
Methods for Evolving Robust Programs

Liviu Panait and Sean Luke

Department of Computer Science, George Mason University
4400 University Drive MSN 4A5, Fairfax, VA 22030, USA

{lpanait, sean}@cs.gmu.edu
http://www.cs.gmu.edu/∼eclab

Abstract. Many evolutionary computation search spaces require fitness
assessment through the sampling of and generalization over a large set
of possible cases as input. Such spaces seem particularly apropos to Ge-
netic Programming, which notionally searches for computer algorithms
and functions. Most existing research in this area uses ad-hoc approaches
to the sampling task, guided more by intuition than understanding. In
this initial investigation, we compare six approaches to sampling large
training case sets in the context of genetic programming representations.
These approaches include fixed and random samples, and adaptive meth-
ods such as coevolution or fitness sharing. Our results suggest that certain
domain features may lead to the preference of one approach to gener-
alization over others. In particular, coevolution methods are strongly
domain-dependent. We conclude the paper with suggestions for further
investigations to shed more light onto how one might adjust fitness as-
sessment to make various methods more effective.

1 Introduction

The bulk of evolutionary computation has been applied to non-stochastic prob-
lems with a finite set of inputs. Because the problem input space is fixed, the
quality of a candidate solution can often be determined precisely, and often
rapidly. More formally, given a set A of candidate problem solutions, much of
evolutionary computation is typically trying to maximize some function f over
a single fixed context c : Arg Maxa∈A f(a, c).

There are important and notable exceptions to this general trend in EC.
Interestingly, genetic programming has not been one of them. We say that this
is interesting because genetic programming’s notional goal is the development
of computer programs or algorithms which are human competitive. But perhaps
because of the difficulty of the search space, much of the GP community has
focused instead on simple problems with little computational complexity, and
thus needing only a finite, small input context. Even problems like Symbolic
Regression, which technically have an infinite input space, are reduced to a
fixed set of samples. Nonetheless, as computer power increases we expect to see
the community more and more trying to tackle bigger computational challenges,
demanding fixed and variable amounts of internal state, iteration, and recursion.



Often, such more “challenging” algorithmic problems range over an infea-
sibly large set of inputs. By “infeasibly” we mean that the set is so large that
there is no way that the algorithm may be exhaustively tested on every possible
input. In fact many, if not most, common algorithms operate over an infinite
sized set of inputs, and inputs in these sets often differ in size or difficulty. Com-
pare, for example, a function which sorts a single vector of predefined numbers
to a computer algorithm which can sort any vector of any size and content.
More formally we might describe these latter ones as optimization problems:
Arg Maxa∈A f(a, 〈c0, c1, ..., c∞〉). In many cases this optimization may be de-
scribed as a summation: Arg Maxa∈A

∑
∞

i=0 f(a, ci) This class of problems is
challenging because there is no way to prove through empirical exhaustion that
such an algorithm is correct or optimal, simply because the input space is too
large.

Certain “non-algorithms” can fall into this class as well. For example, real-
valued feed-forward systems such as neural networks or symbolic regression trees
may operate over an infinite set of numbers. Additionally, some stateless func-
tions are intended to be repeatedly pulsed to iteratively manipulate an external
world state: a soccer robot might have a simple set of boolean classification
functions to be tested against an infinite number of possible opponent contexts.

As EC has been applied to problems in this class, various techniques for
dealing with generalization over the input space have been proposed and tested.
One such approach, coevolution has also attracted some theoretical attention.
In this paper we will discuss and compare several common approaches to doing
evolutionary computation in the face of large sets of inputs, and will cast them
in the context of genetic programming.

We admit up front two ways in which our methodology will seem odd given
the justifications described earlier. First, none of the problem domains we used
actually has iteration, recursion, or internal state. We chose them instead because
the goal in the study is to compare methods for large input spaces, rather than
introduce new domains. As such we felt it more useful to use common and
readily implementable problem domains relevant to the genetic programming
literature. Second, certain problem domains tested (such as 4-parity) do not
have large input spaces: however these problems do have a property central to
the experiment, namely that a small sample of the input space does not provide
many clues about the input space as a whole.

