

Computing with nucleic acids is much slower than using transistors. Unlike silicon chips, however, DNA-based computers could be made smail enough to operate inside cells and control their activity. "If you can programme events at a molecular level in cells, you can cure or kill cells which are sick or in trouble and leave the other ones intact. You cannot do this with electronics," says Luca Cardelli of Microsoft's research centre in Cambridge, England, where the software glant is developing tools for designing molecular circuits.

At the heart of such circuits is Watson-Crick base pairing, the chemical Veicro that binds together the two strands of DNA's double helix. The four chemical "bases" (the letters of the genetic alphabet) that form the rungs of the helix stick together in complementary pairs: A (adenta) with T (thymina), and C



Because a road runs from town A to town B. AB

strands are created. There are no roads between A and C. so no AC or CA strands are created. For each http://ncra.ucd.je





#### Natural Computing Algorithms

#### Sources of inspiration

- Central Nervous System (Neurocomputing);
- Evolution (Evolutionary Computation);
- Molecular Dynamics (Physical and Chemical Computing);
- ► Immune Systems (*Immunocomputing*);
- Social Interaction amongst organisms (Social Computing);
- Language and Developmental Biology (*Developmental and Grammatical Computing*).

Not perfect imitation - exploit salient computational features



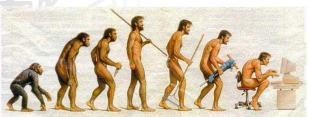


What is Evolutionary Computation?





| Million Years Ago | Event                   |  |  |  |
|-------------------|-------------------------|--|--|--|
| ?                 | Origin of Life          |  |  |  |
| 3500              | Bacteria                |  |  |  |
| 1500              | Eukaryotic Cells        |  |  |  |
| 600               | Multicellular Organisms |  |  |  |
| 1                 | Human Language          |  |  |  |







#### Milestones





Lamarckism or soft-inheritance:

- Passing of lifetime acquired characteristics.
- $\sim 150$ y.a. Charles Darwin:

Theory of Natural Selection:

- Natural vs. Artificial Selection (a.k.a. breeding).
- $\sim 150$ y.a. Gregor Johann Mendel:

Mendelian Inheritance:

- Basis of Modern Genetics.
- ~ 80y.a. **Fisher, Haldane & Wright**:

Population Genetics:

Combined evolution, genetics, and statistical probabilities.

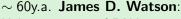






#### Milestones





Helix structure of DNA:

- Watson-Crick base paring of nucleotides.



Helix structure of DNA:

- Watson-Crick base paring of nucleotides.

 $\sim$  40y.a. **Motoo Kimura**:

Neutral Theory of Molecular Evolution:

- Variation at molecular level likely result of genetic drift.

 $\sim$  40y.a. **Richard Lewontin**:

Molecular Diversity:

- Evolution at molecular level.







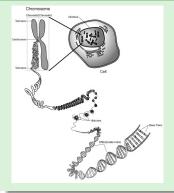
But...

Epigenetics: back to Lamarckism!





#### Genetics



#### Chromosomes:

- composed of Deoxyribonucleic acid:
   Genetic fingerprint of individuals;
- Located in nucleus (eukaryotes) or cytoplasm (prokaryotes);
- Double helix of base pairs: Adenine, Thymine, Guanine and Cytosine;
- Sequence of genes;
- Exons and Introns;
- Genome.

#### Sequence Space

#### Individual

• Chromosome ....AGGCACCGTAGTTTAATAAGGGCTA... • Gene ....AGGCACCGTAGTTTAATAAGGGCTA... • Exon ....AGGCACCGTAGTTTAATAAGGGCTA.... • Intron

....AGGCACCGTAGTTTAATAAGGGCTA...

- Genome
- Genome lives in Sequence Space

| Organism    | Length      |
|-------------|-------------|
| Small Virus | 10000       |
| Bacterium   | 4 Million   |
| Humans      | 3.5 Billion |
|             |             |





#### **Brief History**

- Evolution with computers can be traced back to 1948 (Turing);
- ► First PhD in Computer Science (John Holland, 1959) popularised Genetic Algorithms;

VS.