2 Robustness

In this paper we adopt the term robust and presume, as did [1], that it is synony-
mous with generalizable. In the machine learning community both terms imply
the ability of a hypothesis induced from a set of examples (in our case, the
learned genetic program) to adequately model the entire universe of exemplars
(inputs). In [2], the notion of robustness is also attached to the ability to continue
to perform well despite mutations in the evolved program code (distinguishing



such “genotypic robustness” from generalizability or “phenotypic robustness”).
We will not consider this issue in our study.

How does one go about searching for robustness? If possible, one may begin
by attempting to reduce the input space to a set of “prototypical inputs” which
can be proven to be a sufficient set to learn on. For example, when evolving a
sorting network of size n it is not necessary to sort vectors of all possible integers;
instead it is sufficient to sort all vectors consisting of only zeros and ones [3]. In
many cases, however, this reduction is not possible, not obvious, or insufficient
to reduce the input space to manageable sizes. Beyond this, a learning system
has no choice but to sample the space.

The space may be sampled in a variety of ways. The obvious approach is to
establish a fixed initial random sample which is repeatedly presented until the
system has learned it. A naive variation is to fix the sample to a few input cases
and hope for the best: this is the approach common in Symbolic Regression,
for example. One interesting statistical issue not considered in this paper is the
size of the sample: an extreme approach is to use one input case and evaluate
as many candidate solutions as possible. At the other extreme, excessively large
samples may waste evaluation resources that could be better spent on testing
other potential solutions. We realize that such results may be sensitive to the
sample size and plan to investigate this aspect in the future. For this work, we
decided to fix the sample size to a relatively small fraction of the input space as
we think this will be representative of typical problems.

Another approach is to randomly and uniformly resample the space at each
presentation. This has the benefit of hindering convergence to a predefined set
of exemplars, but a constantly changing input sample can also prevent the can-
didate solutions from having any search gradient. Sampling may also be done
adaptively. There are two popular adaptive methods in the literature. Sharing
methods discount the value of a given input based on how easy it is for the pop-
ulation as a whole to solve it. Coevolutionary methods evolve inputs along with
the candidate solutions: the fitness of an input is based on how many candidate
solutions it stumps.

It has been often the case that robustness was a desirable property for the
end-result of the search process. This property comes however with overwhelming
drawbacks. First, there is little understanding on how to proceed about search-
ing for individuals that exhibit this feature. Second, because a large number of
input cases may be necessary, the search process may require an increased com-
putational time. Third, it is not trivial to test the presence of the property in
the results of the evolutionary process (especially for prohibitively large numbers
of possible inputs). In this paper, we plan to shed some light on the first and
last concerns, while also investigating whether small samples of input cases can
provide enough information for robust programs.

[4] presents a good survey of existing work, as well as an excellent study on
evolving robust programs for the Artificial Ant problem by modifying the ant’s
food trails and creating new ones. [3] coevolves sorting networks with training
sets and obtains a remarkable success in a difficult domain. [5] reports obtaining



more robust programs when using coevolution, but, as we will see later in the
experimental section, this conclusion is strongly domain-dependent. [6] suggests
that adding the inverse size to the fitness increases the generality of evolved
programs, while [7] states that less robust results are obtained when a pref-
erence for smaller programs biases the GP system; [8] further investigates the
relation between evolved program size, generality, and modularity. [9] presents a
method for producing highly parsimonious DAG-based boolean programs which
can generalize using only a small set of the subfunctions and variables in a prob-
lem. Adding noise to the inputs [10] or using multiple fitness sets, augmentation,
and refinement [1] are other approaches to improving robustness of evolved pro-
grams.

3 Evolving Robust Programs

We selected six methods as candidates for our study. All six methods are either
widely used or were reported to have yielded robust results. In our description
of the methods below, we define Err(p, c) to be the error of a program p on the
training case c.

Fixed-Random-Initial (FRI) randomly selects a set c1, ..., cNc
of training cases

beforehand and uses them during the entire run (reported in [11], for example);

program p’s fitness is assessed using the formula 1
Nc

∑Nc

i=1 Err(p, ci). The indi-
viduals are therefore evaluated on just a fixed small subset of all possible input
cases. This has advantages and disadvantages: all individuals are evaluated on
the same inputs, so they can be directly compared in terms of performance;
however, overfitting to a poorly chosen set of inputs could yield poorly perform-
ing individuals. We decided to select a small number of samples and to use the
average for combining the results.

Sample Randomization involves modifying the training cases during the EC run.
Again, program p’s fitness is assessed using the formula 1

Nc

∑Nc

i=1 Err(p, ci), how-
ever the set c1, ..., cNc

is randomized for each individual (Random-Per-Individual
or RPI ) or once per generation (Random-Per-Generation or RPG). The main
advantage of the two methods is that new training cases are introduced all the
time in the search process. However, because of the randomization, it may be dif-
ficult to compare and rank individuals: when performance is assessed on different
training cases, a better individual may do worse just because its training case
was more difficult. Random-Per-Generation was introduced in [12]; Random-Per-
Individual was used, for example, when noise was added to improve robustness
[10].

Coevolution (CVL) helped obtain very robust results for the particular do-
main of evolving sorting networks [3]; instead of having fixed or randomized
training cases, Hillis experimented with coevolving them in a different popula-
tion. Our implementation differs somewhat from the one presented in [3]: rather



than having grid-worlds and locality notions, we decided for a much simpler im-
plementation. More specifically, there are two populations: one with programs
and one with sets of training cases. The fitness for program p is calculated as
1

Nc

∑Nc

i=1 Err(p, Ci), where C1, ..., CNc
represents the fittest set of training cases

from the previous generation. Similarly, the fitness of the set of training cases
c1, ..., cNc

is calculated as 1
Nc

∑Nc

i=1 Err(P, ci), where P is the best program from
the previous generation. After assessing the fitness of programs and training
cases, selection and breeding operators are used to create new populations of
each kind. The coevolution of the two populations is simultaneous, and a ran-
dom program and a random set of training cases are selected for evaluating the
first generation.

Coevolution With Opponent Sharing (Coshare or CSH) is another coevolution-
ary method used when multiple populations are present. It has been first de-
scribed in [13] under the name “competitive fitness sharing”. The main idea is
to treat every individual in the population as a resource and reward individuals
that defeat opponents defeated by just few individuals. In this paper we consider
two populations (one with programs and one with training cases) and we assume
a complete mixing (each individual is tested on each training case). The fitness

of a program p is calculated using the formula 1
Nc

∑Nc

i=1 Err(p, ci)
Err(p,ci)

PNp

j=1
Err(pj ,ci)

,

where Nc and Np are the sizes of the populations of training cases, respectively of
programs, and ci and pj represent individuals in the training case and program
populations.

Fitness Sharing (FSH) implies that the weight of the performance of individuals
on different training cases depends on the performance of the population on the
specific training cases. The fitness of program p is calculated similarly as in the

Coshare method by using the formula 1
Nc

∑Nc

i=1 Err(p, ci)
Err(p,ci)

PNp

j=1
Err(pj ,ci)

, however

c1, ..., cNc
represents a set of training cases that is randomized every generation

(as in the Random-Per-Generation method), rather than coevolved. A related
approach is reported in [14].

4 Testing Robustness

One challenge to sampling is that the assessed quality of an individual is sensitive
to its evaluation context (the set of input cases used). Thus to study the robust-
ness of the programs, we used a variation of the Train-Test-Validate methodology
[15, 16]. In this methodology, individuals’ fitnesses are assessed using a training
set. The best-of-generation individuals are gathered, and the best-of-run indi-
vidual is chosen from among them by testing each individual against a different
test set. The final quality of the best-of-run individual is assessed using yet an-
other different validation set. The size of these sets is relative to the frequency in
which they are applied. Thus the validation set is larger than the test set, which
in turn is larger than the training set. The use of the three separate sets means



that the training, testing, and final comparison phases of the experiment are
statistically independent. This is standard procedure in the Machine Learning
and Data Mining communities, and as [17] argues, should be used more often in
EC.