▶ 1960s:



Genetic Algorithms (Evolutionary Programming)

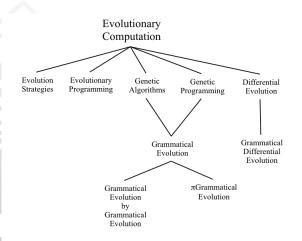


**Evolution Strategies** 

- ▶ 1985: First Conference;
- ▶ 1992: Genetic Programming (1<sup>st</sup> instance 1958!);
- ▶ 1990s: Unified under FC.

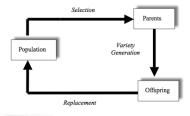












$$x[t+1] = r(v(s(x[t])))$$

#### **Evolutionary Algorithm**

```
Initialise Population;
While (termination condition FALSE):
    select Parents;
    create Offspring;
    Update Population;
```

EndWhile





#### Let's Evolve a Smart Polar Bear



- World's largest carnivore;
- Descendent of Brown Bear Separate evolution for last 4-5 million years;
- Clear/White Fur;
- 4 Legs;
- Furred Soles;
- Broad Forepaws;
- Large and Stocky:
- 1.8-2.5m length (tip of nose to tail);
- 150-800kg.

| Colour   | Legs    | Soles   | Forepaws | Length | Weight  |
|----------|---------|---------|----------|--------|---------|
| White    | 4       | Furred  | 30.4cm   | 2.2m   | 785.4kg |
| Category | Integer | Boolean | Float    | Float  | Float   |





## Polar Bear Example

| Colour | Legs | Soles  | Forepaws | Length | Weight  | Fitness        |
|--------|------|--------|----------|--------|---------|----------------|
| White  | 4    | Furred | 30.4cm   | 2.2m   | 785.4kg | 20 years       |
|        |      |        |          |        |         |                |
| Colour | Legs | Soles  | Forepaws | Length | Weight  | Fitness        |
| Brown  | 4    | Furred | 29.9cm   | 1.1m   | 203.7kg | 3 years        |
| 120    |      |        |          |        |         |                |
| Colour | Legs | Soles  | Forepaws | Length | Weight  | <b>Fitness</b> |
| White  | 4    | No Fur | 15.4cm   | 1.8m   | 771.6kg | 10 years       |

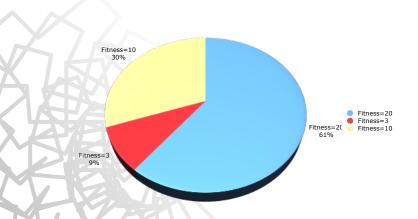
Average Fitness of Population= 11 years

Best Individual Fitness = 20 years





## Polar Bear Example (Selection)







## Polar Bear Example (Variation)

| Parents:<br>Colour | Legs | Soles  | Forepaws | Length | Weight  | Fitness  |
|--------------------|------|--------|----------|--------|---------|----------|
| White              | 4    | Furred | 30.4cm   | 2.2m   | 785.4kg | 20 years |
| Brown              | 4    | Furred | 29.9cm   | 1.1m   | 203.7kg | 3 years  |
| White              | 4    | No Fur | 15.4cm   | 1.8m   | 771.6kg | 10 years |
| Offspring          |      |        |          |        |         |          |
| Colour             | Legs | Soles  | Forepaws | Length | Weight  | Fitness  |
| White              | 4    | Furred | 31.2cm   | 2.2m   | 798.1kg | 23 years |
| White              | 4    | Furred | 29.5cm   | 1.9m   | 778.1kg | 15 years |
| White              | 4    | No Fur | 15.4cm   | 1.7m   | 741.6kg | 7 years  |





## Polar Bear Example (Replacement)

- Several approaches possible;
- Generational population (offspring replace parents).

#### New Population:

| Fitness  | Weight  | Length | Forepaws | Soles  | Legs | Colour |   |
|----------|---------|--------|----------|--------|------|--------|---|
| 23 years | 798.1kg | 2.2m   | 31.2cm   | Furred | 4    | White  |   |
| 15 years | 778.1kg | 1.9m   | 29.5cm   | Furred | 4    | White  |   |
| 7 years  | 741.6kg | 1.7m   | 15.4cm   | No Fur | 4    | White  | V |

Average Fitness of Population= 15 years

Best Individual Fitness = 23 years





#### "Black Art" of EC

- Population-based search;
- Stochastic;
- Design representation;
- Design fitness measure;
- ► Design algorithm (e.g., balanced variety generation operators and selection pressure).