In the Artificial Ant, Multiplexer, and Even Parity problems, we also included
results against an exhaustive sampling rather than a randomized validation set;
our interest was in whether or not a large validation set was sufficient to justify
not doing exhaustive sampling (particularly with infinite-sized input sets!). The
validation sets, as it turns out, produced very similar results to the exhaustive
samples.

We conducted the experiments on several common domains, all described
below. More details on the domains and their standard settings can be found in
[11]. All experiments were performed with the ECJ system [18]. Unless stated
otherwise, the populations had 128 individuals and used 90% crossover proba-
bility, 10% reproduction probability, tournament selection with size 7, and one
individual elitism. Other parameters were taken from [11]. Each experiment con-
sisted of 50 independent runs. As we were testing generalization accuracy and not
learning speed, we chose to give runs ample time (500 generations) to converge.

The problem domains used in this investigation are:

Symbolic Regression The task is to learn the function f(x) = x4 + x3 + x2 + x

from a set of pairs 〈x, f(x)〉 selected with x varying from -1 to 1. No ephemeral
constants were used. The full input space is infinite in this problem. The train-
ing, testing and validation sets contained 20, 500, and 2000 random input cases
respectively. The error on an input case was defined as the absolute distance
between the real value of the generator function and the value estimated by the
evolved program.

For the Coevolution method, the second population contained 128 training
sets, each with 20 training cases; the training sets bred using Gaussian mutation
(µ = 0, σ = 0.1) with 100% probability, one-point crossover with 90% proba-
bility, and tournament selection of size 7. For the Coshare method, the second
population had 20 individuals, each consisting of a single training case (a number
between -1 and 1). The tournament selection had size 2, and Gaussian mutation
(µ = 0, σ = 0.1) was the only breeding operator.

11 Bit Multiplexer The task is to search for boolean multiplexers that receive as
input eight data and three address bits, and output the data bit corresponding
to the specific address. The full input space has 2048 cases. The training, testing
and validation sets contained 16, 32, and 64 random input cases respectively.
The error on an input case was defined as 0 if the correct output was presented
and 1 if not.

For the Coevolution method, the second population contained 128 train-
ing sets, each with 16 training cases. The training sets used bit-flip mutation
(on average 2 bits were modified per training set) with 100% probability, one-
point crossover with 90% probability, and tournament selection of size 7. For the
Coshare method, the second population had 16 individuals, each consisting of



Validation Ranking Exhaustive Ranking

Regression CVL RPG FSH FRI RPI CSH

Multiplexer RPI FSH FRI RPG CSH CVL RPI FSH FRI CSH RPG CVL

Ant CVL CSH RPG FSH RPI FRI CVL CSH RPG FSH RPI FRI

4 Bit Parity CSH FSH RPG RPI FRI CVL CSH FSH RPG RPI FRI CVL

Table 1. Statistical significance groupings for the best-of-run performances for
all problem domains. Horizontal bars at the same level indicate techniques with
statistically insignificant differences in means. Methods are ordered according
to the performance of the best-of-run individuals from best (leftmost) to worst
(rightmost) for each domain. The Validation Ranking is obtained by evaluating
the best-of-run individuals on randomly generated validation sets. The Exhaus-
tive Ranking is obtained by evaluating the best-of-run individuals on all possible
input cases.

a single training case. Coshare used tournament selection of size 2, followed by
bit-flip mutation (on average, 3 bits per training case were modified).

Artificial Ant The standard GP Artificial Ant problem consists of a two-
dimensional discretized toroidal environment which contains a broken trail of
food pellets (we used the “Santa Fe” trail map). The GP program controls an
ant starting at an initial position and orientation, which tries to collect as much
food as possible in a fixed number of steps. Our experiment deviates from the
standard by allowing the ant to start from any position and have any initial
orientation. The full input space has 4096 possible input cases (triplets 〈x, y, o〉
where x and y range between 0 and 31, and o may take any of the four orienta-
tions). The training, testing and validation sets contained 10, 100 and 500 input
cases each. The error on an input case was defined as the amount of food not
consumed.

For the Coevolution method, the second population contained 128 training
sets, each with 10 training cases; this population used a 3.4% mutation (about
one gene per training set was randomized), 90% one-point crossover, and tour-
nament selection of size 7. For the Coshare method, the second population had
10 individuals, each consisting of an training case (3 genes). Coshare again used
tournament selection with size 2, this time followed by mutation with 34% prob-
ability of randomizing a gene, plus one-point crossover with 90% probability.

4-Bit Even Parity The task consists of learning the parity of a bit string without
counting the bits, using only the four boolean functions AND, OR, NAND, and
NOR. 4-bit Even Parity has a small input space (16 cases). However the task is



FRI RPI RPG FSH CVL CSH

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Methods
E

rr
or

 o
n 

V
al

id
at

io
n 

In
pu

t S
et

s

Fig. 1. Symbolic Regression: Boxplot of errors of methods on validation sets.

FRI RPI RPG FSH CVL CSH

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Methods

E
rr

or
 o

n 
V

al
id

at
io

n 
In

pu
t S

et
s

FRI RPI RPG FSH CVL CSH

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Methods

E
rr

or
 o

n 
E

nt
ire

 In
pu

t S
pa

ce

Fig. 2. 11-Bit Multiplexer: Boxplots of errors of methods on validation sets (left) and
on all possible input cases (right).

interesting in that it is difficult to generalize from a reduced sample (in our case,
8 cases in the training and 16 in the testing sets). The small input size also gave
us a chance to see what would happen if the training, testing, and validation sets
did not uniformly sample the space: in particular, the validation set was done on
24 random input cases. This is larger than the input space and by design cannot
uniformly sample it.

The Coevolution method contained 128 tests sets in the the second popula-
tion, each with 8 training cases, using tournament selection of size 7, and bit-flip
mutation that changed on average three bits per training set and one-point
crossover with 90% probability. In the Coshare method, the second population
had 8 individuals, each consisting of an training case. Coshare used tournament
selection of size 2, followed by mutation flipping 2 bits per training case on
average.

5 Results

Our results compare the best-of-run individuals on the validation sets. We ini-
tially used one-way ANOVA tests at 95% confidence, followed by Tukey post-hoc
tests for ranking the methods. A more careful analysis of the data indicated that
the results are normally distributed in the Artificial Ant, 11-Bit Multiplexer and



FRI RPI RPG FSH CVL CSH

30
35

40
45

50
55

60
65

Methods

E
rr

or
 o

n 
V

al
id

at
io

n 
In

pu
t S

et
s

FRI RPI RPG FSH CVL CSH

30
35

40
45

50
55

60
65

Methods

E
rr

or
 o

n 
E

nt
ire

 In
pu

t S
pa

ce

Fig. 3. Artificial Ant: Boxplots of errors of methods on validation sets (left) and on all
possible input cases (right).

FRI RPI RPG FSH CVL CSH

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Methods

E
rr

or
 o

n 
V

al
id

at
io

n 
In

pu
t S

et
s

FRI RPI RPG FSH CVL CSH

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Methods

E
rr

or
 o

n 
E

nt
ire

 In
pu

t S
pa

ce

Fig. 4. 4-Bit Even Parity: Boxplots of errors of methods on validation sets (left) and
on all possible input cases (right).

4-Parity domains, but they are not normally distributed in the Symbolic Re-
gression domain. Additionally, the results have different variances, which may
pose problems for the Tukey tests which assume equal variances. We compared
the methods by pairwise comparisons using Welch’s two-sample tests combined
with Boole’s inequality1. For 95% confidence when comparing 6 methods, 15 two-
sample pairwise tests need to be performed at confidence 1 − 1−0.95

15 = 99.67%
each. We confirmed the ranking in the Symbolic Regression domain by perform-
ing comparisons using a nonparametric test due to Steel and Dwass.

Figures 1-4 present boxplots of the distributions of error among the best-
of-run individuals on the validation set of each method. Except for Symbolic
Regression, which has an infinite input space, the distributions on the exhaustive
case spaces are also given. The center line inside each box plot represents the
median (not the mean) of the sample.

As shown in Table 1, no one method is superior to the others over all do-
mains in the study. In the Symbolic Regression domain, Coevolution, Random-

1 Welch’s two-sample test is similar to the standard t-test, but the possibly unequal
variances of the two distributions are separately approximated. Boole’s inequality is
used for repeated testing of the same data sets, and it mainly increases the confidence
requirements for each individual test proportional to the number of tests performed.