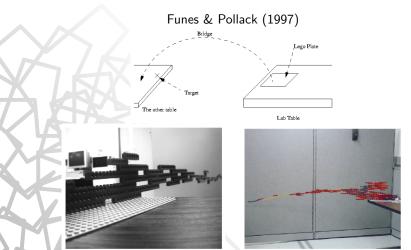
#### **Applications**



- Too many to list!;
- Engineering;
- Design;
- Sound Synthesis;
- Circuit Design;
- Games;
- Financial Modelling;
- Bioinformatics;
- Human-competitive results.

















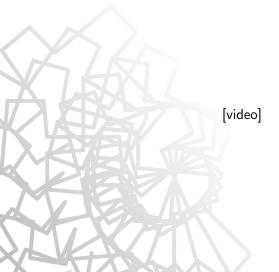












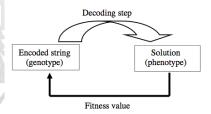




#### Genetic Algorithm

#### Overview

- ► Holland (1975), Goldberg (1989);
- ► Binary String individuals;
- Evolutionary search operates on encoding of solution (genotype);
- ▶ Decoding: genotype-phenotype map.



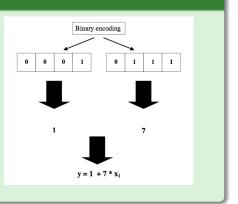




#### Genetic Algorithm

#### Representation

- Fixed-length chromosome;
- Each locus 1 bit;
- Fixed-size genes;
- Encode reals, ints.







Gray Code

000

001

011

010

110

111

101

100

Binary Code

000

001

010

011

100

101

111

## Genetic Algorithm

#### **Encoding**

- Integers (binary vs. gray):
  - $\triangleright$  *n* bits encode  $2^{n-1}$  ints.
- Reals:

$$x = \frac{\text{decoded integer}}{2^{n-1}}$$

▶ Interval 
$$a \rightarrow b$$
:

$$z = a + x(b - a)$$

- Beware of hamming cliffs!
- small phenotype change requires large genotype change

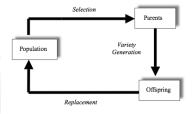
Integer Value

- 3 to 4 requires 3-bit changes
- Gray 1-bit change





#### **Evolutionary Algorithm**



$$x[t+1] = r(v(s(x[t])))$$

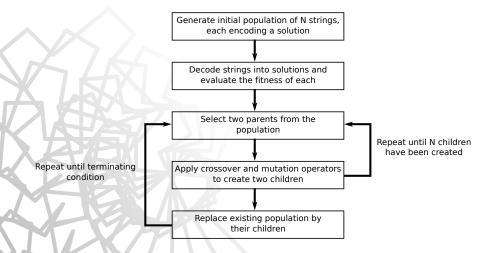
#### Pseudo-code

```
Initialise Population;
While (termination condition FALSE):
    select Parents;
    create Offspring;
    Update Population;
EndWhile
```





# Genetic Algorithm







### Definition

- ► Maximise numbers of 1s in a bit string of length n;
- ightharpoonup Example: n = 8, popsize = 4, ...
- 1. Generate initial population:
  - Randomly assign 1 or 0 to each locus.
- 2. Calculate fitness:
  - ► Count number of 1s.

| Candidate | String   | Fitness |
|-----------|----------|---------|
| А         | 00000110 | 2       |
| В         | 11101110 | 6       |
| С         | 00100000 | 1       |
| D         | 00110100 | 3       |





### **Fitness**

- ► Could normalise and standardise fitness:
  - ▶ Normalise between 0.0 and 1.0;
  - ▶ Standardise 1.0 is best, 0.0 is worst.

| Candidate | String   | Fitness | Normalised Fitness |
|-----------|----------|---------|--------------------|
| A         | 00000110 | 2       | 0.25               |
| В         | 11101110 | 6       | 0.75               |
| C         | 00100000 | 1       | 0.125              |
| D         | 00110100 | 3       | 0.375              |