Per-Generation, and Fitness-Sharing performed best. Coevolution and Coshare
method did best in the Artificial Ant problem2. In the boolean function domains,
the results are different. Random-Per-Individual and Fitness-Sharing perform
best in the 11-Bit Multiplexer domain, and Coshare and Fitness-Sharing per-
form best in the 4-Bit Even Parity.

We analyzed the average performance of the best-of-generation and best-of-
run individuals on the training, test and validation sets (graphs not shown). In
general, Coevolution and Coshare both have higher errors on the training sets
than on the validation sets; this is indicative of coevolution’s relative success in
discovering and promoting difficult training sets. We also observed overfitting
to the testing sets with Random-Per-Generation, Random-Per-Individual and
Fixed-Random-Initial. By comparing the validation and test results with a t-test
at 95%, we found that in the Artificial Ant domain, these three methods all
performed significantly worse on the validation sets than on the test sets.

We found that the Train-Test-Validate methodology as used in this paper
gives a good approximation of the robustness of the evolved programs over the
entire input space. As shown in Table 1, the ordering is relatively similar between
validation and exhaustive rankings.

We finish with some speculation as to why various methods performed the
way they did.

The four domains can be divided into two categories: in the boolean problem
domains, it is easy to discover a difficult input case; whereas in the Artificial Ant
and Regression problems, it is relatively more challenging to discover one. This
is because Regression does not usually have large jumps with slightly modified X
values, and small changes in orientation or location do not usually affect Artificial
Ant solutions radically. We believe this may explain the behavior of Coevolution,
which did poorly in the boolean problems but well in the other two. Specifically,
we suspect that Coevolution’s population of training cases adapted too rapidly
to difficult problems for the GP population to solve, thus contributing to a loss
of gradient.

To quickly test this hypothesis, we changed the population of training cases in
the 4-bit Parity domain to contain just two individuals (effectively hillclimbing),
with size 2 tournament selection, and a mutation rate smaller by one order
of magnitude. The goal was to prevent the training cases from improving too
rapidly. The resulting solutions had statistically significantly better performance
on both the validation and exhaustive sets of cases.

The Symbolic Regression domain differs from other problems in that each in-
put case can cause an arbitrarily large error. This particularly affects the Coshare
and Fitness-Sharing methods, in which a moderately large, but unique error in
a single test case can ruin the fitness of an individual even if it significantly
outperforms mediocre peers in the population on all the other cases.

2 In the Ant domain, Random-Per-Individual has significantly worse performance than
Fitness-Sharing, but there is not enough confidence to state it is also worse than
Random-Per-Generation which has a large variance in results.



The Fixed-Random-Initial method never fell into the top tier, suggesting that
it should not be used as the first choice method when robust results are desired.

6 Conclusions and Future Work

Methods for sampling large input spaces may have particular utility to the evo-
lution of computer algorithms and functions. In this initial investigation of the
issue, we compared several approaches to sampling this space in the context of
four genetic programming domains. However, we observed that which approaches
did best was dependent on problem domain features. For example, Coevolution
performed well in the Symbolic Regression and Artificial Ant domains, but it
had the worst results in the 11-Bit Multiplexer and 4-Bit Even Parity. Fitness-
Sharing fell in the first tier in the Symbolic Regression and 4-Bit Even Parity, ant
fairer reasonably well (second tier) in the 11-Bit Multiplexer and the Artificial
Ant problems.

Part of this may be due to unforeseen consequences of how fitness is assessed
(such as Symbolic Regression). This brings up an important question to be ad-
dressed in future work: when the performance of an individual is assessed over
several input cases, how can its overall performance be approximated? Possible
alternatives to averaging may use the mode, median, maximum or minimum val-
ues, or include standard deviation or interquartile information ([10] in particular
suggests using the minimum of several noisy evaluations). Additional research is
also required to identify when overfitting occurs and how it can be avoided.

7 Acknowledgements

This research was partially supported through a gift from SRA International and
through Department of Army grant DAAB07-01-9-L504. The authors would like
to thank Dr. Daniel Menasce, R. Paul Wiegand, Elena Popovici, Gabriel Balan
and Marcel Barbulescu for their help in conducting the research investigation.
We would also like to thank Dr. Clifton Sutton for his assistance in analyzing
the data.

References

1. Bersano-Begey, T.F., Daida, J.M.: A discussion on generality and robustness and a
framework for fitness set construction in Genetic Programming to promote robust-
ness. In Koza, J.R., ed.: Late Breaking Papers at the 1997 Genetic Programming
Conference, Stanford University, CA, USA, Stanford Bookstore (1997) 11–18

2. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolu-
tionary Computation 5 (1997) 401–418

3. Hillis, D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. Artificial Life II, SFI Studies in the Sciences of Complexity 10 (1991)
313–324



4. Kushchu, I.: Genetic Programming and evolutionary generalization. IEEE Trans-
actions on Evolutionary Computation 6 (2002) 431–442

5. Juille, H., Pollack, J.: Coevolutionary arms race improves generalization. In Koza,
J.R., ed.: Late Breaking Papers at the Genetic Programming 1998 Conference,
University of Wisconsin, Madison, Wisconsin, USA, Stanford University Bookstore
(1998)

6. Kinnear, Jr., K.E.: Generality and difficulty in Genetic Programming: evolving a
sort. In Forrest, S., ed.: Proceedings of the 5th International Conference on Ge-
netic Algorithms, ICGA-93, University of Illinois at Urbana-Champaign, Morgan
Kaufmann (1993) 287–294

7. Cavaretta, M.J., Chellapilla, K.: Data mining using Genetic Programming: The
implications of parsimony on generalization error. In Angeline, P.J., Michalewicz,
Z., Schoenauer, M., Yao, X., Zalzala, A., eds.: Proceedings of the Congress on
Evolutionary Computation. Volume 2., Mayflower Hotel, Washington D.C., USA,
IEEE Press (1999) 1330–1337

8. Rosca, J.: Generality versus size in Genetic Programming. In Koza, J.R., Goldberg,
D.E., Fogel, D.B., Riolo, R.L., eds.: Genetic Programming 1996: Proceedings of the
First Annual Conference, Stanford University, CA, USA, MIT Press (1996) 381–
387

9. Droste, S.: Efficient Genetic Programming for finding good generalizing boolean
functions. In Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H.,
Riolo, R.L., eds.: Genetic Programming 1997: Proceedings of the Second Annual
Conference, Stanford University, CA, USA, Morgan Kaufmann (1997) 82–87

10. Reynolds, C.W.: Evolution of corridor following behavior in a noisy world. In:
Simulation of Adaptive Behaviour (SAB-94). (1994)

11. Koza, J.: Genetic Programming: on the programming of computers by means of
natural selection. MIT Press (1992)

12. Moore, F.W., Garcia, O.N.: New methodology for reducing brittleness in Genetic
Programming. In Pohl, E., ed.: Proceedings of the National Aerospace and Elec-
tronics 1997 Conference (NAECON-97), IEEE Press (1997)

13. Rosin, C., Belew, R.: New methods for competitive coevolution. Evolutionary
Computation 5 (1997) 1–29

14. Forrest, S., Smith, R.E., Javornik, B., Perelson, A.S.: Using Genetic Algorithms
to explore pattern recognition in the immune system. Evolutionary Computation
1 (1993) 191–211

15. Rowland, J.: On model selection in supervised learning: Do we really know when
to stop? In: Evolutionary and Neural Computation in Bioinformatics: A PPSN
VII Workshop. (2002)

16. Brameier, M., Banzhaf, W.: A comparison of Linear Genetic Programming and
Neural Networks in medical data mining. IEEE Transactions on Evolutionary
Computation 5 (2001) 17–26

17. Eiben, A.E., Jelasity, M.: A critical note on experimental research methodology
in EC. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC
2002). (2002) 582–587

18. Luke, S. ECJ 9: An Evolutionary Computation research system in Java. Available
at http://www.cs.umd.edu/projects/plus/ec/ecj/ (2002)