#### **Selection**

- ► Fitness proportionate selection:
  - Let  $f_i$  = fitness of individual i;
  - ► Average population fitness:

$$\bar{f} = \frac{1}{n} \sum_{i=1}^{N} f_i$$

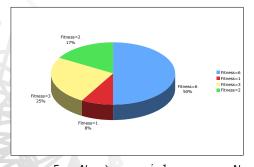
► Individual *j* selected with probability:

$$p_j = \frac{f_j}{\sum_{i=1}^N f_i}$$

| Candidate | String   | Fitness | Normalised Fitness | $p_{j}$ |
|-----------|----------|---------|--------------------|---------|
| A         | 00000110 | 2       | 0.25               | .17     |
| В         | 11101110 | 6       | 0.75               | .50     |
| С         | 00100000 | 1       | 0.125              | .08     |
| D         | 00110100 | 3       | 0.375              | .25     |







$$r \in \left[0, \sum_{i=1}^{N} f_i\right)$$
 
$$\sum_{i=1}^{j-1} f_i \le r < \sum_{i=j}^{N} f_i$$





### **Variation**

3. Select two parents:

| Candidate B | Candidate C |
|-------------|-------------|
| 11101110    | 00100000    |

4. Crossover:

| Candidate E | Candidate F |
|-------------|-------------|
| 01101110    | 10100000    |

5. Mutation:

| Candidate E | Candidate F |
|-------------|-------------|
| 01001110    | 10100000    |





### **Variation**

3. Select two parents:

| Candidate B | Candidate D |
|-------------|-------------|
| 11101110    | 00110100    |

4. Crossover:

| Candidate G | Candidate H |
|-------------|-------------|
| 00111110    | 11100100    |

5. Mutation:

| Candidate G | Candidate H             |
|-------------|-------------------------|
| 10111110    | 11 <mark>0</mark> 00100 |





### Replacement

- ► Generational Replacement Strategy:
- 6. Replace parents with offspring:

| Candidate | String   | Fitness |
|-----------|----------|---------|
| A         | 00000110 | 2       |
| В         | 11101110 | 6       |
| C         | 00100000 | 1       |
| D         | 00110100 | 3       |
|           |          |         |

| Candidate | String   | Fitness |
|-----------|----------|---------|
| E         | 01001110 | 4       |
| F         | 10100000 | 2       |
| G         | 10111110 | 6       |
| Н         | 11000100 | 3       |

7. Unless termination criteria met, go to step 3.





# Exploration vs. Exploitation

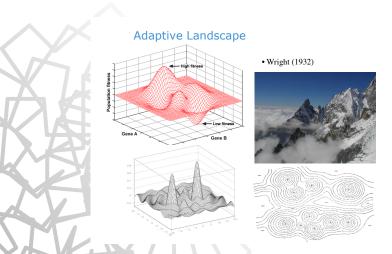
#### Black art of EC

- Careful choice of Selection, Variation and Replacement operators.
- ► Rate of convergence;
- ► Local Optima.





# Exploration vs. Exploitation





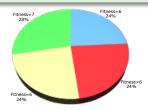


#### Selection

### Roulette Wheel Selection (Fitness Proportionate Selection)

- ► High selection pressure earlier on;
- Premature convergence;
- ► Low selection pressure later:
  - Similar fitness values;
  - Uniform probability of selection;

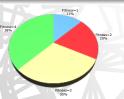




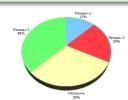
#### Selection

### Rank Selection

- ► Rank from worst to best and calculate rescaled fitness;
- ► Linear ranking:  $f_{\mathsf{rank}} = 2 P + 2 \times (P 1) \times \frac{(\mathsf{rank} 1)}{(n 1)}$
- ► Non-proportional selection.



| Ranking           | 1     | 2   | 3   | 4     |
|-------------------|-------|-----|-----|-------|
| Fitness           | 1//   | 2   | - 3 | 4     |
| $f_{\text{rank}}$ | 0.5   | 0.8 | 1.2 | 1.5   |
| $p_j$             | 0.125 | 0.2 | 0.3 | 0.375 |



| Ranking          | 1            | 2          | 3          | 4            |
|------------------|--------------|------------|------------|--------------|
| Fitness          | 1            | 3          | 6          | 7            |
| $f_{rank}$ $p_j$ | 0.5<br>0.125 | 0.8<br>0.2 | 1.2<br>0.3 | 1.5<br>0.375 |

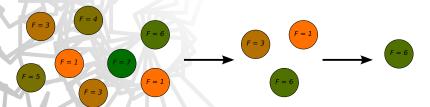




#### Selection

#### Tournament Selection

- ► Select *t* individuals at random;
- ▶ Best of *t* individuals becomes parent.
- ▶ Selection pressure easily adjustable ( $t \in [1..N]$ );
- ► Can force fair tournament and unique parents.







#### Variation

#### **Crossover and Mutation**

- ► Mutation introduces novelty:
  - ► Too little...stuck in local optima;
  - ▶ Too much...random search!
- Crossover should exploit (share) good subsolutions;
- ► Exploration/exploitation balance;
- Adaptive mutation.





### Variation

#### **Alternative Crossover**

▶ 2-point Crossover:

| Parent 1 | Parent 2 |
|----------|----------|
| 11101110 | 00110100 |

► Uniform Crossover:

| Parent 1    | Parent 2    |  |  |
|-------------|-------------|--|--|
| 11101110    | 00110100    |  |  |
| Offspring 1 | Offspring 2 |  |  |
| 11100100    | 00111110    |  |  |





## Replacement

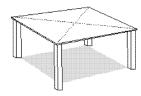
#### **Alternative Replacement**

- ► Generational:
  - Children replace parents;
- Elitism:
  - Keep best fitness individual(s);
  - Generational for remainder.
- Steady-state:
  - $\triangleright$  Sort parents and offspring (2N), choose N best;
  - Can apply at variation operator level:
    - ► Two parents produce two children;
    - Best of four individuals make it to offspring population.







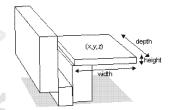


#### **Table**

- ► Consisting of fixed top and four legs defined by:
  - ▶ Length of leg 1, distance of leg 1 from centre;
  - ▶ Length of leg 2, distance of leg 2 from centre;
  - ▶ Length of leg 3, distance of leg 3 from centre;
  - ▶ Length of leg 4, distance of leg 4 from centre.









#### Table

- ► Consisting of several 3-dimensional blocks:
  - ► *x*<sub>1</sub>, *y*<sub>1</sub>, *z*<sub>1</sub>, width<sub>1</sub>, height<sub>1</sub>, depth<sub>1</sub>;
  - ► x<sub>2</sub>, y<sub>2</sub>, z<sub>2</sub>, width<sub>2</sub>, height<sub>2</sub>, depth<sub>2</sub>;
  - **•** .







|                                                                         | Polar Bear |         |         |                  |          |                  |  |  |  |  |
|-------------------------------------------------------------------------|------------|---------|---------|------------------|----------|------------------|--|--|--|--|
|                                                                         | Colour     | Legs    | Soles   | Forepaws         | Length   | Weight           |  |  |  |  |
|                                                                         | White      | 4       | Furred  | 30.4cm           | 2.2m     | 785.4kg          |  |  |  |  |
|                                                                         | Category   | Integer | Boolean | Float            | Float    | Float            |  |  |  |  |
| ١                                                                       | 000        | 0100    | 1       | 0101010011001101 | 11001010 | 1101011001011100 |  |  |  |  |
| $x=rac{	ext{decoded integer}}{2^{n-1}} \qquad a	o b \qquad z=a+x(b-a)$ |            |         |         |                  |          |                  |  |  |  |  |











# Assessing Performance

### Monitoring

- Never draw conclusions from a single run;
- ▶ Use sufficient number of runs (R > 30);
- ▶ Use statistical measures (averages, medians, std. dev. , etc);
- ▶ Record as much data from your population as possible:
  - ▶ Mean, Best, Worst Fitness at each generation;
  - Diversity (genotypes, phenotypes);
  - ► Graph progress of these.
- Use controls:
  - Compare to equivalent Random Search.





#### **GA** Literature

#### Sample of references...

- ► Holland (1975). Adaptation in Natural and Artificial Systems;
- ▶ Goldberg (1989). Genetic Algorithms in Search, Optimization and Machine Learning;
- Mitchell (1996). An Introduction to Genetic Algorithms;
- Fogel D (ed) (1998). Evolutionary Computation: The Fossil Record. IEEE Press;
- Fogel (2000). Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE Press;
- Goldberg (2002). The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer;
- Rothlauf F (2002) Representations for Genetic and Evolutionary Algorithms. Physica-Verlag.